
Mira: Liveness in iPad Controllers for Max/MSP

Sam Tarakajian
Cycling ’74

730 Clementina
San Francisco, CA

sam@cycling74.com

David Zicarelli
Cycling ’74

730 Clementina
San Francisco, CA

zicarell@cycling74.com

Joshua Kit Clayton
Cycling ’74

730 Clementina
San Francisco, CA
jkc@cycling74.com

ABSTRACT
Mira is an iPad app for mirroring Max patchers in real time
with minimal configuration. The Mira iPad app discovers
open Max patchers automatically using the Bonjour1 pro-
tocol, connects to them over WiFi and negotiates a descrip-
tion of the Max patcher. As objects change position and
appearance, Mira makes sure that the interface on the iPad
stays up to date. Mira eliminates the need for an explicit
mapping step between the interface and the system being
controlled. The user is never asked to input an IP address,
nor to configure the mapping between interface objects on
the iPad and those in the Max patcher. So the prototyping
composer is free to rapidly configure and reconfigure the
interface.

Keywords
NIME, Max/MSP/Jitter, Mira, ipad, osc, bonjour, zeroconf

1. INTRODUCTION
For the composer sick of feeling trapped behind a laptop,
mobile devices make a seductive offer. In some ways the
iPad represents the most tempting offer to date, with its
ubiquitous presence, wireless capabilities and multitouch
screen. Current models not only provide an accelerome-
ter, gyroscope and magnetometer but also powerful built-in
software for sensor fusion and data smoothing. With all
these affordances, the performer can control many more pa-
rameters at once than would be possible with a mouse and
keyboard alone, helping to discover musically interesting
combinations[4].

At the same time, working with the mobile device as a
performance interface presents its own challenges. All such
challenges fall under the umbrella of the mapping problem,
or how to find a pleasing and expressive mapping between
interface and synthesis. Far from an exact science, the best
“way to tackle the mapping problem is to in fact make the
mapping part of the creative process.”[1]

1https://developer.apple.com/bonjour/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

Approaching the mapping problem as a creative challenge
requires powerful tools for musical interface design. In the
context of mobile devices, such tools must address:

1. The lack of availability of generic synthesis software
for mobile devices

2. The challenge of finding appropriate GUI metaphors

3. The limitations of the mobile device (screen size, lack
of alphanumeric input hardware)

4. The difficulty of robust ad-hoc networking. [3]

Other previous work, like the UrMus environment for mo-
bile instrument design and performance, focuses on stan-
dalone mobile applications, where the mobile device is both
the instrument by which sound synthesis is controlled and
the device that performs that synthesis [2]. This approach
brings its own challenges; in particular it forces the com-
poser to program both the interface and the sound synthe-
sis graph on the mobile device itself. This “standalone” ap-
proach poses a number of thorny design challenges, which is
why many applications choose instead to look at the mobile
device as a control surface. Instead of synthesizing sound on
the device itself, this “fixed-mobile” approach leaves sound
programming and synthesis design to the desktop, calling
on the mobile device to perform as nothing more than a
mobile controller.

1.1 Existing Mobile Controllers
Instead of trying to make the mobile device into a stan-
dalone musical instrument, a mobile controller targets the
problem of “fixed-mobile” interaction design–using the iPad
as a controller for musical synthesis running on another ma-
chine[7]. While this means that the iPad cannot be used
without a laptop or desktop, it also means that the com-
poser is free to use existing synthesis software instead of
learning new software specifically designed for a mobile en-
vironment.

Probably the two most well known iOS mobile controller
apps are TouchOSC2 and Lemur3, both of which allow the
user to build a custom interface using a desktop design envi-
ronment. In the case of TouchOSC, widgets like sliders and
dials are associated with OSC addresses; Lemur also allows
the user to assign MIDI channels to each control widget.
In some ways these desktop interface builders represent one
of the easiest ways to author a mobile interface, since they
rely on a drag and drop paradigm already familiar to many
users. However, the workflow for building a new interface
from scratch can be somewhat cumbersome:

2http://hexler.net/software/touchosc
3http://liine.net/en/products/lemur

�4�2�1



1. Open a specialized environment on the desktop ma-
chine for building iPad interfaces. Create a new project.

2. Build the interface by dragging interface objects into
the project.

3. Define an OSC address for each interface object

4. Upload the interface to the iPad.

5. On the iPad, input the IP address and listening port of
the synthesis environment that will receive OSC data.

6. In the synthesis environment, open some program for
receiving and routing OSC data.

7. In the synthesis environment, route that OSC data to
the desired callback or interface object, being sure to
scale appropriately.

This workflow requires that the composer consider unin-
teresting technical problems instead of musical challenges.
In his presentation “Inventing on Principle”, Bret Victor de-
scribes a“principle of immediate connection”that he asserts
is essential for creative tools[13]. “Creators need immediate
connection to what they’re making,” so an iPad interface
cannot be part of the creative process if it disconnects the
composer from his composition. Controlling synthesis with
an iPad is important for convenience, but solving the map-
ping problem by creative experimentation requires that the
interface itself be rapidly reconfigurable.

Another interesting interface app is mrmr4, which brings
a number of promising solutions to the problems of mobile
interface design. In particular, mrmr lets the user push
new interfaces dynamically, using Bonjour to abstract away
the challenge of network configuration. However, mrmr can
be so dynamic and reconfigurable only by sacrificing ease
of use–there is no simple, drag and drop environment for
building interfaces in mrmr. Anyone who wants to design a
mrmr interface must learn the mrmr language for describing
such an interface in text.

One of the most time consuming parts of working with
TouchOSC or Lemur is mapping OSC and MIDI messages to
controls and parameters on the fixed machine. The c74 app
gets around this problem by insisting on a tight coupling
between user interface objects that appear on the desktop
and those that appear on the mobile device 5. Unlike other
mobile controller apps, c74 does not have a dedicated desk-
top environment for building interfaces. Instead, the c74
app connects to the desktop through an external object di-
rectly in the Max/MSP environment. While this limits the
scope of the app, it also makes it much easier to rapidly
prototype new interfaces. A slider in the c74 app is tightly
bound to a slider in the Max application, so the user is free
to think of these two sliders as one in the same, rather than
as two separate controls mapped to one another via OSC.
The only drawback is that c74 still builds interfaces using
text commands. Establishing the connection between UI
objects in Max and widgets in the c74 app requires sending
messages through the c74 external to the mobile app, which
makes it hard to rapidly experiment with new interfaces.

Finally, in terms of custom interface design, the Con-
trol app represents one of the most powerful mobile con-
trollers available6. Built on top of Webkit7, the Control
app lets users build custom widgets of arbitrary complexity

4http://mrmr.noisepages.com/
5http://www.nr74.org/c74/c74.html
6http://charlie-roberts.com/Control/
7http://www.webkit.org/

using HTML and Javascript. Those widgets can then be
mapped to desktop synthesis parameters using both OSC
and MIDI. Also, interfaces themselves can be stored and
shared through JSON files. The drawbacks to the Control
app are that it still requires network configuration (entering
and looking up IP addresses to make connections between
desktop and mobile device) and that it uses text for in-
terface design. While this does make it possible to build
dynamic and scriptable interfaces, it puts a barrier in front
of composers who don’t want to learn a new language for
describing interfaces.

Figure 1: Mira displaying a patcher containing sup-
ported objects

1.2 Mira
Like other mobile controllers, Mira leaves sound synthesis
to a dedicated machine, focusing instead on the challenge of
providing a rapidly reconfigurable interface. In this sense,
one way to look at Mira is as a tool for user interaction
design. Such tools are important because:

In general, tools help reduce the amount of
code that programmers need to produce when
creating a user interface, and they allow user
interfaces to be created more quickly. This, in
turn, enables more rapid prototyping and there-
fore more iterations of iterative design that is a
crucial component of achieving high-quality user
interfaces.[6]

Implementing a quality tool for user interface design re-
quired adhering to a number of well-documented principles.
In particular, such a tool must:

• Follow the Path of Least Resistance: Users should be
lead towards making the right decisions, and towards

�4�2�2



taking advantage of perceptually salient control pa-
rameters.

• Have Low Thresholds and High Ceilings: Getting started
with the tool should be easy, and the tool should have
a wide range of capabilities.

• Hit Moving Targets: Especially in the context of a
musical controller, the requirements of the interface
are changing constantly, as the underlying synthesis
architecture itself changes. The interface must there-
fore be able to change just as rapidly.[5]

Mira tries to follow all of these principles by building both
on other mobile controller apps and on the Max/MSP envi-
ronment itself. Critically, the user doesn’t need to learn
anything new to build a Mira interface, since interfaces
are simply the automatic reflection of Max patches. Also,
putting the interface in the same environment as the sound
synthesis program means that the user never has to leave
the composition context to add or reconfigure an interface.
On the contrary, having an automatically synchronized in-
terface means the composer can discover unexpected and in-
spiring mappings between synthesis and interface. Finally,
since changing a Mira interface is as simple as changing a
Max patch, the interface can always stay in sync with the
patch, even as the patch itself changes in both configuration
and function.

2. ARCHITECTURE
Mira reduces the work needed to control Max from an iPad
to a single step: creating an object inside the Max patcher.
In order accomplish this, Mira either automates or abstracts
away the technical obstacles that would ordinarily confront
the user while building an interface. This is made possible
thanks to a library for discovery and synchronization called
Xebra, written specifically for use with Mira but designed
to be portable to other platforms and applications.

2.1 The Xebra Library
The goal of the Xebra library is to provide a general purpose
way to share state among multiple distributed endpoints.
These endpoints could be within a single application, or
they could be on several applications spread across multiple
devices. Xebra assumes that the state itself exists at one
central endpoint, and that other devices will connect to that
endpoint to view and modify its associated state. In the
language of Xebra, that central endpoint is called a server,
and only the server has an associated state. That state takes
the form of a rooted tree of nodes, each of which can have
many children and exactly one parent. A node is either an
object or a parameter. Both objects and parameters may
be associated with a user supplied class name and ID string,
but parameters also have an associated value, which can be
any number of integers, floating point numbers, strings or
binary objects.

The server may advertise itself over Bonjour, which makes
it discoverable by client endpoints. When a client discovers
and connects to a server, the server sends the client a se-
ries of OSC packets that the client uses to reconstruct the
state graph as it exists on the server. From that point on,
the server is free to continue modifying the structure of the
object graph, and these changes are propagated to all con-
nected clients. A client may not modify the structure of the
state object graph, but it may freely modify the value of
any parameter in the graph. The server will receive those
changes, resolve any conflicts, modify its own parameter
value and then push the result to all connected clients.

The mira.frame Max object uses the Xebra library to
share the state of the current Max patcher. On the other
end, the Mira iPad app uses Xebra to discover advertised
Max patchers and to display their interface objects on the
iPad.

2.2 Automatic Connection
The first and only step to making a Max patcher visible to
the Mira application is adding a mira.frame object to the
patcher. The mira.frame object appears as a rectangular re-
gion that defines the area of the patcher that will be visible
on the iPad. The size of the mira.frame object determines
the scale of the interface as it will appear on the iPad. Cre-
ating a mira.frame object also creates a Xebra Server that
describes the Max patcher to any clients that connect to it.
The server is advertised over Bonjour, discoverable to any
client looking for services of type tcp. mobilemax. Launch-
ing the Mira iPad app looks for a Xebra Server and connects
to it automatically. After some negotiation, during which
the two endpoints confirm that they are running the same
version of Xebra, the iPad will start communicating with
Max.

2.3 Synchronizing State
When a mira.frame object is added to a patcher, it at-
taches to that patcher. When an object is added to or
removed from the patcher window, it triggers a callback in
the mira.frame object, which passes the update on to the
Xebra Server. In the language of the Xebra library, this
corresponds to adding a node to a graph of objects and pa-
rameters. Each node can have a class name and a unique
ID associated with it. A max object is represented as an
object node whose classname is the name of the Max object.
Each such object has one object as its parent: the patcher
itself. In this way, the iPad application can stay in sync
with the Max patcher as objects are added and removed by
translating the Xebra object graph into an interface display.

Each object can have a number of attributes associated
with it, for example patching rectangle, background color
or label. The Mira application tells the Max patcher what
it needs to know in order to draw each interface object. The
Max patcher then adds the corresponding Max attributes to
the Xebra Server as parameters in the state graph. When
Max adds such a parameter to the Xebra state graph, it
passes three callback functions along with the name of the
attribute and the id of its parent object. The first of those
three functions is expected to return the count of elements
for a given parameter. The second supplies the actual value
of each of those elements. The final callback function is
called by Xebra whenever is receives a change from a client,
and updates the attached object accordingly. With these
callbacks in place, when an attribute is modified in Max,
the object simply has to notify the server. This will use
the callback functions supplied when the named parameter
was created. The resulting value is captured in an OSC
packet and then sent to all connected clients. On the client
end, the OSC packet is dissected and routed automatically,
ultimately updating the interface object on the iPad display.

2.4 Bidirectional Communication
The Xebra library assumes that state updates will propa-
gate from the server to the client in real time. In this model
there is no inherent difference between the value of a slider
and its color–both are simply parameters in the state graph.
When the performer drags a slider on the iPad, obviously
this change is reflected in the associated Max patcher. At
the same time, if the color of the slider changes in the Max
patcher, that change also propagates to all connected iPads.

�4�2�3



Figure 2: A simple Max patcher represented as a Xebra object graph and as it appears in Mira

So Mira can not only transmit control data from touch, ac-
celeration and other physical modalities from the iPad to
the Max, but also it can provide feedback about the state
of synthesis in the patcher to the iPad.

2.5 Multiple Endpoints
Since Xebra assumes that a central endpoint may serve mul-
tiple clients, adding a mira.frame object to a Max patcher
allows that patcher to be controlled by any number of iPads.
This opens the door for collaborative performance, with any
number of performers or audience members controlling a
single master patcher8. Also, since the Mira app is free
to form multiple connections to any number of Xebra end-
points, one instance of Mira can quickly control any num-
ber of patchers running on any number of different devices.
Adding a mira.frame object to a patcher defines a region
of the patcher that will be made visible to instances of the
Mira app. If two mira.frame objects are added to the same
patcher, those two regions of the patcher are represented in
the Mira app as two different interface tabs. If Mira con-
nects to a Max patcher running on another machine, that
patcher will simply appear as another tab. So the performer
can jump between controlling patchers on two different ma-
chines as quickly and as easily as between two regions in
the same patcher.

8The Control app has already been used for one such per-
formance[9]

3. DISCUSSION
Part of the joy of composing in Max comes from the fact
that changes to a Max patcher take effect immediately. The
goal of Mira was to bring the same sense of liveness and
experimentation to the process of building a user interface.
To accomplish this, Mira adheres to a tacit contract that
interface objects are not separate entities connected by a
MIDI or OSC mapping, but rather two views of the same
underlying data. In this sense Mira follows the model of
Control, an iOS and Android app that allows the composer
to build dynamic OSC interfaces on the fly[8][10]. Mira
goes one step further, however, in that the appearance of
interface objects on the iPad is the same as in the Max
patcher. Because of this, the Max environment can be used
simultaneously to describe both layout and behavior.

Objectively speaking, Mira represents a step forward in
terms of the ease of building touchscreen interfaces for Max.
Most importantly, the composer never has to leave the cre-
ative environment of Max/MSP to prototype a new inter-
face. This uninterrupted flow is critical for creativity and
productivity, according to HCI researcher Ben Shneider-
man[11][12]. With Mira, the iPad becomes a tool for in-
vestigating questions of user interface design, rather than
a control surface to be programmed. Of course, since the
composer is working in Max/MSP, those questions can be
unexpected and the answers themselves creative. With the
power of Javascript in Max, for example, the composer can
generate an interface dynamically, or build a reactive inter-
face that changes even as it is played.

�4�2�4



Figure 3: Mira displays multiple regions as separate tabs

4. CONCLUSIONS AND FUTURE WORK
We would like Mira to run on more devices and platforms.
As of now the Mira app will only run on iPad and the
mira.frame object is limited to running on OS X. While
building the initial version of the app we chose a single de-
ployment environment so that we could focus our efforts on
design and execution. Now that we have an initial version
we would like to turn our attention to other platforms.

Mira makes the promise to faithfully represent the state
of a running patcher. The Xebra protocol assumes that the
state of the patcher exists in Max and that the iPad simply
reflects that state, but it would be convenient to upload a
patcher to Mira and to use the iPad as a device for storing
and sharing patches. It would be possible to achieve this
without modifying the protocol too significantly.

As of February 11, 2013, maxobjects.com, the largest
repository of Max external objects, contains 4340 Max ob-
jects. The current version of Mira is able to display about
20 user interface objects; the look and behavior of each is
hard-coded into the Mira app itself. While it is possible to
add more objects at any time by updating Mira, it is not
possible to add more objects without modifying the Mira
source code. We would like to support user-defined objects
as well as objects whose appearance can be changed on the
fly.

In addition to accelerometer and other sensor data, the
iPad is also able to capture audio and video from a built
in microphone and camera. If it is possible to do so with-
out adding latency to the OSC data already coming from
the Mira app, we would like to find a way to make it easy
to stream live audio and video from the Mira app to a
Max patcher. Going in the other direction, it would be
extremely useful to see sound and video generated inside
a Max patcher displayed on the iPad. Again, latency and
bandwidth remain important concerns, but it’s easy to see
the appeal of a jit.pwindow object appearing in the Mira
app.

The Xebra protocol supports zero configuration discov-
ery and state synchronization. Mira has shown how useful
this can be when mirroring the state of a Max patcher on
an iPad, but communicating state information in the oppo-
site direction could be just as useful. Through the camera
connector kit, the iPad receive data from a number of USB
and MIDI devices. If it could communicate the state of a
connected device, then Mira would be an ideal platform for

wirelessly sending data from a range of hardware devices to
a Max patcher.

Finally, we have to acknowledge what Mira is not: Max
for the iPad. Even after building a patcher in Max and up-
loading it to the Mira app, it is still not possible to run that
patcher without Max. We would like to make it possible to
author patchers in Max that could run in a standalone con-
figuration on the iPad, so that the user could use his iPad to
generate live audio and video without needing a connection
to Max.

We hope that Mira will uncover unexpected and delightful
ways to control music with touch. A flourishing ecosystem
of interfaces would be a rewarding sign that liveness and ex-
perimentation are indeed as important to interface design as
they are to composition. With time and hard work, the Xe-
bra protocol itself may too emerge as a useful way of helping
real-time environments discover each other and to communi-
cate.

5. ACKNOWLEDGMENTS
The authors wish to thank IRCAM for providing workspace
and feedback.

6. REFERENCES
[1] G. Essl. Speeddial : Rapid and on-the-fly mapping of

mobile phone instruments. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 270–273, 2009.

[2] G. Essl. UrMus - An Environment for Mobile
Instrument Design and Performance, volume 276,
pages 76–81. 2010.

[3] G. Essl, G. Wang, and M. Rohs. Developments and
challenges turning mobile phones into generic music
performance platforms. Signal Processing, pages
13–16, 2008.

[4] A. Hunt and R. Kirk. Mapping strategies for musical
performance. Trends in Gestural Control of Music, 21,
2000.

[5] B. Myers, S. E. Hudson, and R. Pausch. Past, present,
and future of user interface software tools. ACM
Trans. Comput.-Hum. Interact., 7(1):3–28, Mar. 2000.

[6] J. Nielsen. Usability Engineering. Interactive
Technologies Series. Morgan Kaufmann Publishers,

�4�2�5



1994.

[7] A. Ramsay. Interaction design between fixed and
mobile computers. Master’s thesis, University of
Glasgow, Department of Computing Science, 2005.

[8] C. Roberts. Control: Software for end-user interface
programming and interactive performance.

[9] C. Roberts and T. Hollerer. Composition for
conductor and audience: new uses for mobile devices
in the concert hall. In Proceedings of the 24th annual
ACM symposium adjunct on User interface software
and technology, pages 65–66. ACM, 2011.

[10] C. Roberts, G. Wakefield, and M. Wright. Mobile
controls on-the-fly: An abstraction for distributed
nimes.

[11] B. Shneiderman. Creativity support tools:
accelerating discovery and innovation.
Communications of the ACM, 50(12):20–32, 2007.

[12] B. Shneiderman. Creativity support tools: A grand
challenge for hci researchers. Engineering the User
Interface, pages 1–9, 2009.

[13] B. Victor. Inventing on principle. CUSEC, February
2012.

�4�2�6




