
Cross-modal Sound Mapping Using Deep Learning

Ohad Fried
Princeton University

Department of Computer Science
ohad@cs.princeton.edu

Rebecca Fiebrink
Princeton University

Department of Computer Science
fiebrink@cs.princeton.edu

ABSTRACT
We present a method for automatic feature extraction and
cross-modal mapping using deep learning. Our system uses
stacked autoencoders to learn a layered feature representa-
tion of the data. Feature vectors from two (or more) differ-
ent domains are mapped to each other, effectively creating
a cross-modal mapping. Our system can either run fully
unsupervised, or it can use high-level labeling to fine-tune
the mapping according a user’s needs. We show several
applications for our method, mapping sound to or from im-
ages or gestures. We evaluate system performance both in
standalone inference tasks and in cross-modal mappings.

Keywords
Deep learning, feature learning, mapping, gestural control

1. INTRODUCTION
In recent years, deep learning has proven to be a very ef-
fective machine learning technique. Current deep learn-
ing methods achieve good results in tasks such as object
recognition and unsupervised learning of hierarchical rep-
resentations [12], as well as in music-centric tasks such as
genre recognition [5] and beat detection [4]. Unsupervised
or semi-supervised training of deep networks yields a set
of automatically learned features. This work shows how to
use such features in cross-modal mappings between sound,
visuals and gestures.

The task of mapping gestures to sound and sound to vi-
sualizations is critical to computer music creation and per-
formance. Many methods exist to create such mappings,
but the feature selection and mapping process still presents
practical difficulties. An expert user is required to care-
fully design feature vectors that represent the data, and
to map such feature vectors to output parameters. This
work uses automatic feature learning to remove the need
for an expert user, making the feature extraction—and op-
tionally the mapping—completely automatic. We use deep
learning to translate each input and output vector to a
corresponding feature vector (Section 3.1). These feature
vectors represent some inherent structure within the data
(e.g. features for handwriting can correspond to edges or
pen strokes, depending on the depth within the deep net-
work). The next step is to map these feature vectors to each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

other (Section 3.3), which is easier and more powerful than
comparing the original input vectors, since we are working
in an automatically-learned, lower-dimensional representa-
tion. This paper shows how to construct the deep network,
as well as how to implement automatic cross-modal map-
ping. We demonstrate our approach on different types of
data and suggest real-world uses in music.

We begin in Section 2 by discussing previous work that
uses deep learning to achieve automatic feature extraction.
Section 3 describes in detail the algorithm we developed
to extract features and map them to each other. Section 4
outlines various use cases for our method. Section 5 explains
how the results were evaluated. Section 6 discusses results,
and suggests future directions of research and improvement.

2. RELATED WORK
The idea of deep learning—machine learning using multiple
levels of representation—has been around for more than 20
years [10]. Training deep learning systems initially proved
to be difficult, but much progress has been achieved in re-
cent years (e.g. [7, 12]). A technical report on the subject
[1] gives a good outline of the field. In music informat-
ics, multi-layer architectures have been successfully used for
tempo extraction [4], instrument classification [6], emotion
detection [14] and more.

The task of meaningful feature extraction has also been
tackled in the literature using deep learning. The works that
are most similar to this paper are [5] and [8]. These works
discuss the virtues of deep learning for automatic feature
design, but do not use it for cross-modal mapping—which
is the novelty in the current paper.

Automatic feature design and automatic cross-modal map-
ping, as explained later in this paper, can benefit interactive
music systems. Systems such as [3] provide a fast prototyp-
ing mechanism for the creation of new interfaces. A short-
coming of such tools is that user expertise is still required
to design an appropriate feature representation of the in-
puts. If the user wishes to control the sound not through
synthesis parameters directly, but through “perceptual” or
“abstract” control parameters as discussed in [9], he must
also design an appropriate parameter abstraction. Further,
existing tools cannot appropriately automate mapping cre-
ation for applications in which the user does not care much
about the nature of the mapping, so long as it allows some
set of outputs to be reasonably controllable from some set
of inputs. This paper addresses all these problems by pro-
viding an automatic method for learning appropriate rep-
resentations for inputs and outputs, and for optionally au-
tomating mappings between them as well.

3. METHOD
Our method uses a neural network topology called stacked
autoencoders. An autoencoder is a type of artificial neural

�5�3�1



network with one hidden layer. In training, weights are
adjusted to most accurately reproduce the input values at
the output nodes. It is thus an unsupervised method that
achieves dimensionality reduction. A stacked autoencoder is
an extension to autoencoders, in which several hidden layers
are trained sequentially. A stacked autoencoder was chosen
here since it automatically learns a meaningful multi-layer
representation of the data, which we can effectively use for
cross-modal mappings, as we discuss below. We assume
basic knowledge of neural networks and autoencoders. For
a literature overview on the subject see [13]. Also, good
online tutorials are available.1

3.1 Stacked autoencoders
In order to create a deep architecture, we can take several
autoencoders and stack them on top of each other. The re-
sult is a greedy algorithm that learns the weights for each
layer iteratively. Past work has shown that higher-level au-
toencoders can capture higher-level details, such as elab-
orate pen strokes for the MNIST digit classification task
(Section 5.1).

The procedure for building a stacked autoencoder is il-
lustrated in Figure 1. We start by training an autoencoder.
Its input is the raw data or some basic manipulation of it
(e.g. image patches for images, DFT values for sound). We
then discard the output layer and use the input and hidden
layers as a way to translate original inputs to level-1 fea-
tures. We then repeat the process, feeding level-1 features
to an autoencoder to produce level-2 features. The process
can continue for as many levels as we want.

Figure 1: Building a stacked autoencoder. (i) An au-
toencoder. (ii) After training, the output layer is re-
moved. Inputs are passed through the hidden layer to
create compressed representations of the input. (iii) The
new representations are inputs for another autoencoder.
(iv)–(v) The process continues for arbitrarily many lay-
ers.

The output of the entire stacked autoencoder process is
a neural network that, given some input, produces a set of
features (node activations) which “capture the essence” of
the input. This definition is less than formal, and we will
elaborate on this point in the following sections.

3.2 Fine-tuning
Up until this point our process was completely unsuper-
vised. We can leave it unsupervised, or add some super-
vised refinements, depending on the data and the goal. If
the data is unlabeled, the process must stay completely un-
supervised. On the other hand, consider a task of matching
images with music, where both images and music are tagged
(this is very common in everyday life, with the prevalence
of ID3 tags for music and geotagged images). In such a
case we might wish to guide our cross-modal mapping (sec-
tion 3.3) to match, for example, music from some region
with images from the same region. Audio and images may
have missing or inaccurate tags, however, so we can further
fine-tune our network to solve an inference task. For the
examples above, we can train the neural network to clas-
sify images according to location. This step is performed
by adding another classification layer on top of the stacked
autoencoder. After achieving dimensionality reduction in

1http://deeplearning.stanford.edu/wiki/index.php/
UFLDL Tutorial.

an unsupervised manner (as explained in Section 3.1), we
add a softmax classifier on top of the stacked autoencoder
and train the combined network on the labeled input ex-
amples, which tunes the network for cross-modal mapping
according to our labels. The results of such a process are
presented in Section 5.

3.3 Cross-modal mapping
Having automatically generated features from data, it is
time to link together two different types of data. The basic
idea is simple: we take two or more sets of data (for example
audio recordings and images) and train a stacked autoen-
coder for each. The stacked autoencoders might have the
same structure but will learn different network parameters.
At this point we select some subset of the nodes from each
network to be our matching nodes. Reasonable choices are
the entire set, some specific layer, or a combination of a few
layers. For example, if we want to force our matching to be
dependent on the last layer (the classification) we will add
it to the matching nodes. If we would like the matching
to capture some low-dimensional representation but allow
deviation from the end classification, we can use one of the
middle layers. In all examples presented in this paper, the
middle hidden layers were used for matching.

The values of the selected matching nodes (for a given
input) become our feature vectors used to represent the
input. More precisely, given a set of examples {Si}, we
can feed each example to our network. Each example will
yield a vector of node values V (Si). We shall mark the se-
lected subset of these values as V (Si)[indices], where indices
is the list of matching nodes. We now have a natural way to
calculate distances between examples of the two datasets,
using some norm value. For example, using the standard
l2-norm the distance between a example Si from the first
dataset and example Tj from the second dataset will be:
‖V (Si)[ind] − V (Tj)[ind]‖2

Using a norm to calculate the distance between V (Si)[ind]

and V (Tj)[ind] works for simple cases where the inputs and
two networks are similar. For more complicated inputs we
can use yet another neural network to learn a transforma-
tion from V (Si)[indS ] to V (Tj)[indT ]. The network structure
is identical to our autoencoder, with one difference: instead
of setting the output goal to be equal to the input, we set
it to be V (Tj)[indT ] while the inputs are V (Si)[indS ].

4. APPLICATION
We have presented a general framework for automatic fea-
ture extraction and cross-modal mapping. In this section
we present possible applications for such a system. The
examples given are all related to music and sound, but it
is important to note that the method is general and not
tightly coupled with audio signals.

4.1 Slideshow-to-music and music-to-slideshow
In this example we consider a user with a large collection of
images and a large music library. A common task is to cre-
ate a slideshow from some subset of the images. Our system
can automatically match the slideshow with an appropriate
soundtrack. Moreover, we can select different tracks for dif-
ferent parts of the slideshow, for example happy pop music
for images from a party vs. soothing music for outdoor
scenery images. This task cannot be fully automatic, since
a user must choose the type of music she would like to ac-
company each image class (i.e. some people might prefer
blues to accompany outdoor images, and others classical
music). In detail, the entire process will be as follows:

1. The user selects k categories for music (e.g. classical,

�5�3�2



blues, rock and pop) and for images (e.g. party, cats,
outdoor and other). It is important to note here that
we do not require the entire dataset to be labeled. The
user can label just a few examples or use a pre-labeled
database which can be completely disjoint from her
own data.

2. The user specifies a matching (classical ⇔ cats, blues
⇔ outdoor, rock ⇔ party and pop ⇔ other).

3. The system is trained to detect the genre categories on
songs and the type categories on images, using stacked
autoencoders and fine-tuning, as specified in Sections
3.1 and 3.2. Songs and images are translated to fea-
ture vectors.

4. For each set of photos we find the best matching music.

The above process will yield a soundtrack to accompany
our slideshow. It is important to note that the only input
from the user is the high level categories and matching. The
intermediate levels of the deep network are trained in an un-
supervised manner. Only after all the layers are constructed
they are fine-tuned according to the high level categories in
order to direct the output towards the user’s needs.

Another important observation is that the process is com-
pletely reversible. Instead of starting with a slideshow and
looking for music to accompany the slideshow, one can start
with some song or playlist and look for images to accompany
the music (Figure 3). Also, the training can be performed
on videos and not just still images. This creates a frame-
work for audio visualization: given some audio signal we
find appropriate images or videos to accompany the audio.

4.2 Gesture-to-audio
Our framework can be used to create automatic gesture-to-
audio mappings. The system works as follows:

1. The user demonstrates many different gestures. Since
many gestures are needed, another option would be
for a computer to automatically synthesize gestures
according to some model.

2. The system is trained (unsupervised) on the different
gestures, as well as on different sound samples or pos-
sible outputs from a sound synthesis algorithm. The
trained network is used to translate all gesture and
audio data to feature vectors.

3. A mapping between gestures and sound feature vec-
tors is created, using a third neural network.

4. For each new gesture the user supplies, we pass the
example through the networks and find the closest
matching sound. The result is that each input ges-
ture corresponds to an output sound.

The above procedure learns both features and mapping
in an unsupervised manner. This emphasizes the strength
of unsupervised deep learning. The unsupervised setting
means that higher-level properties of the gestures will con-
trol higher-level properties of the music, even without the
user’s involvement in specifying the mapping. The nature
of these properties will vary depending on the training sets
used by the system. The accompanying video demonstrates
both unsupervised and supervised scenarios.

Also note that while the training is a lengthy process,
once we have trained the networks, the translation from
gesture to sound is instantaneous. This means that the
above process can be used as a pre-processing step for a
real-time music performance.

5. EVALUATION AND RESULTS
We will split the evaluation into several sections. We first
evaluate the learning algorithm as a standalone component,

Table 1: Inference Results
Database Expected Random Accuracy Our Result
MNIST 10.00% 97.76%
STL-10 25.00% 80.19%
GTZAN 10.00% 47.01%

to make sure that indeed our algorithm is capturing some
relevant features of the input data. This evaluation is per-
formed using standard datasets and inference tasks. We
will evaluate the results qualitatively (i.e. how reasonable
the detected features look) and quantitatively (i.e. how well
we do on standard inference tasks). Later we evaluate our
method of using the learned features for cross-modal map-
ping between two different datasets.

Figure 2: Features that were learned automatically from
the MNIST dataset. Detected features behave as spe-
cialized edge and stroke detectors.

5.1 Standalone evaluation
Before we present our results, it is important to understand
the goal of our learning algorithm. Unlike other works that
strive to achieve the best inference result, we simply wish
to achieve a good inference result. This good-enough result
will yield features which are useful for cross-modal map-
pings. If we would have tuned our algorithms to achieve
the best performance on a specific task, we would have lost
the generality required for mapping. That being said, the
authors believe that better tuning of algorithm parameters
might improve the results presented below.

The MNIST dataset is a well-known benchmark for learn-
ing algorithms [11]. The dataset consists of 60,000 training
examples and 10,000 test examples of handwritten digits.
The task at hand is to recognize the digit (0–9). When
running our stacked autoencoders on the dataset, the au-
toencoders can learn low-level features such as edge detec-
tors and medium-level features such as strokes (Figure 2).
This validates the correctness of our unsupervised learning
method. For quantitative results of MNIST classification,
as well as other datasets discussed later on, see Table 1.

The reduced STL-10 dataset [2] is comprised of 2,000
training and 3,200 test examples, with each example being
a 96x96 labeled color image belonging to one of 4 classes:
airplane, car, cat or dog. In the object classification task,
a random choice is expected to achieve 25% accuracy. Our
classifier reached an accuracy of 80.19% (Table 1).

The GTZAN dataset [15] contains 1,000 30-second audio
clips, each belonging to a different music genre (blues, clas-
sical, country, disco, hip-hop, jazz, metal, pop, reggae or
rock), 100 clips for each genre. The dataset was split down
the middle to create 500 train examples and 500 test exam-
ples. A random choice is expected to achieve 10% accuracy;
our genre detector reached an accuracy of 47.01% (Table 1).

5.2 Cross-modal evaluation
For the cross-modal evaluation, we have implemented the
audio-to-images and gesture-to-audio mapping schemes. For
audio-to-images, files from the GTZAN dataset were matched
with images from the STL-10 dataset. Some results can be
seen in Figure 3. As can be seen in the figure, our system

�5�3�3



managed to capture differences in the genres and match
them to different types of images. The matching was done
by first training on both datasets separately for the tasks of
genre recognition and object recognition. We then take the
values of the hidden layers of the neural network, and com-
pare between audio and images using the l2-norm of these
values. We only consider 4 genres out of the 10 so that the
networks will be similar—each trying to solve an inference
task of categorizing into 4 groups.

We chose to map between two standard datasets, GTZAN
and STL-10, allowing for a more quantitative standalone
evaluation (Section 5.1). A more common everyday use
would be to match a personal music library with an image
collection, which can be done, as-is, with our current im-
plementation. Also note that the mapping was done using
the simplest of methods—by comparing l2-norms. Using a
third neural network for the mapping process makes more
sense, as we demonstrate in the following application.

Figure 3: Images selected as best fit to 4 audio clips.
Each row contains the best 10 fits for some input file.
From top to bottom: blues, country, hip-hop, metal. It
can be seen that blues is mostly represented by cars,
country by cats and dogs, hip-hop by cats and dogs in a
greener setting and metal has no unique distinction.

For a demonstration of gesture-to-music mapping, we chose
to map 2D coordinates to the output of an FM synthesizer.
A user’s free-form mouse strokes were recorded for 7 min-
utes, converting mouse locations to relative polar coordi-
nates (each location relative to the previous one), creating
~θ and ~ρ values that are our raw gesture data. On the au-
dio side, 5000 1-sec sound snippets were created using FM-
synthesis with randomly selected parameters. Single-sided
FFT values of the audio were used as the input representa-
tion. We fed each type of data to a 2-layer stacked autoen-
coder. All values from both hidden layers were used as our
feature vectors, and were fed to a third neural network to
create gesture-to-music mapping. Gesture-to-music results
can be seen and heard in the accompanying video.

It is important to note that during this process no user
intervention was required. Random sound snippets are as-
signed to random gestures, yet our method creates an in-
strument that“makes sense”, since similar strokes yield sim-
ilar sounds. Greater user control over this type of mapping
is also possible, for example by matching different gesture
categories with different sound timbres.

6. DISCUSSION AND FUTURE WORK
In this paper we have presented a fully automatic system
for cross-modal mapping. The system can be unsupervised
or use high-level cues from the user in order to create the
mapping. Several different architectural choices were pre-
sented and discussed. We suggest teaser applications for
our system, knowing that many more are possible.

There are many directions for future work that could be
pursued. The method presented in this paper can be ap-
plied to many problems, both within the music commu-
nity and outside of it. Such unexplored applications in-

clude gesture-to-speech, gesture-to-visualization and sound-
to-haptic mappings. It would be interesting to implement
such systems, as well as to evaluate their effectiveness through
an extensive user study.

In parallel to creating more applications, the authors feel
that the effect of different network architectures and pa-
rameters could be further investigated. While this work
presents initial research in that direction, the number of
possible architectures is enormous. It is highly likely that
other deep learning architectures exist that also solve this
problem, perhaps in a better way.

7. REFERENCES
[1] Y. Bengio. Learning deep architectures for AI.

Foundations and Trends in Machine Learning,
2(1):1–127, 2009.

[2] A. Coates, H. Lee, and A. Y. Ng. An analysis of
single-layer networks in unsupervised feature learning.
Proc. Intl. Conf. Artificial Intelligence and Statistics,
2011.

[3] R. Fiebrink, D. Trueman, and P. R. Cook. A
metainstrument for interactive, on-the-fly machine
learning. Proc. NIME, 2009.

[4] P. Grosche and M. Muller. Extracting predominant
local pulse information from music recordings. IEEE
Trans. Audio, Speech and Language Processing,
19(6):1688–1701, 2011.

[5] P. Hamel and D. Eck. Learning features from music
audio with deep belief networks. Proc. ISMIR, 2010.

[6] P. Hamel, S. Wood, and D. Eck. Automatic
identification of instrument classes in polyphonic and
poly-instrument audio. Proc. ISMIR, 2009.

[7] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[8] E. J. Humphrey, J. P. Bello, and Y. LeCun. Moving
beyond feature design: Deep architectures and
automatic feature learning in music informatics. Proc.
ISMIR, 2012.

[9] A. Hunt and M. Wanderley. Mapping performer
parameters to synthesis engines. Organised Sound,
7(2):97–108, 2002.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proc. of the IEEE, 86(11):2278–2324,
1998.

[12] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng.
Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations.
Proc. Intl. Conf. Machine Learning, pages 609–616,
2009.

[13] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach, 3rd edition. Prentice Hall, 2009.

[14] E. M. Schmidt, J. Scott, and Y. E. Kim. Feature
learning in dynamic environments: modeling the
acoustic structure of musical emotion. Proc. ISMIR,
2012.

[15] G. Tzanetakis and P. Cook. Musical genre
classification of audio signals. Speech and Audio
Processing, IEEE Transactions on, 10(5), 2002.

�5�3�4




