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ABSTRACT 
Mapping gestures to digital musical instrument parameters is 
not trivial when the dimensionality of the sensor-captured data 
is high and the model relating the gesture to sensor data is 
unknown. In these cases, a front-end processing system for 
extracting gestural information embedded in the sensor data is 
essential. In this paper we propose an unsupervised offline 
method that learns how to reduce and map the gestural data to a 
generic instrument parameter control space. We make an 
unconventional use of the Self-Organizing Maps to obtain only 
a geometrical transformation of the gestural data, while 
dimensionality reduction is handled separately. We introduce a 
novel training procedure to overcome two main Self-
Organizing Maps limitations which otherwise corrupt the 
interface usability. As evaluation, we apply this method to our 
existing Voice-Controlled Interface for musical instruments, 
obtaining sensible usability improvements. 
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1. INTRODUCTION 
In Digital Musical Instruments (DMI) design, the Gestural 
Controller (GC) [1] plays an essential role: it converts the input 
gestural data into intermediate signals that are mapped to sound 
synthesis or processing parameters. The GC, together with the 
mapping, defines the relationship between the performer’s 
gesture and DMI sonic response. Its design is considered a 
specialized branch of HCI where the simultaneous and 
continuous control of multiple parameters, the instantaneous 
response, and the necessity of user practice are key aspects [2] 
[3]. The algorithm to interpret the gestural data, performed by 
the GC, depends on the nature of the sensors employed in the 
interface and also on designer choices. Hunt, Wanderley, and 
Kirk [4] classify systems for gestural acquisition into three 
categories: direct, indirect and physiological. For the first 
category, each sensor captures a single feature. Correlations, 
dependencies, redundancy and constraints across the different 
sensor data can be derived and handled directly by the physical 
characteristic of the performer and the sensors. Hence knowing 

how the performer’s gesture is represented in the gestural data 
domain allows the implementation of explicit strategies within 
the GC. For the other two categories, finding the relationship 
between a gesture and the captured gestural data may be 
challenging, therefore generative mechanisms, such as learning 
algorithms, are often used for the model estimation [5]. 

In this paper we propose a method to obtain a GC through 
unsupervised learning on a set of gesture examples. We assume 
that the gestural data is high dimensional, continuous, and 
contains potential correlations, cross-dependencies, and it is not 
uniformly distributed. The GC we propose here has output 
dimensionality generally lower than the input, its output signals 
are continuous and have no cross-constraints across the 
individual dimensions. Considering the gestural examples 
provided as a sequence of instantaneous postures snapshots, the 
GC relates its unique outputs combinations to unique postures. 
A performer gesture would therefore produce a continuous 
modification of the DMI parameters, changing the properties of 
the sound synthesis or processing algorithm. The non-linear 
transformation performed in the GC outputs also if the input 
gesture differs from the provided examples, but respecting the 
lower dimensional spatial bounds, topology, and distribution 
found in the example data set. 

This method is particularly suited for “alternate controllers” 
[4] with indirect and physiological gestural data acquisition, 
such as those with a large set of features extracted from an 
audio or video signal, or from a network of sensors, but it can 
be applied to high dimensional direct acquisition as well where 
the implementation of explicit strategies can be challenging. 
From a broad range of potential application scenarios, in this 
paper we present and discuss the integration of this GC 
technique with our Voice-Controlled Interface (VCI) [6]. The 
VCI is an alternate controller for DMIs with gestural 
acquisition lying between the categories of indirect and 
physiological which estimates pseudo-physiological 
characteristics of the vocal tract through the analysis of the 
vocal audio signal. The VCI is meant to provide performers 
with vocal control over a multidimensional instrument real-
valued parameters space. Therefore the GC we present in this 
work does not perform temporal gesture recognition, but it 
samples instantaneous postures from a gesture and maps these 
in an intermediate space with a bijective correspondence with 
DMI parameters. The key aspect of this work is the utilization 
of a multidimensional extension of the Kohonen Self-
Organizing Maps (SOM) [7] lattice to achieve a geometrical 
transformation of the gestural data space into the mapping 
space. We perform the gestural data dimensionality reduction 
using non-linear techniques before the SOM training to 
overcome some limitations and shortcoming of the SOM 
lattice, which are evident when using the transformation 
mentioned above for GCs. Moreover, we introduce and 
motivate some variation in the SOM training algorithm as well.  
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2. RELATED WORK 
Artificial Neural Networks (ANN) have been used in the design 
of new interfaces for musical purposes for more than two 
decades. From the pioneering work of Lee and Wessel [8] to 
Fiebrink’s more recent Wekinator [9], history shows how these 
generative algorithms have been successfully used to learn 
gesture maps for DMIs, particularly for time-continuous real-
valued parameters. Typically an ANN is trained with 
supervised techniques. On the other hand, the Kohonen SOM 
ANN is trained with an unsupervised technique. SOMs are 
commonly used to produce a two-dimensional discrete 
representation, called a map or lattice, of the input space. 
SOMs, contrary to traditional ANNs, tend to preserve the 
topological properties of the input space. Therefore, SOMs 
have been mainly used for classification, visualization, 
organization or retrieval of audio, exploiting the dimensionality 
reduction and topological organization capabilities. Ness and 
Tzanetakis [10] present a comprehensive survey of SOM 
applications in music and instrument interface related projects. 
Some instrument interfaces using SOMs are limited to a one-to-
one linear mapping of a two or three-dimensional sensor to an 
equal dimensional trained map. Then the music or audio chunks 
previously used to train the map are retrieved and reproduced in 
real time, as in Odowichuk [10], which represents one of the 
few musical examples using an SOM output lattice with 
dimensionality larger than two. 

Stowell [11] describes an attempt to use the SOM for 
remapping vocal timbre representing the gestural data to sound 
synthesis. He explains the relatively poor performance of this 
solution with the intrinsic shortcomings and limitations of the 
SOM. The selection of appropriate training settings, output 
lattice resolution, and dimensionality may vary drastically case 
by case. There may also be differences in map orientation for 
different training over the same data set, and errors in topology 
preservation such as output lattice twisting or folding. The 
latter two are harmless side effect in classification tasks but are 
lethal when the output lattice must represent a continuous and 
non-linear discretization of the input data set, as we wish to 
obtain here. The SOM performs a dimensionality reduction of 
the input data and at the same time it tries to maintain its 
topology. As described in [12], this dualistic role of the SOM is 
one of the sources of topology corruption. If the embedded 
dimensionality of the input data is higher than the output lattice 
dimensionality, topology corruption is highly probable. 
Moreover there is a tradeoff between continuity and resolution 
of the map. The SOM output, represented by the lattice node 
position, is intrinsically discrete. Therefore when we mention 
map continuity within this context we mean that vectors very 
close in the input manifold are mapped either to the same or 
adjacent nodes. These issues, their effect on a SOM-based GC, 
and proposed solutions are covered in the next section. 

3. SELF-ORGANIZING GESTURES 
In this section we describe the procedure to train the SOM-
based GC and different operative modalities which may fit 
different DMI interface requirements. As mentioned above, our 
goal is to drive time-continuous and real-valued DMI 
parameters. The set of gestures used for the training represents 
a temporal sequence of instantaneous postures, defining an 
arbitrary shape in an N-dimensional space with arbitrary and 
generally non-uniform density. On the output side, the GC 
generates data in an M-dimensional space, therefore it applies a 
bijective transformation f : Rn → Rm. It is desirable that the 
transformation f maintains the local and global topological 
structure of the training gestures and spreads them evenly over 
the output dimensions. The training data subject to the 
transformation f must uniformly fill in a hypercube with 

dimensionality M. An empty or low-density sub-volume in the 
output hypercube results in a GC constraint that makes it 
impossible to obtain certain combinations of the M output 
parameters with any gesture similar to the training ones. 
Independently of the strategy used to map the GC output to the 
DMI (one-to-one, divergent or convergent), the transformation f 
described above implicitly requires that M is equal to or smaller 
than N. In high-dimensional gestural acquisition we often find 
an embedded dimensionality N’ smaller than N, therefore if we 
want non-redundant GC outputs, M has to be equal or smaller 
than N’. 

In principle, the SOM seems to be a suitable solution in 
learning the transformation f from the gestural examples. The 
GC can be implemented interpolating the discrete output map 
of the trained ANN, which has N input neurons and an M 
dimensional output lattice. However, due to the shortcomings 
in topology preservations described in the previous section, the 
GC can be affected by the following problems detrimental to 
musical instrument design: 

• inverted GC response to the gestural input 
belonging to different subsections of the input 
space due to SOM lattice twisting; 

• discontinuous GC response due to excessive SOM 
folding, (resulting in the proximity of two or more 
edges in the output lattice), or due to SOM curled 
edges; 

• minor inconsistency of the GC behavior due to 
local topology distortion of individual output nodes 
relative to its neighbors.  

Our approach aims to avoid or minimize topology corruptions 
by introducing a prior dimensionality reduction step, proper 
data preprocessing, and some expedients in the training 
algorithm. We free the SOM from the dimensionality reduction 
task, while using it to find a non-linear geometrical 
transformation between the two iso-dimensional spaces, and to 
compresses/expands the dynamic of the input. A similar 
approach for a different application domain is taken in the 
Isometric SOM [13], where a 3D hand posture estimation, is 
achieved using the SOM with a prior dimensionality reduction 
stage performed using the ISOMAP method. 

3.1 Learning Process 
The preparation of a proper training data set G is essential for 
the success of the learning algorithm. The larger the data set, 
the better the final system will likely respond. However, 
consistency and compliance of the data set are fundamental. 
Most sensor output data are sampled at regular intervals. 
Maintaining a posture over time during the recording of G 
generates inappropriate high-density cluster in the N-
dimensional space, due to the sampling of identical or very 
similar postures. This can bias and corrupt our training process 
because the data density is not representative of the gesture 
only. Strategies to avoid the presence of identical postural data 
may vary with the characteristics of the gestural data 
acquisition system, or alternatively, a more general step of post 
processing over the acquired data G can be used. For our VCI 
we adopt a gate operated by the spectral flux value to filter out 
undesired postures while collecting the gestural data vectors in 
G. The spectral flux threshold value is automatically measured 
from a set of postures, used as well for noisy features rejection. 

3.1.1 Gestural Data Pre Processing 
A single dimension here represents a sensor signal for direct 
gestural acquisition, or a single feature for indirect and 
physiological gestural acquisition. The N-dimensional gestural 
training data G is centered at the origin removing the mean 
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gmean. Then we estimate N’, the embedded dimensionality in the 
N-dimensional gestural training data. This step is essential 
because after the dimensionality reduction we keep at most N’ 
dimensions, possibly fewer depending on user choice. For this 
estimation we round the results of the correlation dimension 
method [15] to the closest integer. For the dimensionality 
reduction there are several possibilities and experiments (e.g. 
[16]) that demonstrate a specific technique outperforms others 
only if certain specific characteristics are present in the data, 
while for real data scenarios often the most advanced 
techniques gives just a small improvement over basic 
techniques such as the Principal Component Analysis. Since we 
cannot make any assumption about the gestural data, choosing 
a Nonlinear Dimensionality Reduction (NLDR) technique 
would handle complex cases and non-linear manifolds. We 
chose a convex NLDR technique because it produced 
consistent results over different experimental iterations. We 
tested several NLDR techniques on real gestural data sets, and 
those that produced the best results were ISOMAP [17] 
followed by LLE [18]. The results were measured in terms of 
uniformity of data distribution across single dimensions, as well 
as the overall GC user experience. However, the tests were 
performed integrating the Self Organizing Gestures method 
with our VCI covered in the next section. It is certainly possible 
that for different gestural data acquisition systems the optimal 
NLDR might differ from those used here. After the NLDR, the 
data on each dimension are normalized to the range [-1;1]. 

3.1.2 SOM Training 
As mentioned above, the SOM output lattice dimensionality M 
will be at most equal to N’. However the output dimensionality 
of the GC M is user-configurable. The NLDR technique ranks 
the output dimensions, hence we simply discard the lowest 
ranked (N’- M) components to achieve the further reduction. 
An excessive number of output nodes, often referred to as 
output lattice resolution, is one of the causes for topology 
distortion, especially of the local type. We derive the resolution 
r from M and from the number of entries g in the gestural 
training data G using a nonlinear relation as in (1). A high-
resolution implies a more complex model to be estimated, and 
the requirement of more training data is a direct consequence. 
Similarly, the number of SOM training iterations tMAX is related 
to the model complexity as in (2). 

 r = round(1.5 ⋅ logM (g))  (1) 

 tMAX =M ⋅ g ⋅ r  (2) 

The SOM output lattice represents an M-dimensional 
hypercube with rM output nodes Oj distributed uniformly 
(forming a grid), each associated to an M-dimensional weight 
vector wj. Before initializing the weight vector wj and training 
the SOM, we search the gestural training data for 2M points ak 
representing the extrema of the performer’s gestures that best 
encompass the gestural space. The data is centered on the axis 
origin, hence we perform the search with the following steps: 

1. for each quadrant, set an equal-value boundary on 
each axis, and increase it progressively reducing the 
quadrant extension until only one point remains, and 
compute the sum of the distances of the 2M ak points 
from the origin and between themselves; 

2. repeat the previous step performing a sequence of 
fine angular full data rotation steps around the origin; 

3. pick the rotation angle αopt and the related ak that 
maximizes the sum of the distances. 

The weights wj are initialized distributing them uniformly 
through the hypercube inscribed into the dataset, while the 
weights related to the Oj located at the 2M vertices are 

initialized at the position of the ak. The SOM is trained for tMAX 
iterations picking a random point xrand from the dataset and 
updating all the wj, as in equations (3) and (4)  

 w j (t +1) =w j (t)+µ(t) ⋅Θ(t, j, z) ⋅ (xrand −w j (t))  (3) 

 Θ(t, j, z) = exp −Oz −Oj
2
2 ⋅σ (t)2( )  (4) 

where µ(t) is the linearly decreasing learning rate, Θ(t,j,z) is the 
neighborhood function described in (4), z is the index of the 
output node Oz with the related weight closest to xrand. In (4) 
the nominator of the exponential is the squared Euclidean 
distance of the output nodes in the output M-dimensional grid, 
σ(t) is the linearly decreasing neighborhood parameter 
representing the attraction between the output nodes. We apply 
the following modification to the standard training algorithm: 

• the Oj of the 2M vertices are updated more slowly 
than the rest of the points, using the half of the 
learning rate µ(t); 

• the random point selection is biased in favor of the ak, 
forcing the weights update using the 2M ak every time 
a 10% of tMAX has elapsed, and using half of the 
attraction σ(t) for the Oj of the 2M vertices. 

At the end of the training process each output node Oj is 
associated with a number Cj counting how many entries in the 
training gestural data are associated with it (for which it is the 
“nearest node”). Additionally we embed information about the 
temporal unfolding of G in the lattice output nodes. This is 
used in one of the operative modes described in the next 
subsection. Since we are running a large number of training 
iterations, we choose a relatively small value for the initial 
learning rate µ(t0). To avoid local topology distortions, we set 
the final value of the attraction σ(tMAX) to a relatively large 
value, and a µ(tMAX) at least one order of magnitude smaller 
than the initial one. In particular, values producing good results 
for our vocal gestural data cases are: µ=[0.5,0.01] and 
σ=[1.5,0.5]. Other gestural data acquisition systems may 
require different parameter values to obtain a well-trained 
system, but the selection strategy is still valid. 

The idea behind the modification of the conventional training 
is to avoid the topology distortions mentioned above, and at the 
same time obtain a better overlap between the weights of the 
SOM output nodes and the gestural data. In particular, we 
focused in pulling the lattice from its vertices, stretching it 
toward the gestural extrema, achieving at the same time lattice 
edges enclosing the M-dimensional gestural data subspace with 
higher fidelity. Moreover, the SOM training data is also used to 
find the M-dimensional convex hull that encloses all the vectors 
in G. The convex hull defines the valid region for new 
incoming vectors during the real-time operation, so that the GC 
does not produce an output if the vector is outside the region. In 
Figure 1 we present two examples of SOM training on gestural 
data, with M=2 and M=3, showing the training data (after 
preprocessing), the weights of the SOM nodes at initialization 
and after training, node mass Cj and node neighborhood based 
on gestural data temporal unfolding. The weights of the SOM 
nodes are represented in the normalized M-dimensional training 
data space. 

The preprocessing and training processes presented are 
completely unsupervised. In case the user wants to explicitly 
define the 2M gestural extrema to be associated with the SOM 
lattice vertices, we use a supervised dimensionality reduction 
technique in the preprocessing stage. This requires an 
additional training data set E that contains several instances of 
labeled gestural extrema. We use a multiclass Linear 
Discriminant Analysis (LDA) for the N to M dimensionality 
reduction, which maximizes the between-class variance while 
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minimizing the within-class variance. The LDA transformation 
is learned from the labeled data in E, and it replaces ISOMAP. 
The LDA dimensionality reduction is then applied to G and to 
the 2M class centroids in E, representing the gestural extrema. 
The rest of the preprocessing and SOM training procedure is 
unchanged. With LDA, when projecting the gestural data in to 
the lower dimensional space, the extrema are located 
somewhere along the boundaries of the enclosing convex hull, 
insuring SOM topological preservation when associating the 
extrema with the vertices of the output lattice. 

3.2 GC Operational Modes 
The SOM-based GC is implemented applying the bijective 
transformation f, composed by a series of step in which we 
apply the processing learned from G. For a new gestural data 
vector d, we obtain the output vector p as follows: 

1. subtract the mean gmean from d; 
2. apply the NDLR and truncate the vector to the top M 

dimensions if M is smaller than N’; 
3. normalize each dimension to the range [-1;1]; 
4. rotate the vector by the angle αopt; 
5. verify if the vector is within the valid convex hull; 
6. find the closest wj to the obtained d* and output the 

related Oj normalized grid indexes vector p. 
In Figure 2 we summarize the learning process and the GC 
processing steps. The operations in the square boxes within the 

learning process, learn and apply a transformation from G. 
Those in the rounded boxes within the GC simply apply the 
transformation based on the information learned. 

The GC output p contains the indexes of the output node, 
which is its position in the M-dimensional lattice. Usually the 
indexes are integers numbers, but we normalize them in the 
range [0,1]. The resolution r in (1) directly defines the 
resolution of the M dimensions of p, which are based upon a 
user defined mapping strategy and used to drive DMI 
parameters. If r is small, we use the Inverse Distance 
Weighting (IDW) interpolation between the 2M closest wj to 
provide virtually infinite output resolution. The SOM output 
lattice can be used in more complex manners to implement 
variations of the GC which may suit different instrument 
interface philosophies. 

To obtain a more smooth response d-to-p, it is possible to 
force the output to follow a connecting path on the lattice 
Moore neighborhood. The search for the wj closest to d*(t) is 
performed only on the 3M neighbors of the d*(t-1) closest Oj, 
including itself. If d(t-1) and d(t) are far apart due to a quick 
performer gesture, the GC responds more slowly. This can also 
help to compensate for potential performer error in actuating 
the interface, or noise in the gestural acquisition system. If 
d(t+1) is again close to d(t-1), such big variations in the 
gestural data space will produce only a small perturbation in the 
related temporal sequence of p. 

 
 

 
Figure 1. 2D and 3D lattice examples of an SOM trained with the proposed algorithm with different gestural data; a) gestural 
training data; b) weight initialization; c) trained lattice output weights; d) trained lattice output weights with mass mapped to 

node diameter; e) trained lattice with output node neighborhood based on gestural data temporal unfolding. 
 
 

 
Figure 2. Learning Process and Gestural Controller functional schemes. 
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The SOM algorithm is supposed to organize the output node 
weights also according to the training data density. More dense 
areas will have more output nodes and vice versa, which ideally 
means equal Cj across all the output nodes. However in real 
cases some minor difference may still be present. We can 
consider the Cj as a mass value associated with Oj and replace 
the Euclidean distance with a “gravity force” in the 
neighborhood search as in (5) 

 Fj = Gconst ⋅Cj wi −d
* 2( )  (5) 

where Gconst represents a user-defined gravitational constant, 
and we can omit the mass of d* because it will just scale 
equally across all the Fj. With this approach, independently of 
the neighborhood search space definition, the winner Oj is the 
one giving the strongest gravitational attraction. The GC 
response perturbed by the mass of the output nodes is non-
linear, presenting “hills” and “valleys” where a different 
amount of gestural energy is required to change position. 

So far, we have used the SOM-based GC using the global 
gestural information learned from G. Therefore the system will 
also respond to gestures different from those used for training, 
but in terms of their multidimensional shape and density in G. 
At the end of the learning process we found the set of possible 
next nodes for each of the lattice output nodes, analyzing 
forward and backward the sequence of entries in G. We can use 
the possible next nodes associated to each Oj as a neighborhood 
search subspace. In this way, we obtain a different operational 
modality where the GC responds only to gestures consistent 
with those used in training. This modality introduces strong 
constraints between the GC input and output, and it is not used 
in our VCI system. 

4. VCI INTEGRATION & EVALUATION 
In this section we discuss the Self-Organizing Gestures user 

perspective. We briefly describe the integration with our VCI 
system, and we present some numerical results. The proposed 
method is completely unsupervised and allows the user to 
obtain the GC transformation f by providing only some gestural 
examples. Because the method is unsupervised, the implication 
is that users have to learn the resulting gestural organization in 
relation to the GC output. We provide two computationally 
inexpensive possibilities for allowing the user to modify the 
system response in real-time. The first is the range [0,1] 
inversion for every single GC output to [1,0] and the second is 
the application of a global scaling value to the wj, to expand or 
shrink the output lattice in relation to the GC input space, while 
maintaining the same topology. 

We have implemented the learning process of Section 3.1 
using a set of MATLAB functions with a simple interface. The 
gestural training data is read from a file, and imported into a 
single matrix. During the learning process it provides some 
intermediate text information and it shows graphically the SOM 
learning process plotting and updating the wj grid over the G 
data after the dimensionality reduction. Plotting is supported for 
M less than 4. The learning function returns a single structure 
including all the data necessary for the various operational 
modes described in 3.2. For the NLDR we use the 
Dimensionality Reduction Toolbox1. The real-time GC 
operative modes are implemented in a separate MATLAB 
function, which exchanges data though the Open Sound Control 
(OSC) protocol, receiving the gestural data d and sending out 
p. The real-time GC is able to change its behavior in runtime in 
                                                                    
1http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimens

ionality_Reduction.html 

response to specific OSC messages. It is possible to change the 
operative modality, invert the output ranges, and modify the 
global scale factor for the wj. 

The integration with our VCI MAX/Msp system [6] is 
established through the OSC communication for the real time 
part, while the gestural training data is collected into a matrix in 
MAX/Msp and exported to a text file using FTM [19]. In the 
VCI prototype we implemented a larger vocal feature 
computation and a system for noisy features rejection based on 
vocal postures as described in [20]. A mixture of MFCC and 
PLP features represent the system’s gestural data. Even though 
we tested the different operative mode described in 3.2, in the 
evaluation experiments we work using a search space limited to 
the Moore neighborhood of the previous output node, which is 
the modality that better suits voice driven GC. 

The evaluation data presented here considers only the GC 
performances. We probe the measurement data before our DMI 
mapping system [21], which is integrated in the VCI. We ran 
two categories of tests using 10 different vocal gestural training 
data G. In the first category we verified the performances of the 
learning process. For each G we trained the two equivalent 
SOMs 20 times, one using our proposed method and the other 
one using the standard SOM method. We compared the two by 
measuring the frequency of global topology (twisting, folding, 
curling) and local topology distortions. These results are 
presented in Table 1, reporting the average over the 10 cases.  

In the second category of test we gave the user 3 minutes to 
learn and fine-tune the SOM-based GC, and a second GC 
obtained with our previous VCI approach having equal 
dimensionality and output resolution The user was then asked 
to perform two tasks. The first was to cover the highest number 
of GC output combinations possible (each lattice output node 
represents one combination) within 1 minute; the other was to 
maintain the output at 2M+1 key positions (vertices and center) 
for 5 seconds. We then measured the output stability in terms of 
standard deviation. The results are presented in Table 2, 
showing the average over the 10 cases. In these tests we 
refrained from mapping the GC output to any DMI in order to 
focus attention on the output signal itself that will be used for 
mapping. The presence of sonic feedback can ease some of the 
tasks thereby biasing the measurements. Performance might 
also have been influenced by the nonlinearities in the DMI 
parameters-to-sound response. Thus the only feedback provided 
in the user testing were the M on-screen continuous sliders and 
an M-dimensional grid. For these experiments, the G 
dimensionality N varies case by case between 7 and 28, while 
the N’ is usually either 2 or 3, typical for vocal gestural data. 

 

Table 1. Topology distortion performances comparison 
between standard and proposed learning process. 

Test Standard 
Training SOM 

Modified 
Training SOM 

% Global Topology 
Distortion 63.5% 2.5% 

% Local Topology 
Distortion 33% 6% 

 
Table 2. Use task comparison between the VCI GC and the 

Self-Organizing Gestures (SOG) based VCI GC. 

Task VCI GC SOG-VCI 
GC 

% Covered Output 
Combination 74.3% 96.5% 

Key Positions Output Stability 
(standard deviation) 0.14 0.06 
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