
Live Coding The Mobile Music Instrument

Sang Won Lee
Computer Science & Engineering Division

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
snaglee@umich.edu

Georg Essl

Electrical Engineering & Computer Science and
Music

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
gessl@eecs.umich.edu

ABSTRACT
We introduce a form of networked music performance where a
performer plays a mobile music instrument while it is being
implemented on the fly by a live coder. This setup poses a set
of challenges in performing a musical instrument which
changes over time and we suggest design guidelines such as
making a smooth transition, varying adoption of change, and
sharing information between the pair of two performers. A
proof-of-concept instrument is implemented on a mobile device
using UrMus, applying the suggested guidelines. We wish that
this model would expand the scope of live coding to the
distributed interactive system, drawing existing performance
ideas of NIMEs.
Keywords
live coding, network music, on-the-fly instrument, mobile
music

1. INTRODUCTION
While live coding have blurred the borders among an
instrument builder, a composer and a performer, we are in favor
of transplanting the outcome of live coding from speakers and
screen to an instrument performer. In this paper, an extended
form of live coding performance is introduced, where a
performer plays a musical instrument on mobile device while
the instrument is being built on-the fly by a live coder over the
network (Figure 1). We suggest that decoupling the notion of
musical instrument from live coding will expand the
expressivity of live coding music.
 The distributed music performance combines existing forms
of computer music; live coding, networked ensemble, and on-
the-fly mapping musical instruments. Bringing these models
together, we take advantage of the flexibility of live coding to
reinforce digital music instruments. We utilize UrMus [11], a
programming environment to support interactive music
performance for mobile phone, which is readily available for
live coding over wireless network.
 This paper describes the background and context in which the
model is developed; explores new opportunities exhibited by
the dual model of an instrument builder and an instrument
player; addresses implications and design challenges on
playability of the instrument; proposes an example
implementation of solutions in response to the specified
challenges; and discuss future works planned with these
extensions.

Figure 1 Performance Concept: a live coder(left) building a
mobile musical instrument and a performer(right) playing
the mobile instrument.

2. RELATED WORKS
Live coding [6] has yielded a new practice in electronic music
performance. It is a music making practice where a
programmer/musician codes, runs and modifies a program live
while music (and/or visuals) is generated. Many programming
languages has been developed (or repurposed) to facilitate live
coding in a musical performance, such as Supercollider [27],
ChucK [39], Impromptu [37] and many more [5, 8, 26, 34, 36,
38]. A number of works have looked at exploring the hands-on
knowledge in live coding practice [2, 30]. In live coding, the
programming language is seen as the musical instrument [1,
40]. While the traditional notion of a musical instrument does
not fit well in the live coding model, it brings a unique
intellectual/aesthetic challenge to musicians, where one has to
convert composition ideas into working code and organize
sounds in expressive ways under the time constraint.
 The distributed music making environment of this work is
influenced by creative works in the field of computer music
where multiple users perform one instrument interdependently
[20]. Although there’s no technology involved, John Cage’s
Imaginary Landscape No. 4 [4] is one of the earliest examples
where two people have different roles in playing one
instrument, which is radio in this case. The goal of multi-user
instruments is often to facilitate collaborative creativity, such as
DaisyPhone [3] or FMOL [18]. In contrast, there has been a
different type of networked musical instrument where the
instrument mediates distributed musical expression by multiple
players. Squeezebles by Weinberg exemplifies this approach of
each player influencing a collective improvisation by
controlling different mapping parameters (e.g. level, timbre,
pitch etc.) [43]
 The author (Lee) continuously attempted to propose various
formats of distributed music ensembles. In a recent extension of
LOLC [15], music notation became a medium to integrate
acoustic instrument players into the environment in which
laptop musicians type, run shell-script-like language and
generate music score for collaborative improvisation [23]. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’13, May 27-30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

�4�9�3

another previous work, a networked mobile instrument enabled
the audience to participate as performers and to play the
musical instruments while a musician on stage controls chord
progression of audience’s play over the network [22].
 Finally, the key idea of live coding musical instruments on a
mobile phones is directly inspired by earlier works to create on-
the-fly musical instruments. In principle, many electronic
musical instruments (e.g. synthesizer, MPC) let a performer
change configurations (e.g. timbre, level, voice, effect, etc.)
with some interface (pedal, knob, slider, buttons or external
interface) in live performance. However, on-the-fly
programmable musical instruments go beyond re-
configurability. Both live patching environments [21, 31, 32]
and live coding [6] deal with the fundamental concept of
constructing musical instruments (i.e. sound synthesis or
control input). Particularly, ChucK enables techniques for
programmable interface of a musical controller (e.g. MIDI
devices, acoustic instruments) so that one can dynamically
change mapping of the controller [42]. Using its mobility and
interactivity, a mobile phone became a generic platform to
implement a musical instrument and invited real-time sound
synthesis and on-the-fly mapping. SpeedDial is a mobile
musical instrument that allows users to build mapping between
sensors and sound synthesis on the fly [10]. SenSynth is
analogous to the concept of SpeedDial with more focus on
sonification of various mobile sensor data [28]. massMobile
built a remote controller framework on a mobile phone
particularly for audience participation where mobile GUI
configuration can be changed by a preprogrammed sequence or
manually modifying while its being used [44]. The closest work
to this project is the recent extension of Control [35]. In this
work, widgets (e.g. sensors, sliders, buttons) can be generated
dynamically on a mobile phone by sending OSC messages and
users can send OSC messages back to a computer to change
sound control parameter in live coding environment. This work
concentrated more on implementing the front end
(control/interface) of a musical instrument using preset GUI
components. We combine these efforts from prior works (See
Table 1) to fully explore instrument design in crafting an on-
the-fly musical instrument.

Table 1 Prior Works of On-The-Fly Musical Instruments
 sensor user

interface mapping sound
synthesis

ChucK X X
SpeedDial/SenSynth X X X

massMobile X
Control X X

3. MOTIVATION
In the era of NIMEs, the development of musical instruments,
composition, and performance are often concurrent/out of
sequence. For instance, Cook suggest that composing a piece
first is a good principle to develop a NIME [7] while Murray
Brown et al. argues that concurrent process of composition in
instrument building will help convey the music to audiences
[29]. Embracing the unclear order of today’s computer music
making, we believe deferring the creation of a musical
instrument until the time of performance can push the level of
the liveness of a musical performance. As one of the mainstays
in music aesthetic is to violate expectation [16], we can bring
the tension from the level of music notation and performer’s
play down to that of instrument design and instrument builder’s
action. The role of the instrument builder can be constructive so
that the musical variability of the instrument builds up over
time, whereas and vice versa, one can collapse the space of

musical expression such as an destructive example in which a
musician plays a piano while it is being burnt down [46].
 Another motivation of the on-the-fly musical instrument
building is the fluidity of the concept. Magnusson defines
“composing an instrument” as a process of designing
constraints for a musical space [25]. Therefore, the act of live
coding an instrument would be analogous to improvisation in
the space, which will facilitates impromptu creativity given the
changes of constraints. The motive of a dynamic
affordance/constraint of expressivity can vary. For example, it
can be a compositional decision of an instrument builder in
collaborative improvisation, while, in a different scenario, it
can be adaptation (or confrontation) in response to a particular
performer’s play style (e.g. Jazz instrument player vs. Live
looping player). In another case, as already explored in [33,
44], the instrument can be utilized as a device for audience
participation where the instrument provides progressive
expansion of expressive space based on the learning curve of
audience members.
 While live coding offer uncharted space of expressivity and
virtuosity with its flexibility and computational superiority,
there exist particular styles of music that can be “efficiently
[19]” played with live coding: gradually evolving, repetitive
rhythmic, synchronized beats and multiple voice layered music.
In contrast, as mentioned in [30], it is difficult to achieve
immediacy with live coding as if one would play a traditional
musical instrument with “one gesture to one acoustic event”
[45]. Therein lies one of our motivations in this work: to
decouple an instrument player from live coding to add
instrumental virtuosity and expressivity. In this performance
model, the live coder takes role of a composer, instrument
builder and meta-performer, whereas an instrumental player
performs the processed and progressing instrument. We believe
this distributed model will benefit the aesthetic framework of
instrumental music from the fluidity of live coding. In addition,
as live coding has focused heavily on audiovisuals, we wish to
make an expansion of the field to user interaction setting. As
already anticipated in [24], this will bring a set of research
questions of on-the-fly instruments, such as playability for
performer, which we will explore later in this paper, or
communication for audience engagement.

4. DESIGN CHALLENGES
While there is no limitation in the form of instrument built, one
way to build a musical instrument without physical interference
in playing is to transfer source code to a device over a network
and remotely run the digital musical instrument. That requires a
device that already has a set of sensors, sound synthesis module
and programmable platform. We chose mobile phone as the
platform, which is well established as a platform for musical
performance [14, 41]. Although the result of live coding will be
restricted by computational power, available sensor and limited
size of mobile phone, it is good enough for the programmer to
inject code wirelessly as well as to access critical variables of
the musical instrument; control input (sensor/interface), sound
generation (synthesis) and mapping problems.
 Playing a dynamically transforming musical instrument will
be challenging. The specific challenges from the performer
perspective include:

• Which sort of change happens?
• When exactly does it happen?
• How does the change affect the ongoing acoustic

event?

The answer to these questions will vary depending on musical
context that the instrument is being used (e.g. whether the
performance is improvisation or composition, whether it is

�4�9�4

collaborative, competitive or destructive). Even though the
liveness of musical instrument will likely be part of the
aesthetic, the instrumental player will want to know how much
space he/she has for musical expression, at least, at the
moment. When a transition is made, one also need to choose
how the change will affect current ongoing acoustic events. We
suggest four guidelines for these particular design challenges as
follows:

• Visual feedback on both ends (the performer and the
live coder)

• Crossfade of changes (both visual and auditory)
• Distinguish continuous data flow from note-on/note-

off type event.
• Enable transitions to be pushed by the live coder and

pulled by the performer.

We provide a set of techniques for following these four design
challenges later in this paper.

5. URMUS FOR LIVE CODING
UrMus [11] is a meta-environment, which allows flexible
design of mobile musical instruments. Already with its
predecessor SpeedDial [10] and continuing with UrMus [11,
13], support for on-the-fly mentality was part of the scope of
providing an environment for designing and developing
interactive mobile instruments. However the environment is
readily available for live coding in this networked scenario due
to its already existing support for transport and remote
execution of code over the network. UrMus has an audio engine
of flexible data-flow pipelines between sensors and sound
synthesis algorithm to allow interactive live patching on mobile
phone [12]. The audio engine follows the concept of graphical
patching language and lets a programmer build a patch by
connecting flowboxes (sensor/unit generator/sink) either in
textual or graphical environment. In lower layer, UrMus API in
Lua [17] provides a way to build interactive graphics quickly
and to connect GUI events with flowboxes in a sound synthesis
patch. Originally Lua was meant to provide a layer of
implementing different kinds of representation of code and
performance. However in this project we utilize Lua itself as a
vehicle for live-coding in urMus, by-passing the question of
programming language representation.
 There are a few advantages of Lua that makes well suited for
live coding. In Lua, data structures and functions can easily be
extended or modified without refactoring. Another strength of
how UrMus employs Lua is that it preserves the address space
created by previous code when a new code is interpreted,
instead of executing program from scratch. Any code will be
executed on top of a running program allowing new code
access the memory space of previous code. For example, if a
user declared variables (or functions) in running code, one can
submit code which uses them without declaration or assignment
like other live coding languages. In addition, Lua is also a very
compact and efficient interpreter language so that code can be
transferred to the mobile device over the network. The editing
environment of UrMus is implemented as a web service on the
mobile phone so that a user can code on any web browser
(usually running on a laptop) and transfer code to be interpreted
on the device over a local wireless network. This allows remote
development without any physical interference on the device.
One modification made for live coding purpose to UrMus was
adding a new web page editor that enables multiple tabs of text
editor (Figure 2) so that a user can organize codes into modules
and run them selectively. In addition, a coder can execute a
section of code by highlighting lines and triggering a keyboard
shortcut (Ctrl+R or Cmd+R). This follows the capability of the
live coding language to support selective execution of code.

Figure 2 New multiple tab editing environment for modular
execution.

6. IMPLEMENTATION
As mentioned in section 4, a set of programming/patching
techniques will help achieve playability with respect to
acquiring the current state of the instrument being built. These
techniques are not canonical by any means but they provide
useful references for relevant live coding projects and for
developing the library of functions required to support the
performance model. A simple proof-of-concept instrument has
been implemented on a tablet device to help understand the
concept in practice.
 The idea of the instrument is a simple tone-matrix interface
where a performer sets which note (y axis) to play at specific
time (x axis) in a looped melody (see Figure 3). While the
performer will define the content (looped melody) in the tone
matrix interface, the design of the instrument can be replaced or
modified on the fly by the live coder. For example, one can
change not only GUI elements such as the number of rows
(pitch register) and the number of column (meter) of the matrix,
but also underlying musical parameters such as base note, scale,
tempo (play bar speed) or voice (synthesis algorithm). The
Figure 3 (left) shows the case where the tone matrix is in
pentatonic scale with the base note of C and a six beat loop and
this is later modified to E-minor scale in a eight beat loop
(Figure 3, right).
 In addition, we introduce another type of instrument in
contrast to the tone matrix (see Figure 4, left). On the rightmost
column, a slide instrument is added, which has the same pitch
register with the tone matrix but requires a real-time control
with touch (like slide-theremin). The finger movement will
allow expressive pitch control like vibrato or slide in guitar. At
the same time, accelerometer data (y axis) is fed into the level
parameter of the slide instrument to control dynamics. The
performer can switch back and forth between two instruments,
modifying the loop and improvising on the slide instrument.
The live coder can modify the instrument in response to how
the performers play, for example, they can i) reinforce the slide
instrument with more pitch register and timbre control ii)
evolve the looped melody (like you would do in traditional live
coding) while letting the performer focus on the slide
instrument or iii) gradually reduce the range of expressivity to
end the piece.
As mentioned earlier, visual feedback is needed so that the
instrument player knows the current state of the instrument.
The instrument exploits graphical user interface design to
display visual feedback, such as color-coded pitch information
and note names in the leftmost column.

�4�9�5

Figure 3 The tone matrix interface. (left) The tone matrix is
in pentatonic scale with the base note of middle C and six
beat loop. (right) The tone matrix is modified to E minor
scale with eight beat loop with existing notes transposed.
In addition, the live coder can directly notify the performer of
an upcoming transition by sending a textual message. By the
same token, the live coder needs to monitor the visual interface
not only to see that the change had been made as intended but
also to understand the play of the performers. One of the many
ways to monitor the visual interface used in this example is to
reproduce the same interface with the interaction that the
performer made on an extra tablet (by transferring the same
code to two devices). This feature is enabled by the performer’s
device sending OSC message to the other device whenever
relevant events (e.g. OnTouchUp /OnAccelerate) occur. At the
same time the device to be monitored would receive the events
and call the relevant event handler (as presented in Figure 1).
This approach is helpful particularly when the touch screen is
the main interface, where a performer’s action is not apparent
just by looking at someone staring at and tapping on a tablet.
On the other hand, it is important to present information
effectively and keep the time of implementation. For example,
it is not necessary that all aspects of the live coded interface
shall be monitored. Some control (such as tilting the device)
may not need to be presented back to the live coder as it is
observable from the gestures of the performer.
 New code can be transferred into the running program
whenever the live coder finish a set of code and press the run
button on the web page editor. The code would be executed
immediately and applied from the next audio sample and the
next screen update. As those abrupt changes would interfere
with current interaction and audio output (e.g. clipping sound,
button displacement), we took crossfading approach when
making transition from existing code to new code. For
sensor/sound synthesis code, a live coder can code a separate
patch and gradually crossfade from the old patch to the new one
by updating a mixing parameter over time. For visual GUI
elements, animation of appearance /displacement/removal can
be implemented for a smooth change.
 On the other hand, crossfading is not always the best choice.
For example, an fade-in animation would be fine for adding a
button in the tone matrix. However, for a slide instrument,
changing the scale into a different key would interfere with
ongoing gesture, such as the case when the performer is playing
a long sustained tone with vibrato. In this case, it is more
natural to delay the transition until the current acoustic event
ends and apply it from the next note-on event. This is due to the
fundamental difference between execution levels of sound
synthesis and that of gestural control. Most of musical
instruments will have two definite states (note on/off) of
gestural control. Hence it is useful to distinguish those kinds of
interfaces from continuous data flow of sound synthesis and

Figure 4 (left) The slide-instrument is shown at the
rightmost column. The red line indicates the touch point
and the horizontal bar at the top visualize the level
controlled by tilting gesture. (right) A button is added for
the performer to pull the change.
take different approaches to making transitions. For example, it
will be useful to add a self-destructing feature for a patch to
free flowboxes and its connection when the state is note-off and
releasing acoustic events are over, instead of applying
crossfader.
 Another alternative, which may be combined with
crossfading or not, is to let the performer pull new code. In
collaborative mode of interaction, the live coder can provide
code in a decomposed module, which will be triggered by a
certain gesture. For example, the live coder can provide a
simple button with textual description so that pressing button
will trigger to run new code, which only will cost a few more
lines of code. Figure 4 (right) shows an example where the
performer can press a button to add one more row (pitch) in the
tone matrix. After triggering, the button can either disappear or
be reused to toggle the state back and forth.
 Lastly, we wanted to note that live coding the tone-matrix
instrument, although the instrument can be modified in real
time, heavily leverage a set of prepared helper functions and
would be challenging to create from a scratch without a
prolonged period of silence. It was more realistic for us to
decompose a set of frequently used code in separate functions,
for example, createButton(), pullChange(), notifyMessage(),
insertRow() and so on. In fact, most of these functions can be
used regardless of the type of instrument. Many of the
techniques for implementing the design guidelines suggested
can be automated by supporting the features in the API, though
it is not clear that the API is the best place for such features. In
addition, building GUI elements (e.g. drawing a button or
animated graphics) would require more than several lines if
built from scratch but it is a trivial task to be encapsulated in a
few lines These features can be implemented in advance for a
specific performance and loaded before the performance so that
it would reduce time spent on mundane tasks and enable live
coders to focus on more creative side of the performance. Most
importantly, it does not impinge on the openness and flexibility
of the live coding potential.

7. LIVE CODING PERFORMANCE
An improvisational piece with a live-coded mobile music
instrument was presented during the final class concert of the
Michigan Mobile Phone Ensemble in April 2013. The core goal
of the performance was to build an instrument on a tablet from
scratch (a blank screen and minimum helper functions) to
convey the idea of live coding the instrument. In order to do so,
we chose to have three performers on stage; two live coders
implemented an x-y interface with matched synthesis algorithm

�4�9�6

Figure 5 Live Coding Performance footage. Clockwise from
topleft: 1) the stage configuration 2-3) snapshots of the
performance 4) a screenshot of the live-coded instrument.
(see Figure 5) allowing for simple yet expressive continuous
musical gestures. One live coder created the user interface. He
started off, building a simple button on a 2-dimensional surface.
The motion of the button in the plane was mapped to pitch and
nonlinearity of the sound generated. The other live coder
focused on sound synthesis algorithm, which utilized circle
maps algorithm [9] to offer an expressive sound ranging from a
pure pitched tone to the timbrally rich sound of a highly non-
linear circle map. For the stage setup (see Figure 5), all three
screens (two laptops and one tablet) were projected so that
audiences could better understand our improvisation both on
the laptops and the tablet.
 The design guidelines suggested in the previous section were
deployed for the performance. To give the performer feedback
on the current state, a chat interface was added to the web
editor so that live coders can inform what changes were made
(e.g. “x-axis covers full audible pitch range now.”). The textual
messages were displayed both on the tablet and the other live
coder’s chat interface. In addition, providing a button for the
performer to pull the change (execute certain code) worked
effectively, so that the performer knew some changes were
ready to be made and chose when to inject them into the
ongoing musical interaction.
 Towards the end of the piece, live coders participated in the
performance in more direct manner. The sound synthesis coder
recorded a performer’s play and looped the sound patterns in
the background while the interface builder add visualization to
the user interface based on the trajectory of the button, which
changes the stationary button into a brush.
 The performance succeeded in following the goal of the
piece, but also by being able to handle technical glitches and
coding bugs as the performance progressed. The audiences
appreciated the nature of the piece by applause when the button
functioning for the first time. Particularly, chat projected on a
main screen was effective for musicians not only to reveal the
process of collaborative coding but also to interact with
audience members during the piece.

8. FUTURE WORKS
We introduced a new form of networked music performance
where a programmer codes a mobile music instrument while it
is being played by a performer. A simple instrument was
implemented as a proof-of-concept showed how each design
guideline is applied in practice and presented an improvised
musical performance.

 While we focused more on playability/usability of the
performer’s side in this paper, we wish to explore the same
questions from the live coder’s perspective. It would be
beneficial to define challenges of live programming of
interactive systems. Clearly, much work remains to be done on
how a language and its development environment can support
broad needs of networked live coding.
 In addition, we wish to extend the distributed model of dual
performers to a model of an interconnected ensemble. As we
already experienced the mode of collaborative coding at the
performance, we aim for m:n relationships where m people
works on building musical instruments for n number of people.
What sort of features would be desirable in a development
environment of real-time collaborative coding setup? How do
we deal with conflicts and version control when multiple
people work on one application live (m>n)? How and when do
we compose to distribute an instrument to each individual
member of the ensemble (m<n)?
 Clearly, live coding the musical instrument is an idea that still
begs multitudes of explorations. In this paper, we discussed
early steps of its potential and we are excited to see it realized.

9. ACKNOWLEDGEMENT
We would like to thank Bruno Yoshioka and Cameron Hejazi
for performing the piece at the concert.

10. REFERENCES
[1] Blackwell, A. and Collins, N. The programming language

as a musical instrument. In Proceedings of Psychology of
Programming Interest Group(PPIG). 2005.

[2] Brown, A.R. and Sorensen, A.C. aa-cell in practice: An
approach to musical live coding. In Proceedings of the
International Computer Music Conference. 2007.
Copenhagen, Denmark.

[3] Bryan-Kinns, N. Daisyphone: the design and impact of a
novel environment for remote group music improvisation.
In Proceedings of the Conference on Designing Interactive
Systems (DIS). 2004. Cambridge USA: ACM.

[4] Cage, J. Imaginary Landscape No. 4. Composition. 1961.
[5] Collins, N. Live Coding of Consequence. Leonardo, 2011.

44(3): p. 207-211.
[6] Collins, N., McLean, A., Rohrhuber, J., and Ward, A. Live

coding in laptop performance. Organised Sound, 2003.
8(3): p. 321-330.

[7] Cook, P. Principles for designing computer music
controllers. In Proceedings of the International
Conference on New Interfaces for Musical Expression
(NIME). 2001. Seattle, WA, USA.

[8] Downie, M. Field - a new environment for making digital
art. Computers in Entertainment (CIE), 2008. 6(4): p. 54.

[9] Essl, G. Circle maps as a simple oscillators for complex
behavior: I. basics. In Proceedings of the International
Computer Music Conference (ICMC). 2006. New Orleans,
USA.

[10] Essl, G. Speeddial: Rapid and on-the-fly mapping of
mobile phone instruments. In Proceedings of New
Interfaces for Musical Expression(NIME). 2009.

[11] Essl, G. UrMus - an environment for mobile instrument
design and performance. In Proceedings of the
International Computer Music Conference. 2010. New
York.

[12] Essl, G. UrSound‚ live patching of audio and multimedia
using a multi-rate normed single-stream data-flow engine.
In Proceedings of the International Computer Music
Conference. 2010. New York, USA.

[13] Essl, G. and Müller, A. Designing Mobile Musical
Instruments and Environments with urMus. In

�4�9�7

Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME). 2010. Sydney,
Austrailia.

[14] Essl, G. and Rohs, M. Interactivity for mobile music-
making. Organised Sound, 2009. 14(02): p. 197-207.

[15] Freeman, J. and Van Troyer, A. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, 2011. 35(2): p. 8-21.

[16] Huron, D. Sweet anticipation: Music and the psychology
of expectation. 2006 MIT press.

[17] Ierusalimschy, R. Programming in lua. 2006; Available
from: Lua.org.

[18] Jordà, S. FMOL: Toward user-friendly, sophisticated new
musical instruments. Computer Music Journal, 2002.
26(3): p. 23-39.

[19] Jordà, S. Digital Instruments and Players: Part I –
Efficiency and Apprenticeship. In Proceedings of the
International Conference on New Interfaces for Musical
Expression (NIME). 2004. Hamamatsu, Japan.

[20] Jordà, S. Multi-user instruments: models, examples and
promises. In Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). 2005.
Vancouver, Canada.

[21] Kaltenbrunner, M., Geiger, G., and Jordà, S. Dynamic
patches for live musical performance. In Proceedings of
the International Conference on New Interfaces for
Musical Expression (NIME). 2004. National University of
Singapore.

[22] Lee, S.W. and Freeman, J. Echobo : A Mobile Music
Instrument Designed for Audience To Play. In
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME). 2013. Daejeon,
Korea.

[23] Lee, S.W., Freeman, J., and Colella, A. Real-Time Music
Notation, Collaborative Improvisation, and Laptop
Ensembles. In Proceedings of the International
Conference on New Interfaces for Musical Expression
(NIME). 2012. Ann Arbor, MI, USA.

[24] Linson, A. Unnecessary constraints: a challenge to some
assumptions of digital musical instrument design. In
Proceedings of the International Computer Music
Conference. 2011. Huddersfield, UK.

[25] Magnusson, T. Designing constraints: Composing and
performing with digital musical systems. Computer Music
Journal, 2010. 34(4): p. 62-73.

[26] Magnusson, T. ixi lang: a SuperCollider parasite for live
coding. In Proceedings of the International Computer
Music Conference. 2011. University of Huddersfield.

[27] McCartney, J. Rethinking the computer music language:
SuperCollider. Computer Music Journal, 2002. 26(4): p.
61-68.

[28] McGee, R., Ashbrook, D., and White, S. SenSynth: a
Mobile Application for Dynamic Sensor to Sound
Mapping. In Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). 2012.
Ann Arbor, MI, USA.

[29] Murray-Browne, T., Mainstone, D., Bryan-Kinns, N., and
Plumbley, M.D. The medium is the message: Composing
instruments and performing mappings. In Proceedings of
the International Conference on New Interfaces for
Musical Expression (NIME). 2011. Oslo, Norway.

[30] Nilson, C. Live coding practice. In Proceedings of the
International Conference on New Interfaces for Musical
Expression (NIME). 2007. New York, NY, USA.

[31] Puckette, M. Combining event and signal processing in the
MAX graphical programming environment. Computer
Music Journal, 1991: p. 68-77.

[32] Puckette, M. Pure Data: another integrated computer
music environment. In Proceedings of the International
Computer Music Conference. 1996.

[33] Roberts, C. and Hollerer, T. Composition for conductor
and audience: new uses for mobile devices in the concert
hall. In Proceedings of the 24th annual ACM symposium
adjunct on User interface software and technology. 2011.
ACM.

[34] Roberts, C. and Kuchera-Morin, J.A. Gibber: Live Coding
Audio in the Broswer. In Proceedings of the International
Computer Music Conference. 2012. Ljubljana, Slovenia.

[35] Roberts, C., Wakefield, G., and Wright, M. Mobile
Controls On-The-Fly: An Abstraction for Distributed
NIMEs. In Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). 2012.
Ann Arbor, MI, USA.

[36] Ruthmann, A., Heines, J.M., Greher, G.R., Laidler, P., and
Saulters II, C. Teaching computational thinking through
musical live coding in scratch. In Proceedings of the 41st
ACM technical symposium on Computer science
education. 2010. ACM.

[37] Sorensen, A. Impromptu: An interactive programming
environment for composition and performance. In
Proceedings of the Australasian Computer Music
Conference 2009. 2005.

[38] Wakefield, G., Smith, W., and Roberts, C. LuaAV:
Extensibility and Heterogeneity for Audiovisual
Computing. In Proceedings of the Linux Audio
Conference. 2010.

[39] Wang, G. and Cook, P.R. ChucK: A concurrent, on-the-fly
audio programming language. In Proceedings of the
International Computer Music Conference. 2003.
Singapore: International Computer Music Association
(ICMA).

[40] Wang, G. and Cook, P.R. On-the-fly programming: using
code as an expressive musical instrument. In Proceedings
of the International Conference on New Interfaces for
Musical Expression (NIME). 2004. National University of
Singapore.

[41] Wang, G., Essl, G., and Penttinen, H. Do mobile phones
dream of electric orchestras. In Proceedings of the
International Computer Music Conference. 2008. Belfast,
UK.

[42] Wang, G., Misra, A., Kapur, A., and Cook, P.R. Yeah,
ChucK it!, dynamic, controllable interface mapping. In
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME). 2005. National
University of Singapore.

[43] Weinberg, G. and Gan, S.L. The squeezables: Toward an
expressive and interdependent multi-player musical
instrument. Computer Music Journal, 2001. 25(2): p. 37-
45.

[44] Weitzner, N., Freeman, J., Garrett, S., and Chen, Y.
massMobile – an Audience Participation Framework. In
Proceedings of the International Conferences on New
Interfaces for Musical Expression (NIME). 2012. Ann
Arbor, MI, USA.

[45] Wessel, D. and Wright, M. Problems and prospects for
intimate musical control of computers. Computer Music
Journal, 2002. 26(3): p. 11-22.

[46] Yamashita, Y. Burning Piano. video available at
http://youtu.be/YpKT_eeCVNI. 2008.

�4�9�8

