KIB: Simplifying Gestural Instrument Creation Using
Widgets

Edward Zhang
Princeton University
Department of Computer Science
edwardz@princeton.edu

ABSTRACT

The Microsoft Kinect is a popular and versatile input device
for musical interfaces. However, using the Kinect for such
interfaces requires not only significant programming expe-
rience, but also the use of complex geometry or machine
learning techniques to translate joint positions into higher
level gestures. We created the Kinect Instrument Builder
(KIB) to address these difficulties by structuring gestural
interfaces as combinations of gestural widgets. KIB allows
the user to design an instrument by configuring gestural
primitives, each with a set of simple but attractive visual
feedback elements. After designing an instrument on KIB’s
web interface, users can play the instrument on KIB’s per-
formance interface, which displays visualizations and trans-
mits OSC messages to other applications for sound synthesis
or further remapping.

Keywords
Kinect, gesture, widgets, OSC, mapping

1. INTRODUCTION

New technology has enabled the development of many types
of novel interfaces for digital musical instruments (DMIs).
One of the most versatile is the gestural interface. In com-
parison with traditional interfaces, gestural systems allow
for increased complexity with more degrees of freedom. The
Microsoft Kinect is an inexpensive, commercially available
sensor that has been extremely popular for gestural inter-
faces because of its depth camera and joint tracking capabil-
ities. A search for “instrument” or “music” at KinectHacks *
provides several pages of musical interfaces designed by the
programming community; even in the academic world, four
papers presented at NIME 2012 used the Kinect sensor [11,
10, 15, 6]. The Kinect has been used in compelling perfor-
mances such as in the V Motion system? that showcase the
potential of gestural instruments.

However, designing gestural interfaces that use the Kinect
presents several challenges. Firstly, creating such interfaces
requires a good deal of programming knowledge to build ap-
plications that can communicate with the Kinect and access

"http://www.kinecthacks.net
http:/ /www.custom-logic.com/blog/v-motion-project-
the-instrument/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’13, May 27 - 30, 2013, KAIST, Daejeon, Korea.

Copyright remains with the author(s).

519

Rebecca Fiebrink
Princeton University
Department of Computer Science (also Music)
fiebrink@princeton.edu

its depth and skeletal tracking streams. Fortunately, sev-
eral existing systems, such as [16] and osceleton®, take the
output from the Kinect and broadcast MIDI or OSC mes-
sages containing the skeletal coordinate data. However, the
more difficult problem of translating raw joint positions into
meaningful gestures remains. Developers often have to use
complicated machine learning, computer vision, or geomet-
rical techniques to turn skeletal data into a form suitable
for use in musical interfaces. Many ongoing research efforts
are focused on developing more sophisticated depth image
processing methods, enabling not only a wider variety of
control gestures, but also more accurate gesture recogni-
tion. Still, musical system designers must tackle the task
of mapping these gestures to sound in a musically effective
way.

In order to simplify the instrument-building process—
especially for musicians who are not programmers, or who
want a quick and efficient way to explore many basic instru-
ment designs—we designed the Kinect Instrument Builder
(KIB) around the concept of gestural widgets. Widget-
based interfaces have been fairly successful for multitouch
surfaces, especially in commercial systems such as TouchOSC*.
In these interfaces, intuitive visual elements provide feed-
back for interactions with knobs, sliders, buttons, and more
abstract widgets; each widget sends its own OSC messages
that can be used in sound synthesis software, such as ChucK,
PureData, or Max/MSP. By applying the same principles to
gestural interfaces that use the Microsoft Kinect, we hope
to make gestural instrument design simpler and more ac-
cessible.

2. BACKGROUND

Many systems for designing user interfaces make use of wid-
gets, especially for multitouch interactions. However, very
few systems extend this generic widget-based design to in-
air gestural interfaces. In this section, we briefly outline
previous work on widget-based interface design systems, in
both academic and commercial works, and we then describe
some gestural widget systems.

2.1 Widget-based Interface Design

The physical controls used in sound editing systems form
the inspiration for multitouch widget-based interfaces such
as Argos [3], TouchOSC, Lemur®, and Konkreet Performer®.
These systems are purely input interfaces and do not on
their own perform any sound synthesis; they communicate
user input event information through protocols such as MIDI
and OSC [14].

3https://github.com/Sensebloom/OSCeleton
“http://hexler.net /software/touchosc
http://www.jazzmutant.com/lemur_overview.php
Shttp://konkreetlabs.com/

The JazzMutant Lemur, released in 2005, was the first
successful commercial multitouch widget-based system, and
it was used in several professional performances. Lemur was
based around a custom-built multitouch device. Lemur al-
lowed users to design their own interfaces on the desktop
and then interact with these interfaces on the touchscreen.
In addition to physically inspired widgets such as buttons
and sliders, Lemur also provided several nontraditional wid-
gets with their own unique behavior and visual elements.

TouchOSC is a similar system to Lemur, but it does not
require the use of specialized hardware. TouchOSC provides
a desktop application that allows users to design interfaces
out of combinations of widgets for use on multitouch mobile
devices. Its low cost and availability for consumer devices
running i0S and Android have made the specialized capa-
bilities of the JazzMutant Lemur accessible to everyone.

Konkreet Performer moves away from the physically based
sliders and knobs of TouchOSC and Lemur, instead building
the interface on a new type of widget. A single input ele-
ment consists of several individual nodes; these nodes can be
rotated, moved, or zoomed. Each property of each node is
an independent variable sent over OSC or MIDI. Konkreet
Performer places a high importance on visual feedback, both
as a performer tool and as an audience engagement mech-
anism. It allows users to customize the appearance of the
nodes and elements onscreen. Konkreet also is developing
a separate application, Konkreet Visualizer, to augment vi-
sual elements of a musician’s interaction with Konkreet Per-
former for an audience.

Konkreet’s focus on visualization illustrates an important
point: visual feedback is vital for the users of natural user
interfaces [13]. Using in-air controllers like the Kinect makes
it difficult for the user to perceive how their gestures are
being sensed — if an input has no effect, is it a faulty appli-
cation, or was the gesture performed incorrectly? Feedback
is important not only for the performer, but also for audi-
ences when performers are using unfamiliar interfaces, so
that audience members can understand the relationship be-
tween the performer and the sounds that are produced. KIB
shares Konkreet’s high priority on visual feedback, both for
the performer and the audience.

In addition to commercial products, several academic sys-
tems have been developed to explore the capabilities of
multitouch widget-based systems. In contrast to existing
systems, Control [8] was designed for maximum scriptabil-
ity, with interfaces and logic written using web technologies
such as HTML, CSS, and Javascript. Control also takes
advantage of the many sensors on mobile devices such as
the microphone and accelerometer, in addition to the mul-
titouch screen. In a later work, Control is extended to auto-
mate the connection between an instance of Control and a
synthesis engine in Max, LuaAV [12], or SuperCollider [9].

2.2 Gestural Widgets

Gestural control systems are fairly new, and few works con-
ceptualize gestural interactions in terms of widgets. Berthaut
et al. investigated 3D widgets in virtual environments for
musical interfaces, but focused on interaction within im-
mersive virtual environments [1]. Their system used a Wii
remote to provide tactile feedback through vibration, audio
feedback through a small speaker, and input through but-
tons, orientation, and position. The combination of immer-
sive visual feedback and tactile feedback made the abstrac-
tion of interacting with geometric widgets more temporally
accurate.

The EyesWeb system [2], a block-based graphical develop-
ment environment for building interactive systems, includes
a gesture recognition toolkit that can perform higher-level

520

d)

Figure 1: KIB’s icons for streaming widgets. a) Arc
widget, b) Hands widget, c) Ball widget d) Wave
widget e) Body widget

feature extraction out of data from sensors such as webcams
and the Kinect. Several of the components used in Eye-
sWeb’s gesture recognition toolkit achieve a similar function
to KIB’s conception of gestural widgets, such as having cer-
tain 2D regions functioning as buttons. EyesWeb focuses
on providing a set of algorithmic and mathematical tools
that allow users to build their own gestures [5]. KIB is a
complementary tool, since it takes predefined gestures as
primitives and allows users to easily visualize and combine
them.

The V Motion system was a customized musical interface
for the Kinect designed for a one-shot performance in July
2012 in Auckland, New Zealand”. Through several distinct
sections of a dubstep piece, the performer controlled dif-
ferent musical events and parameters with his body using a
variety of gestural components, such as pushing virtual but-
tons or changing the distance between his hands. A visual-
ization of the performer and his interactions with the wid-
gets was projected onto a large wall. With its visually and
sonically impressive performance, V Motion showed several
ways in which widget-based instruments could be used ef-
fectively. Some of KIB’s widgets draw on similar concepts
to those used in V Motion.

Microsoft’s Kinect for Windows SDK® provides several
simple gesture detectors such as swipe left and swipe right,
but the selection is very limited. Several libraries have pro-
vided generic gesture recognition toolkits such as the Kinect
Toolbox®, but these have been focused on gesture training
and recognition, rather than determining a fundamental set
of gestures for interaction. We hope that, in our exper-
iments with KIB, we will gain a better understanding of
what movement types form good gestural primitives.

3. IMPLEMENTATION

KIB consists of two distinct components. The instrument
design interface is a web application that allows the user to
rapidly construct a widget-based instrument. The user can
save the resulting instrument and play it using the perfor-
mance interface. The source code for both components is
open-source and available on GitHub'®.

3.1 Gestural Widgets

Since the central concept of KIB is the gestural widget,
the set of widgets must be chosen carefully. We have pro-

"http://www.youtube.com/watch?v=YERtJ-5wlhM
8http://www.microsoft.com/en-
us/kinectforwindows/develop/learn.aspx
“http://kinecttoolbox.codeplex.com/
Yhttps://github.com/kyzyx/KIB

Widget selectors _— Active widget

SN
{i %\

%‘ ‘ ;L\. 7?,, % ;(, %/,Inactive widget

o -

» Kiblet

Backaround

’Finect Instrument
B

uilder g

Vlsuahzatlon\

Kiblet list

\

Discreteness

Widget settings
/ editor

Visualization
None

Arc Effect Color

— Save Kinect

Kiblet

» Hands

Wave

management

—

, L instrument
New Kiblet Save Kiblet Delete Kiblet)

Figure 2: Instrument design interface. The image on the left side shows the visualization for the current
kiblet. Underneath this image is a list of all kiblets in the Kinect instrument. Kiblet management, including
saving, adding, and removing kiblets, is accomplished via the buttons in the lower right. The active widgets
in the curent kiblet can be toggled by clicking the appropriate buttons on the upper right side. Each widget
has settings that can be edited in the large accordion panel on the right side. This panel is also where kiblet
settings, such as triggering conditions and background visualizations, can be edited.

vided seven simple widget types; these types can be divided
into streaming widgets, which provide data updates at ev-
ery frame of Kinect data, and instantaneous widgets, which
trigger once a certain event happens. The user can con-
trol several parameters for each widget that affect its vi-
sualization (e.g. color and style) or behavior (e.g. output
granularity).

e The Arc widget can be used as a combination of
a streaming and instantaneous widget. This widget
places an arch around the user that is activated when
the user’s arms are at full extension. The arch can be
divided into several sections as in Figure 2; if the arm
activates the arc inside one of these sections, an ap-
propriate instantaneous event is generated. If the arc
is not divided, then the widget will stream the angle
at which each arm intersects the arc.

e The Hands widget simply streams the raw spatial co-
ordinates of the user’s hands from the Kinect skeletal
data to the synthesis engine. We chose to use this raw
data because the hands are the most important body
part for performing gestures, and raw coordinates are
a versatile way to create simple continuous mappings.

e The Wave widget streams the angle between the fore-
arm and the upper arm. One way to conceive of this
widget is a giant knob centered on the elbow. One or
both arms can be tracked by this widget.

e When using the Ball widget, we imagine the user to
be holding a ball. The widget streams the size of the
ball (the distance between the hands) as well as the
orientation of the ball (the angle that the line between
the hands forms with the ground).

e The Body widget is unique in that it does not involve

the arms. Instead, this widget looks at the angle the
torso forms with the ground. More specifically, it takes
the vector from the center of the hips to the head and
determines the angle this vector forms with the hori-
zontal. Since the other widgets all involve the hands
and arms, they often are difficult to control indepen-
dently; this widget gives the user an alternate body
part for interaction.

The Punch is an instantaneous widget. It is activated
when the user’s arm is fully extended in the forward
direction (-z direction in Kinect coordinates). We use
hysteresis to control the triggering state; this means
that the z-distance between the extended arm and the
body must cross above threshold distance to activate
the widget, and then must pass below a lower thresh-
old to reenable activation. Note that no arm speed
constraint is added, so in theory one could punch very
slowly and still activate the widget; the hysteresis is
included to prevent a slow or static arm extension from
continuously triggering the widget.

Clap is an instantaneous widget. It is activated when
the distance between the user’s hands crosses below
some threshold. Similar to the Punch widget, we use
hysteresis to control the activation of the widget.

Recognition of these gestures is based on simple geom-
etry and thresholding; we anticipate that more complex
gestural primitives might require the use of machine learn-
ing techniques for recognition. The software architecture of
KIB makes it straightforward to add new user-defined wid-
get types and visualizations. Most of these widgets assume
the user stays standing in approximately the same location.

521

Table 1: OSC Message Formats. i denotes integer value, f denotes floating-point value. All coordinates are

in meters, while all angles are in radians.

Widget Type | Continuous/Instantaneous | Message Format | Contents
Arc (Discrete) Instantaneous i Section of arc activated
Arc (Continuous) Continuous ff Angle of right arm and left arm intersection
with arc; —27 if arm not intersecting arc
Hands Continous ffffff x,1, z coordinates of right hand and z,y, z
coordinates of left hand, relative to Kinect
Wave Continuous ff Angle between the horizontal and the right
and left forearm; —27 if arm not tracked
Ball Continuous ff Distance between hands, and the angle be-
tween the hands and the horizontal
Body Continuous f Angle between the vertical and the line be-
tween the head and hips
Punch Instantaneous One-off event N/A
Clap Instantaneous One-off event N/A

This assumption rests on the limitations of the Kinect’s
skeletal tracking system, as well as the limited field of view
of the static Kinect sensor. However, since all of the exist-
ing widgets except for the Hands widget rely on angles and
positions relative to the body (rather than absolute posi-
tions) movements within the Kinect’s field of view will not
significantly affect the functionality of the widgets.

3.2 Kinect Instrument Structure

We refer to a combination of one or more active widgets,
including each widget’s associated visualizations, as a kiblet.
A complete performance with a Kinect instrument might
involve a series of kiblets, each active at different times;
thus a Kinect instrument is composed of one or more kiblets.
The performer switches between kiblets via a configurable
trigger system. Kiblets can be triggered to activate at a
certain time during the performance, upon a certain KIB
widget event such as a Punch, or when the performance
interface receives a custom OSC control message.

This hierarchical structure involving widgets and kiblets
was inspired by TouchOSC as well as the V Motion perfor-
mance. V Motion is one of the few professionally designed
performance interfaces that use the Kinect, so many of our
design decisions borrowed from its structure. We note that
having many widgets active at once greatly increases com-
plexity, especially since most widgets are interdependent
because of their reliance on hand position. This can easily
overload both the performer and the audience. However,
having too few widgets limits the range of possibilities for a
long performance. Switching between interfaces is a way to
leverage the simplicity of a few widgets while keeping the
flexibility of all of KIB’s widgets available for a performance.

3.3 Instrument Design Interface

The instrument design interface is a web interface, shown in
Figure 2. It is written in Javascript, HTML, and CSS. This
ensures a lightweight, platform-independent graphical user
interface with rich interactive elements. The instrument
design interface can be accessed online'!.

One side of the interface provides an approximate visual-
ization of the current kiblet. It shows the visual elements
for the background and user avatar, as well as any visual-
izations for the widgets in the current kiblet. This interface
is also interactive — the user can drag the avatar’s head
or hands into different positions to see how the visualiza-
tion changes with user movement in performance. A list of
the kiblets in the current instrument is displayed under the

" ywww.cs.princeton.edu/~edwardz/Interface/

522

visualization, so that the user can switch between kiblets
during editing.

The other side of the interface allows the user to config-
ure the kiblet, widgets, and visualization. Buttons depict-
ing the available widgets are displayed at the top of the
window; these buttons will be slightly shaded if the wid-
get is currently active in the kiblet. Beneath that, a panel
provides a list of settings the user can use to design the vi-
sualizations for the widget and kiblet, as well as customize
logistical parameters such as OSC message names, widget
data resolution, and kiblet trigger conditions.

The user can save the resulting instrument by clicking the
“Save KI” button, which will open a new window contain-
ing the configuration file generated from the design. This
configuration file is encoded in JSON and is used as input
to the performance interface.

3.4 Performance Interface

The performance interface is a Windows application writ-
ten in C++. It communicates with the Kinect during usage
of the gestural instrument, displaying visualizations of the
interaction and broadcasting OSC messages for sound syn-
thesis. The Kinect for Windows SDK is not cross-platform,
and other Kinect APIs such as freenect'? and OpenNI'3 do
not yet support the Kinect for Windows sensor. Therefore
the KIB performance interface is currently restricted to run-
ning on Microsoft Windows. The performance application
uses the SDL library** and OpenGL for visualization, and
the oscpack!® library for OSC networking.

The kiblets which make up the instrument are first in-
terpreted and the triggers for the activation of each kiblet
are registered. At each frame of data from the Kinect, each
widget in the active kiblet has the opportunity to process
the Kinect data and use it to render a visualization and
send an OSC message. These messages have a standardized
form outlined in Table 1. While outgoing messages are sent
at the Kinect’s 30Hz data rate, KIB examines timing and
incoming OSC events at higher rates to determine if con-
ditions for triggering a change of kiblet or the end of the
performance are present. While the visualizations for wid-
gets will generally use only the skeletal data given by the
Kinect SDK, the background and user avatar visualizations
can use the actual RGB or depth streams that the Kinect
provides; for example, the user avatar can display the per-

2http://openkinect.org/wiki/Main_Page
Yhttp://www.openni.org/
Yhttp://www.libsdl.org/
Yhttp://code.google.com/p/oscpack/

former’s silhouette as sensed by the Kinect against a virtual
background, much like the green-screen technique used in
films.

The performance interface is currently very simple, since
settings and system control are all predetermined during
the design of the Kinect instrument. We could improve
the performance interface by adding menus and buttons for
system control events such as pausing and resuming the
performance, as well as directly communicating with sound
synthesis engines. This would be even more convenient if
these controls were gestures, so that the performer could
control the system remotely. These were issues we encoun-
tered when actually using the interface, since we required
a person operating the computer to handle these tasks, in
addition to a performer using the instrument.

4. EVALUATION AND DISCUSSION

To evaluate KIB, we examined absolute performance to
quantitatively analyze its usefulness as a real-time system.
We then performed a small user study to understand how
musicians might use KIB and to gain insight into gestural
interface design.

4.1 System Performance

The Kinect for Windows sensor provides data at a peak rate
of 30 frames per second. We ran the KIB performance inter-
face on a quad-core 2.70GHz processor with 6GB of RAM,
using a 1GB Nvidia NVS4200M graphics card running at
1.6GHz. KIB’s computation time was negligible, less than
5ms per frame, since each kiblet requires only at most a sin-
gle set of geometric calculations. Each rendered frame took
below 25ms to render; however, since the system renders
graphics in parallel with data processing rather than upon
every frame of data, this did not affect latency.

Livingston et al found that latency in the Xbox Kinect’s
skeletal tracking module averaged between 100 and 200 ms
while tracking a single user [7]. We expect the Kinect for
Windows sensor to have as good or better skeletal tracking
than the Xbox version. Although this latency is not ideal
for musical interactivity, we found during prototyping that
this latency only adversely affected the use of instantaneous
widgets. Thus, we adjusted the activation distance thresh-
olds manually to achieve the sense of interactivity. Future
versions of KIB will allow the user to control these thresh-
olds.

4.2 User Study

Four subjects experimented with the prototype instrument
design interface and played pre-constructed instruments with
prepared ChucK synthesis scripts using the performance in-
terface. The users were all members of a graduate-level
course on interactive music systems. They all had expe-
rience in designing digital musical instruments, including
synthesis and mapping. We conducted informal interviews
to investigate four primary sets of questions.

Is the decomposition of gestural interactions into
widgets a useful abstraction? Is it easy to under-
stand? All interviewed individuals understood and sup-
ported the decomposition of gestural interfaces into stan-
dardized widgets, as opposed to the design of new interac-
tion methods for new interfaces. Most users cited “speeding
development” and “helping people who don’t know how to
[define and recognize gestures] on their own” as the main
benefits of widget-based systems. Two of the users com-
mented that the flexibility of KIB’s hierarchical widget-
kiblet structure would even be valuable to experienced users,
since they could focus on the conceptual exploration of wid-
get combinations instead of the low-level details of imple-

523

mentation. One user commented on having a “common ges-
tural language” for gestural interfaces, both for music and
other domains, likening the concept to the ubiquity of the
desktop window or the mouse pointer. Another user com-
mented that restricting the available gestures might hinder
the discovery of better gesture sets; this indicated that the
user understood the importance of designing a suitable set
of gestures before deploying a system based around them.

What sorts of gestures make good primitives? In
particular, are the widgets presented in KIB a good
starting point? Users generally approved of the gestu-
ral widgets presented in KIB. Two people stated that they
would likely want a larger selection after creating and using
Kinect-based instruments for awhile and indicated interest
in developing their own widgets both for themselves and
other KIB users. There were several suggestions for alter-
nate widgets, such as dance-like body rotations and spe-
cialized pose recognition; however there were no common
preferences and most users were satisfied with the primar-
ily arm-based widgets presented in KIB. One user wanted
to increase the complexity of kiblet transition triggering
conditions, for example focusing on instantaneous events
when the user is closer to the Kinect while using stream-
ing widgets when the user is farther from the Kinect, en-
abling a more complex interaction than individual widgets
can achieve. This was a useful observation, since in our pro-
totype implementation we had not devoted much attention
to trigger conditions.

What sorts of instruments and interactions does
widget-based design lend itself to? What role does
the visualization play in these situations? During
discussions about the possibilities of widget-based instru-
ments, the V Motion system was mentioned many times,
since it had been discussed during the coourse. The V Mo-
tion performance demonstrated the flexibility of the hier-
archical widget-kiblet structure, and participants did not
think of any alternate ways to use gestural widgets. When
questioned about the impact of the V Motion performance,
people consistently believed that the visuals were in fact
the most compelling part. Viewers often spoke in terms
of the music enhancing the visualization, rather than the
other way around. This might be a consequence of the
separation between visualization and interaction, since the
visual effects in V Motion were projected onto a wall; thus
they may have perceived the performance as a dance show
instead of a concert. Two users commented on attractive
details of V Motion’s visualization, such as small flourishes
near the hands when an arc button was activated, but all
the users seemed to take visualization of the primary in-
teraction, such as the presence of the arc button itself, for
granted. One person looked upon KIB more favorably af-
ter viewing the V Motion performance, since they believed
the flexibility provided by separating sound synthesis from
gestural interface design made KIB’s instruments more mu-
sically valuable than V Motion; V Motion’s widgets and vi-
sualizations seemed to be intimately tied to its musical style
and setting, whereas KIB’s products appeared to be more
versatile and usable as instruments across performances.

From a holistic perspective, is the KIB system
easy to use for creating gestural instruments? All
users were satisfied with KIB’s “logical” instrument design
interface, and were easily able to understand the concept of
multiple widgets forming kiblets, which themselves form an
instrument. However, users had many suggestions for im-
provements to the system. One point that all users raised
was the “inconvenient” separation of the performance and
design interfaces. Users had to switch back and forth be-
tween the two interfaces during the design process. This

separation was a practical consideration, since the web in-
terface was more suited to rapid prototyping; in the future
KIB will present a unified interface for design and perfor-
mance. Another barrier to using KIB in a full DMI design
workflow is the step between the OSC output of KIB and
the sound synthesis engine. Although KIB helps to solve
the problem of translating joint coordinates into meaning-
ful gestures, it is still difficult to map the space of outputs
of KIB (e.g. physical coordinates of hands) into sound syn-
thesis parameters (e.g. frequency). Other tools such as the
Wekinator [4] are valuable for bridging this gap. Future
versions of KIB will incorporate many of the suggestions
raised in our user study.

S. CONCLUSIONS AND FUTURE WORK

The KIB system makes designing gestural instruments sim-
ple and straightforward both for experienced and inexperi-
enced DMI designers. It does this by introducing the con-
cept of gestural widgets. Users believed that decomposing
gestural interactions into a set of primitives was useful for
reducing the barriers to entry in DMI creation, speeding up
the design process, and standardizing gestural instrument
interfaces. KIB’s hierarchical structure, involving gestural
instruments composed of kiblets, themselves combinations
of widgets, allows both flexibility in instrument design and
simplicity in interaction modalities. The KIB instrument
design system provides a logical graphical interface for de-
signing such instruments, and the KIB performance inter-
face provides a simple system for visualizing widgets and
sending gestural data to synthesis systems via OSC.

The KIB system is still in a prototype form. Several wid-
gets do not have any visualizations or only have simple ones
in place. Based on results from interviews, we found that
having complex and impressive visual effects was even more
important than we first believed. Fortunately, it is rela-
tively easy to implement additional visualizations for each
kiblet to the instrument design and performance interfaces.
This is one simple way that the effectiveness of KIB can
be improved. We can also improve the instrument creation
workflow by integrating the design and performance inter-
faces. Further, we would like to improve the process of
switching between kiblets; making a richer trigger system
for kiblet transitions would increase the flexibility of instru-
ments designed using KIB. Of course, many other widget
types could also be implemented and explored, including
widgets for finer-grained hand and finger motions that can
be sensed by newer hardware systems.

On a higher level, we want to investigate what types of
gestures form an intuitive and usable set of primitives for
natural user interfaces. Because gestural interfaces are quite
new, many disparate types of gestural sensors exist, and
there is no unifying application or gesture set in general use.
KIB’s design makes it straightforward to add additional
widgets to the interface, but the choice of what gestures
should be added, if any, is still unclear. By experiment-
ing with KIB’s gestural widgets, we hope to discover the
characteristics of good gestural primitives and thus gain a
better understanding of natural user interfaces. Finally, this
work was motivated by our assumption that widget-based
approaches present different tradeoffs compared to more
common instrument-building techniques (especially explicit

524

coding and machine learning of mappings). Further studies
comparing KIB with other techniques could shed more light
on these tradeoffs and the ways they intersect with users’
expertise and musical goals, providing more insight into the
design of future instrument-building platforms.

6. REFERENCES

[1] D. Berthaut, M. Desainte-Catherine, and M. Hachet.
Interacting with 3D reactive widgets for musical
performance. Journal of New Music Research,
40(3):253-263, 2011.

A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci,
K. Suzuki, R. Trocca, and G. Volpe. EyesWeb:
Toward gesture and affect recognition in interactive
dance and music systems. Computer Music Journal,
24(1):57-69, 2000.

D. Diakopoulos and A. Kapur. Argos: An opensource
application for building multi-touch musical
interfaces. In Proc. ICMC 2010, 2010.

R. Fiebrink, D. Trueman, and P. R. Cook. A
meta-instrument for interactive, on-the-fly machine
learning. In Proc. NIME 2009, pages 280285, 2009.
N. Gillian, R. Knapp, and S. O’Modhrain. A Machine
Learning Toolbox for Musician Computer Interaction.
In Proc. NIME 2011, 2011.

N. Gillian and J. A. Paradiso. Digito: A fine-grain
gesturally controlled virtual musical instrument. In
Proc. NIME 2012, 2012.

M. Livingston, J. Sebastian, Z. Ai, and J. Decker.
Performance Measurements for the Microsoft Kinect
Skeleton. In IEEE Virtual Reality, pages 119-120,
2012.

C. Roberts. Control: Software for end-user interface
programming and interactive performance. In Proc.
ICMC 2011, 2011.

C. Roberts, G. Wakefield, and M. Wright. Mobile
controls on-the-fly: An abstraction for distributed
NIMEs. In Proc. NIME 2012, 2012.

S. Sentiirk, S. W. Lee, A. Sastry, A. Daruwalla, and
G. Weinberg. Crossole: A gestural interface for
composition, improvisation and performance using
kinect. In Proc. NIME 2012, 2012.

S. Trail, M. Dean, G. Odowichuk, T. F. Tavares,

P. Driessen, W. A. Schloss, and G. Tzanetakis.
Non-invasive sensing and gesture control for pitched
percussion hyper-instruments using the Kinect. In
Proc. NIME 2012, 2012.

G. Wakefield, W. Smith, and C. Roberts. LuaAV:
Extensibility and heterogeneity for audiovisual
computing. In Proc. Linuxz Audio Conference, 2010.
D. Wigdor and D. Wixon. Brave NUI world:
Designing natural user interfaces for touch and
gesture. Morgan Kaufmann, 2011.

M. Wright. Open Sound Control: An enabling
technology for musical networking. Organised Sound,
10(3):193-200, 2005.

Q. Yang and G. Essl. Augmented piano performance
using a depth camera. In Proc. NIME 2012, 2012.
M.-J. Yoo, J.-W. Beak, and I.-K. Lee. Creating
musical expression using Kinect. In Proc. NIMFE 2011,
pages 324-325, 2011.

2l

3l

(4]

[5]

(6]

(7]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

