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ABSTRACT
Controlling the timbre generated by an audio synthesizer
in a goal-oriented way requires a profound understanding
of the synthesizer’s manifold structural parameters. Es-
pecially shaping timbre expressively to communicate emo-
tional affect requires expertise. Therefore, novices in partic-
ular may not be able to adequately control timbre in view
of articulating the wealth of affects musically. In this con-
text, the focus of this paper is the development of a model
that can represent a relationship between timbre and an ex-
pected emotional affect1. The results of the evaluation of
the presented model are encouraging and thus support its
use in steering or augmenting the control of the audio syn-
thesis. We explicitly envision this paper as a contribution
to the field of Synthesis by Analysis in the broader sense,
albeit being potentially suitable to other related domains.
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1. INTRODUCTION
In many ways, timbral qualities constitute a central building
block of music. From the perspective of a composer, tim-
bre is integral to making voice leading effective [10]. From
the perspective of a performer the variation of timbre is
“[. . . ] one of the principal ways through which performers
communicate musical structure, ideas, emotions and musi-
cal personality” [9]. From the perspective of a listener it
induces expectations towards the flow of a piece [20]. In
this regard timbre communicates musical intend, structural
concepts and interpretative imagination. The component
of timbre we focus on is its (emotional) affect. As in the
contribution by Eerola et al. [4], the term affect is pre-
ferred here because it is an “[. . . ] umbrella term that covers
all evaluative - or valenced (i.e., positive/negative) - states
such as emotion, mood, and preference.” [11, p.10], and
thus keeps the model’s complexity manageable. While it
has been shown that timbre contributes to emotion judge-
ments in larger structures of music [7], also alterations in
musical emotional expression can be detected at the level of

1The underlying data set will be made available online at
http://bit.ly/15Mi9WP
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single notes [6], such that isolated instrument sounds con-
tain cues that indicate affective expression independently of
the presence or absence of other cues such as melodic ones
[4, 7]. Because of the high inter-consistency of listeners’ af-
fects in judgements for both [4, 7] levels and the property
of timbre being a form-bearing dimension for a composer
or performer, we also see timbre as “[. . . ] central to inter-
pretative decision-making and projection in performance”
as argued by Holmes [9].
However, the issue with shaping sounds generated by an au-
dio synthesizer is that its sound shaping parameters are in
most cases not grounded in the domain of perception (tim-
bral qualities) and affect but in the generating structure and
its technical functioning [21, 22]. Therefore, without expert
knowledge, making change to timbre in these domains is
non-intuitive.
While our long-term goal is to develop a full affect related
audio synthesis environment, for this contribution, the pri-
mary aim is to model a relationship between timbre and
affect. In this way individual sounds that may be part
of a larger musical context can be automatically given a
label or value of an expected affect for the composer or
listener2. Such labels can be soothing, aggressive, happy,
sad,. . . or, as will be presented, a coordinate in Russel’s
Valence/Arousal (V/A) space [23]. This space is consid-
ered useful for our purposes since it eliminates ambiguity
and provides a consistent global model of affect and has
been applied to a large body of related work (e.g. [4, 27,
26]). Since our model is able to label data in an unsuper-
vised manner, the labeling process can be applied to large
databases of sounds with different timbres. In this way
the tedious task of supervised labeling for sets of sounds
with various timbres regarding the emotional affect may be
avoided, thus providing the opportunity to create new ap-
plications based on Synthesis by Analysis methods as will
be exemplified in the next section.
The proposed model will be created via training a Deep
Belief Network [8] using a large data set created from the
Freesound.org [1] database and text-mining. We’ve chosen
to use a Machine Learning (ML) based approach since an
analytic understanding of the affect of timbre is still missing
as most research in the context of music so far has focused
on the affect of tempo, dynamics and mode [4]. It should
be emphasized that the difference to the discipline of mood
classification of songs in Music Information Retrieval (MIR)
is the type of data analyzed and therefore the implied model:
here we do not use a mixture of sounds but isolated, singular
ones that are predominantly short (compared to a recording
of a large musical structure) and detached from a harmonic
and rhythmic context. Since songs themselves communicate

2To simplify the model, throughout this paper we do not
distinguish between the effective perspective of composer
and listener.
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emotion on additional layers (structurally) [7] and since this
also implies the utilization of additional feature data for the
audio analysis, a solely timbral model, such as ours, is -in
comparison- expected to perform a-priori worse.
The paper is organized as follows: first potential appli-
cations of the proposed model are shown, second related
work is referenced and third the acquisition of the training
data set is laid out. Then the performance on a simplified
training set of various common ML classifiers is evaluated
which subsequently lead to the reason to employ a regression
method based on Deep Belief Networks. After the presen-
tation of this method, the paper concludes with an outlook
of future work.

2. POTENTIAL APPLICATIONS
One use-case scenario for our research is to combine such a
timbre-affect model with an audio synthesis model, primar-
ily to help novices shape sounds with respect to a desired
emotional affect. Therefore, we see music creation rather
than pure analysis as the main application field of our con-
tribution, such as controlling the audio synthesis by using
the emotional affect as hyper-parameter, created in the fol-
lowing way:

• establish a corpus of sounds generated by an audio
synthesizer instantiated with permutations of its struc-
tural parameters

• retain the generating parameter settings and label each
sound using the proposed model

• use the labels as meta-mapping for the structural pa-
rameters (depending on the audio synthesizer these
structural parameters can be interpolated)

In this way exemplifying use-cases in regards to control tim-
bre could be:

• present the user(s) with a pre-selection of sounds fit-
ting to the mood they want to create with a song
(static mood)

• help user(s) to create transitions from one mood to
another (dynamic mood)

• help users create a static mood (e.g. calm) but offer a
set of different timbres with a similar emotional affect
so that the music is still dynamic/varying

3. RELATED WORK
There are several timbral qualities that have been studied
and are known to relate to or to be fundamental to affect
[29, 19]. These can be roughly grouped into spectral en-
ergy, -structure and -variation. Depending on the method,
they can be quantitatively or qualitatively measured in the
spectral, temporal or spectro-temporal domain; examples
are the spectral centroid (geometric center of the spectrum;
brightness), spectral spread (standard deviation of the spec-
trum), HF-LF ratio (high to low energy ratio), attack slope
or inharmonicity (deviation of partials from the harmonic
frequencies). In [4], Eerola et al. performed an extensive
study to relate such audio features to the affect dimensions.
The analyzed sounds were orchestral samples (105) with
various articulations. Within this study correlations be-
tween affect and various audio features have been found
for both affect dimensions. Furthermore it was possible to
construct a model to predict the affect from feature data
with reasonable results via linear regression. As will be-
come clear in the section Machine Learning, a linear model
is not sufficient for our data set. It was also shown in [4]
that the two affect dimensions led to the most consistent
results when compared to an affect model employing the

three dimensions of valence, arousal and tension [25]. Be-
cause the aim of their study not to rely on artificial sound
generation schemes is antipodal to ours, we decided not to
use their provided data set. It is of particular interest for
our model not to emphasize a certain set of timbres but to
allow the classification of inherently inharmonic or initially
“non-musical” sounds. For an in-depth review of the applied
audio features, it is recommended to consult the contribu-
tion by Eerola et al. [4] as we made use of the same toolbox
(MIRToolbox) [15] with a congruent feature set.
Similar to our goals, Oliveira et al. [17] developed a model
that used a ML approach to control the selection of timbres
in relation to their affect in an automated music composi-
tion system [18]. Their model yields a correlation of 75%
between timbre (audio features) and affect labels. The affect
labels (discrete V/A space) were acquired in a previous lis-
tener study and are based on short orchestral pieces. With
respect to our own research, we especially see the derivation
of affect from musical pieces as problematic since a model
informed by timbral qualities will then be biased towards the
affect of the pieces themselves. Le Groux et al. [16] follow a
different path by first designing a physically informed syn-
thesizer (modal synthesis) to generate sounds in accordance
to perceptually relevant features and then evaluating their
impact on the affect in a listener study. They show that
the spectral centroid as well as the spectral flux are directly
related to arousal. However, no significant relationship to
valence could be established. This and the comparatively
simple synthesis model (percussive sounds) may reveal the
issue that more variation in timbre is necessary to cover the
wealth of affects. The low number of participants (10) may
also contribute to this.
In summary, a data set for our purpose would have to consist
of a variety of different timbres, musical (acoustic, synthe-
sized) and non-musical ones, as well as covering a large spec-
trum of emotional affects. Furthermore, as a rule of thumb,
it is usually recommended to have at least 10 to 20 times
more observations than predictors (e.g. audio features) to
be able to perform a meaningful multivariate analysis of
the data. Getting hold of such a data set is therefore an
important item for our work. There are related data sets
available, but to our knowledge they have either limited
musical relevance such as e.g. The International Affective
Norms for Digitized Sounds (IADS-2) [3] which focuses on
affects of real-life stimuli, or do not meet the requirement to
have isolated timbres as the audio data consists of a mixture
or sequence of several timbres like the large data sets used
in the MIR community (e.g. MTurk [30]) for song emotion
(and genre) classification. To our knowledge, the only ex-
ception is the data set used by Scott et al. [27]. It consists
of the individual tracks of a song labeled with continuous
V/A labels. However, this data set is biased in timbre since
it contains only 50 songs from the genre of Rock music.
This issue may be prevalent in other related MIR data sets
as well (USPop2002; orchestral film scores).

4. DATASET FOR TRAINING
Because of the general lack of a suitable data set, we de-
cided to construct one based on a large set of samples and
related meta-data downloaded from the Freesound.org [1]
library. The insight into the samples’ emotional affect is
gained by processing the meta-data. The predictor data for
training is generated by audio analysis. Freesound.org is an
online collaborative sound database where people can share
recorded audio clips (royalty free) and, among other things,
tag these sounds. This database focuses to a large degree on
the creative use of the material by sound and video artists.
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Figure 1: V/A values of all samples in the data
set; shapes/colors specify the cluster membership
for the preliminary performance analysis

Figure 2: Histogram of values of top six features
according to clusters (cluster membership color en-
coding as in fig. 1)

The main idea for the data acquisition is that the audio data
can be used as source for audio features and the linked tags
as source for a folksonomy discerning the emotional affect
of the audio data. Thus, we downloaded 139155 samples
(May 2012) with the accompanying meta-data as first step.

4.1 Dictionary Analysis
The tag data are based on a narrow folksonomy [5], so a
single tag can be assigned only once to each sound. For the
139155 sounds, 39337 unique tags have been used, yielding
an average of 6.64 tags per sound. As pointed out by Font
and Serra [5], the Freesound.org folksonomy is quite noisy
and therefore suffers from inconsistencies such as synonymy
and polysemy which complicates the extraction of structural
information. An issue of properly deriving V/A values for
the tags is that the tags are part of different semantic cate-
gories (subjective, context, content,. . . ). The goal is to esti-
mate the affect from all categories (ideally emphasizing the
subjective category) and disregarding all information that
can lead to inconsistencies. In view of that and to relax the
previously mentioned issue of noisiness, a combination of
finding sentiment related synonyms for each tag and of fil-
tering tags based on the content of the words was employed.
Furthermore, tag data and dictionary data were stemmed
(using SentiWordNet [1]).
The dictionary analysis per sound is roughly accomplished

as follows: first sentiment related synonyms for each tag
are retrieved, then for each of these synonyms it is evaluated
whether a V/A value pair exists. If it exists, the tag and the
synonym are compared against a blacklist containing terms
of context and a whitelist containing terms of musical affect.
The V/A values are kept if the tag or synonym are both not

Figure 3: Histogram of V/A values (left to right) in
our data set, the same magnified and in ANEW

blacklisted or if either one of them is whitelisted, otherwise
the V/A value is discarded. Each sound is associated with
the mean V/A value of all tags. The sentiment related syn-
onyms are generated with SentiWordNet3.0 [1]. It is based
on a dictionary that holds 117684 synonyms. The blacklist
dictionary is based on on the General Inquirer Augmented
Spreadsheet3 and was specifically compiled to contain only
words of matters that are considered unrelated to music and
its affect. Furthermore it includes terms that are deemed
to create inconsistencies, such as the word ’piano’ which
has a V/A value but refers to the content of the sample,
therefore it would colorize the valence arousal value for an
accordingly tagged sample. The dictionary of the Musical
Adjectives Project4, serves as whitelist. It consists of 690
collaboratively collected adjectives that describe and cat-
egorize emotions in music. Finally, The Affective Norms
for English Words (ANEW) dictionary [2] was applied to
derive V/A values. It holds 1034 English words including
verbs, nouns, and adjectives whose emotional affects have
been evaluated in a large study. The originally included do-
main of dominance has been ignored in our musical context
(singular timbres).
In the end, 11324 (12.3%) sounds were kept from the origi-
nal data set for further processing, each having a V/A value
associated. Figure 1 shows the V/A values for all sounds
in the final data set. When comparing these to the ones
in the original ANEW dictionary (cp. figure 3), one can
see that the distribution is slightly biased as singular coor-
dinates have a disproportionately high occurrence. In the
data set 203 V/A coordinates are unique which contrasts to
the 813 in the dictionary. The average number of tags with
a V/A value in the data set is 1.32 per sound. The number
of unique tags with V/A value is 445 (an excerpt is given
in table 1) which were resolved into 405 sentiment related
synonyms, thus it may cautiously be concluded that the
original tags describe differing concepts at large. Conclud-
ing, aliases have been created because different concepts (in
the dictionary) have a similar emotional affect. 2.2% (e.g.
table 1) of the most frequently used V/A valued tags make
up 44.5% of the complete set of V/A valued tags which
shows that this transformed folksonomy is less diverse in
vocabulary than the original one. Nevertheless, using the
data set seems plausible as the spread of affect in the data
set is comparable to the one of the ANEW dictionary (as
indicated by figure 3), so diversity and structure of affects
can be considered to be adequately represented. It should
be noted that structurally this is also true in comparison to
the IADS-2 and the International Affective Picture System
[13] data sets.
Given our representation of affect as coordinates in the V/A

3
http://www.wjh.harvard.edu/~inquirer/

4
http://themusicaladjectivesproject.wikispaces.com/
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User tag with
V/A value

Count User tag with
V/A value

Count

’dark’ 1722 ’dream’ 294
’spooky’ 832 ’smooth’ 274
’evil’ 515 ’terror’ 261
’dirty’ 472 ’cry’ 245
’happy’ 339 ’frightening’ 236

Table 1: Excerpt from the 25 most frequently used
sentiment related tags with V/A value

Classifier
368 feat. top 25 feat. top 4 feat.
error % error % error %

Näıve Bayes 70.61 67.82 74.75
Bayes Net 65.73 65.85 71.84
RandomForest 55.59 52.59 71.09
LibSVM 76.37 76.20 70.97

Table 2: Preliminary performance (classification er-
ror) of common ML-methods analysis with simpli-
fied data set importance ordered features

space, we assume that these coordinates can be linearly
combined, including even V/A coordinates of opposite af-
fects (e.g. happy and sad), leading to a composition of af-
fect coordinates which is representationally unambiguous.
On the other hand the combination of affects in a discrete
model (e.g. bags of labels) may not be as trivial since a
simple union of labels might either lead to ambiguity (with
possibly severe impact for the ML model) or sparsity of the
affect model (e.g. when using majority voting ).

4.2 Audio Analysis
First the samples were normalized, the preceding and sub-
sequent silence was trimmed, and finally they were resam-
pled to 22kHz sample rate. Then all audio files were ana-
lyzed using the MIRToolbox [15] to generate audio features
(30) in accordance with the presented focus, namely fea-
tures that relate to timbral and dynamic qualities of these
sounds only. This resulted in 684GB of feature data, most
of them being time-series data. The size of the data had
to be reduced in order to circumvent memory constraints
for the applied ML-algorithms. A further justification to
reduce the features to a single descriptor per sample is that
the available V/A data is static. Statistical properties such
as variance, kurtosis, entropy, or periodicity were calculated
for each time-series feature, thus the time series data was
collapsed onto a single feature descriptor. This transforma-
tion reduced the data set to 48MB. All feature vectors where
then concatenated to create the observation/feature matrix.
Vectors containing undefined values were removed while the
remaining ones were standardized by z-score transformation
as suggested in [24]. The final observation/feature matrix
represented 11324 observations with 368 features each. The
downside of the noisiness of our data (e.g. due to the empiri-
cal nature of the applied dictionaries, variations in recording
quality, etc. ) is that training a representative model may
be difficult or impossible to achieve, the benefit however
may be the applicability of such a model to real world data.
In conclusion, the data set contains 30.8 times more ob-
servations than predictors, more importantly the require-
ments postulated beforehand have been met inasmuch as
the wealth of emotional affects and a variety of timbres from
unrelated sound sources is represented.

5. MACHINE LEARNING
To establish a model, the task is to find a mapping be-
tween audio features and emotional affect values. For a

preliminary overview of how various established ML algo-
rithms perform, the aspired mapping is simplified : the for-
mer continuous V/A coordinates were clustered into 7 dis-
tinct emotional affect classes which roughly resemble the
discrete emotional affect classes when basic affects are repre-
sented on the V/A plane [13, 3, 2]. Hence, the ML task was
relaxed to creating a mapping from audio features to these 7
classes. Figure 1 shows the color encoded cluster correspon-
dence of each sample on the V/A plane. To overcome the
issues of many ML classification algorithms (such as SVM)
of being sensitive to ambiguous or inconsistent features [24,
29] a feature selection is usually applied. Although gen-
erally suggested [24], we did not perform a wrapper-based
feature selection since that would have involved testing all
2368 combinations of feature sets for each classifier. Instead,
feature performance was evaluated with three sets of impor-
tance ordered features where the importance of the features
was estimated using ReliefF [28]. Table 2 shows the results
of this performance evaluation for various standard clas-
sifiers. The measure was the misclassification rate of the
predicted class and the observed one. In spite of the fact
that some classifiers (e.g. Näıve Bayes) make the assump-
tion that the features are independent which is certainly
not true for audio features, the initial idea is to see how, in
general, prevalent classifiers perform. The SVM has been
applied using Radial Basis Functions with a grid search to
find the optimal parameters for the kernel. One central is-
sue regarding the feature data is shown in figure 2, namely
that, on a per feature basis, the distribution of the features
in relation to cluster membership is not discriminative. This
is in accordance with observations made in other works as
pointed out in [12]. Although the presented algorithms have
already been successfully applied in similar contexts [12], for
our data set the results are disappointing as all algorithms
show unreliable classification performance. The results also
suggest that the data set may be very noisy and may con-
tain inconsistent labeling. Otherwise, from the empirical
evidence as shown in [12], the SVM based approach should
have performed better. Another indicator is that Random-
Forest, which is generally considered to be less susceptible
to these issues, performed best. It is also possible that the
tested ML algorithms are, from a computational point of
view, not able to find a generalizing pattern in the feature
space for discrimination, or that the feature data actually
originate from a higher dimensional manifold. In particu-
lar, the measurement of error may be inappropriate for the
task as an error of absolute misclassification introduces an
artificial discrete segmentation of the V/A space without
accounting for “near misses”. The latter part of this section
introduces the final ML method and an improved measure
of error, and concludes with a performance evaluation.
Informally, Deep Belief Networks (DBNs) [8] share archi-
tectural similarities with neuronal networks. They belong
to the class of deep architectures, hence their output is pro-
duced by consecutive layers of computational units. As a
result, they allow for hierarchical learning such that a model
is created progressively from a low to a high level structure
throughout the layers. With this, a deep architecture may
be able to model highly complex functions with only a lim-
ited number of parameters whereas the few layers of shallow
models (e.g. linear models, single layer neural networks, ker-
nel SVMs) may require an exponential amount of compu-
tational units [14]. A DBN [8] is a probabilistic generative
model whose building blocks (layers) are Restricted Boltz-
mann Machines (RBMs) which themselves model stochas-
tic latent variables as part of a two-layer neuronal network.
Learning a DBN is performed in two steps. First, the layers
are trained consecutively in a greedy fashion so as to initial-
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Figure 4: Schematic of the applied model (number
of layers/nodes is exemplary)

ize the RBM weights (generalization phase, unsupervised),
followed by fine-tuning the network’s weights with respect
to a chosen learning criterion (specialization phase, super-
vised). The generalization phase is performed by training
the first RBM layer to generate the input data and then
by successively feeding the output of each layer as input to
the next. Thus, with each layer the original input is ab-
stracted further. In our work, the learning objective of the
specialization phase is to minimize the error between obser-
vation and prediction of V/A coordinates given the feature
vector. For the mapping from the last RBM layer onto the
V/A plane, a logistic regression was employed whose output
logit variables were interpreted as encoding of grid tiles of
a uniformly discretized grid of the V/A plane. In this 1-
of-K encoding each output variable corresponds to exactly
one tile of the grid. Note that this differs from the previous
representation in that it is more general than the limited
number of generated affect clusters and hence embodies a
more detailed representation of affect. Employing logistic
regression allows for fine-tuning the whole network via su-
pervised gradient descent on the negative log-likelihood cost
function. Furthermore, the combination of 1-of-K coding
and the softmax saturation in the logistic regression proved
to be beneficial as early attempts to use a linear regression
method similar to [26] led to disappointing results. This
means, instead of a continuous representation of the V/A
space, the model uses a discretized one. However, with in-
creasing grid resolution it converges towards a continuous
solution. As will be shown, it is possible to create a model
that performs well while making rather fine granular pre-
dictions. Figure 4 schematically shows the architecture of
the presented model.

The question remains what a suitable error measure for
supervised training may be and, respectively, how the over-
all performance ought to be evaluated. As previously men-
tioned, a distance-based measure would be preferable, yet
a suitable baseline is missing due to the generated nature
of the training data. Hence we use the expected value of
the distance of two random points on the grid based on the
following reasoning: Given a feature vector and its corre-
sponding observation on the V/A grid, the worst predic-
tion of the model is a randomly chosen coordinate on the
grid. As the error measure is the Euclidean distance be-
tween these points, namely observation and prediction, this
expected random distance serves well as baseline. All dis-
tance measures are themselves normalized against the cho-
sen grid size to overcome to a large degree the quantization
error. Based on our initial experiments we chose to use N

Figure 5: Performance evaluation w.r.t. to a) grid
size and b) number of importance ordered features
(fixed grid size: 25)

input nodes (N features) and three layers with N , N · 10
and N · 10 nodes, respectively. This expanding topology
performed better than a reducing one suggesting that the
feature data may live on an even higher dimensional man-
ifold. All performance evaluations were done with 10-fold
cross-validation using stratification w.r.t. the V/A coordi-
nates (which was not applicable in all cases due to the un-
even distribution of samples). To evaluate the impact of
the grid size we computed the model for varying grid sizes
given the top 200 of the ReliefF importance ordered fea-
tures. Due to the complexity of the model and the DBN
training algorithm itself, this calculation took 83 days on
two NVIDIA GTX 580 GPUs with 3GiB memory.

Figure 5a) shows the regression error in relationship to the
grid size; for the examined range, it can be seen that the er-
ror decreases with increasing resolution (increasing number
of grid tiles ; the minimum is 124). The comparatively large
oscillations are attributed to the uneven distribution of V/A
points in combination with the uniform grid. Here, small
clusters of V/A points may be merged on a single grid tile or
spread across a small neighborhood of grid tiles according
to the boundaries of a grid tile. Furthermore, we evaluated
the impact of the selection of ReliefF ranked features for
an exemplary chosen fixed 25×25 grid (cmp. 5b). In our
case we see how the error decreases with the number of fea-
tures until the tipping point (the top 158 features) of model
complexity versus training time is reached. Nevertheless,
with 1242 grid tiles and 158 features, the error approaches
31%, which is, given the potential issues of the data set and
learning algorithms as pointed out before, very reasonable.
This corresponds to a distance of ∼18 tiles (15% of the grid
in one dimension), therefore we regard this estimated per-
formance as satisfactory for the use-case as introduced at
the beginning.

6. CONCLUSION
We argued that from the performative and compositional
point of view, insight into the emotional affect of timbre
would be beneficial to music creation, especially for novices.
We pointed out that in order to gain this insight and for
practical applications, a model representing this relation-
ship between timbre and affect would be necessary. The
largest part of this contribution dealt with the development
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of such a model using a ML based approach. For this, we
established a suitable new data set based on real world data
and applied recent developments in ML to this task of find-
ing a mapping from audio feature data to affect. This in-
cluded the development of a respective error measure so
as to estimate the quality of the model, yielding promising
results. For future work, we aim at improving the model
by re-assessing the various parameters of the involved ML
algorithm and the feature data themselves. For example,
instead of the current high level features, the model can
be trained to extract relevant features implicitly, e.g. from
the magnitude spectrum of the audio data as shown in [26].
We are also currently developing prototypical music appli-
cations with the aim to evaluate the model qualitatively.
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