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ABSTRACT
Soundscape composition in improvisation and performance
contexts involves many processes that can become over-
whelming for a performer, impacting on the quality of the
composition. One important task is evaluating the mood of
a composition for evoking accurate associations and mem-
ories of a soundscape. We present a new system called Im-
press that uses supervised machine learning for the acqui-
sition and realtime feedback of soundscape a↵ect. We used
an audio features vector of audio descriptors to represent an
audio signal for fitting multiple regression models to predict
soundscape a↵ect. A model of soundscape a↵ect is created
by users entering evaluations of audio environments using a
mobile device. The same device then provides feedback to
the user of the predicted mood of other audio environments.
The evaluation of the Impress system suggests the tool is
e↵ective in predicting soundscape a↵ect.

Keywords
soundscape, performance, machine learning, audio features,
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1. INTRODUCTION
Soundscape composition is the creative practice of process-
ing and combining sound recordings to evoke listeners asso-
ciations and memories of audio environments. Composers
make decisions on segmenting environmental sound record-
ings, arranging segments in temporal and spectral domains,
and applying techniques to process the recordings. An im-
portant criterion for these decisions is the a↵ect a composer
is wanting to engender in listeners responses. Guastavino
[8] suggests that salient features of the soundscape, such as
periodicity and timbre, influence listeners psychological re-
sponse of places. For example, a listener may feel an antipa-
thy toward a soundscape filled with noisy machine sounds,
but be more inclined to favour one with more tonal machine
sounds.
The psychological response of a listener is of concern to

soundscape composition practice. According to Truax [16],
there are four important characteristics for composing a
soundscape:
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• Listener recognizability of the source material is main-
tained.

• Listener’s knowledge of the environmental and psy-
chological context is invoked.

• Composer’s knowledge of the environmental and psy-
chological context influences the shape of the compo-
sition at every level.

• The work enhances our understanding of the world
and its influence carries over into everyday perceptual
habits.

In our research, we address the quality dimensions of va-
lence and arousal corresponding to the third characteristic
of soundscape composition outlined by Truax. Specifically,
the aim is to provide autonomous feedback of these qualities
to performers.

Performance environments provide di↵erent challenges
than studio production. Studio production of soundscape
composition facilitates the composers ability to reflect upon
the composition in a controlled environment. Given this
environment, they are enabled to reconciling disparities be-
tween the composition product and intended listener re-
sponse. Alternatively, if improvising in performance envi-
ronments, a composer must make more immediate techni-
cal and aesthetic decisions. Consequently, the allocation of
time for contemplation of intent becomes exceedingly re-
stricted. Soundscape composers in performance environ-
ments would benefit from a tool that provides feedback on
soundscape a↵ect. At the the time of writing, no such tool
exists.

We describe the Impress system for data acquisition and
a↵ect classification of audio environments. Specifically, a
simple means for gathering data from a mobile device using
an a↵ect grid is examined. In addition, a method for the
autonomous evaluation of soundscape composition in per-
formance environments using a supervised machine learning
algorithm is detailed. Our contribution is a system for com-
posers to acquire personal soundscape a↵ect data for pro-
viding visual feedback of compositions in performance en-
vironments using a supervised machine learning algorithm.

This paper is organized as follows. In Section 2. we cover
related works that form the basis of the a↵ect grid and
soundscape a↵ect prediction. Section 3. details the Impress
system architecture, including the a↵ect grid, visual inter-
face, and supervised machine learning algorithm. Section
4. describes the evaluation of the system from a user study.
We conclude and speak to the future aims of the research
in Section 5.
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2. RELATED WORKS
In our research, we use an a↵ect grid for acquiring user re-
sponse data of a soundscape. Furthermore, the same grid
provides visual feedback of the predicted responses of audio
environments. An a↵ect grid is a tool for the quick assess-
ment of a↵ect along orthogonal dimensions of valence and
arousal. Russell [13] was one of the first to detail an a↵ect
grid as a simple means of acquiring descriptive or subjective
judgments in studies. According to Russell, arousal refers
to the perceived activity of the stimulus. Whereas, valence
refers to the degree of pleasantness. He suggest that a grid
is more e↵ective than other response forms in studies that
require continuous or repeated observations. Therefore, it
lends itself well to dealing with the rapid fluctuations of af-
fect that occur in response to complex audio stimulus, such
as soundscape, or music.
In the literature, examples of the a↵ect grid being used

as a means of collecting users response have tended to focus
on mood classification of music[10, 9, 17]. Stockholm and
Pasquier [14] use a variation of the a↵ect grid for music
mood classification. In their research, grid dimensions are
labelled with pleasure and energy. They examine a method
of reinforcement machine learning for mood classification of
audio files based on listener response during an interactive
performance.
The labelling of dimensions on an a↵ect grid represent

some qualities of a domain. We use an a↵ect grid with
orthogonal dimensions unpleasant-pleasant and uneventful-
eventful, which have a greater specificity for soundscape.
At time of writing, no formal two dimensional system for
eliciting responses to soundscape was available in the litera-
ture. However, much work on people’s preference of sound-
scapes, especially in urban design studies, provides percep-
tual measurement scales that could be used for an a↵ect
grid. Birgitta et al. [2] conducted listening experiments,
finding people classified soundscapes on scales of pleasant-
unpleasant, and, eventful-uneventful. Davies et al. [4] devel-
oped a listener response form for evaluating urban sound-
scapes that included subjective scales of preference. Their
research found that an accurate evaluation of a soundscape
could be obtained by listeners rating along linear scales of
unpleasant-pleasant, agitated-calm, and gloomy-fun. Brocol-
ini et al. [3] modelled the relationship of listeners responses
of two soundscapes with a system similar to Birgitta et al.
and Davies et al. The subjective scales in their research are,
namely, unpleasant-pleasant, quiet-noisy, not loud-loud, not
present-present.
For soundscape classification based on subjective responses,

research has tended to focus on questionnaire based analysis
instead of modelling the audio features of the soundscape.
An increasing number of studies have found that audio fea-
tures and machine learning techniques are an e↵ective in
classifying environmental sounds, such as those related to
soundscape. Aucoutier et al. [1] propose the bag of frames
(BOF) technique. They use an audio features vector of Mel
Frequency Cepstral Coe�cients for similarity comparisons
of audio environments, such as a park, or a urban square.
Their approach suggests audio signals may be better repre-
sented by a number of frames with di↵erent values, which
makes it an attractive method for representing audio envi-
ronments that evolve over longer durations.

3. SYSTEM ARCHITECTURE
Impress was designed to provide a visual interface for the
data acquisition and feedback of soundscape a↵ect. There
are two stages for operating Impress. First, audio and re-
sponse data is acquired in the collection stage. Second, the

chaotic

quietboring

exciting

pleasantunpleasant

eventful

uneventful

Figure 1: The soundscape a↵ect grid with a circum-

plex ordering of a↵ect labels.

data is modelled and the a↵ect of new soundscapes are pre-
dicted.

3.1 Affect Grid
Responses to soundscapes in Impress are represented by
evaluative labels of a↵ect around a two-dimensional con-
tinuous scale. The dimensions of this a↵ect grid closely
resemble the evaluative responses as outlined in the sound-
scape literature. In particular, on the dimension of valence,
pleasant, and unpleasant are used to report the perceived
pleasantness of a soundscape. Similarly, for the reported
feeling of arousal, eventful, and uneventful are positioned
orthogonal to the pleasantness dimension.

A circumplex ordering of a↵ect is made by a rotation
of the axes of an a↵ect grid [12]. In our research, labels
attributed to the rotation are exciting for a pleasant and
eventful sound, quiet for a pleasant and uneventful sound,
chaotic for a unpleasant and eventful sound, and, boring for
a upleasant and ueventful sound. The a↵ect grid used in
Impress is shown in Figure 1.

The collection stage of the Impress system involves log-
ging audio analysis data and the user response of an audio
environment. This data is obtained when the device is put
into listening mode through a button in the GUI. Figure
3. shows the device engaged in the collection stage, as it
would be used in the field. Audio analysis data is derived
from an 4 second audio signal bu↵er that is updated FIFO.
A bu↵er of this length is applied to capture the complex
and slowly evolving properties of a soundscape signal, and
is computationally feasible for the system. An audio-signal
is represented with the mean and standard deviation of low-
level audio features, similar to the bag of frames approach
(BOF). A BOF considers that frames representing a signal
have possibly di↵erent values, and the aggregation of the
frames provides a more e↵ective representation than a sin-
gular frame. This method was chosen because it is one of
the most practical for representing complex audio signals of
audio environments.
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Figure 2: The system interface showing the a↵ect grid and listening, and predict mode buttons.

Figure 3: The system as it would be used in the

field engaged in the listening mode.

3.2 Collection Stage
3.2.1 Acquisition of Response and Features Vector

The aim of the collection stage is to acquire audio analysis
and user a↵ect response data associated with a soundscape.
Soundscape a↵ect is represented along the x and y axes of
the grid corresponding to the dimensions of pleasantness
and eventfulness. When the user enters their response on
the a↵ect grid, those coordinates are logged and the sys-
tem exits listening mode. Thereafter, audio features are ex-
tracted from the signal bu↵er and modelled using the BOF.
The response coordinates audio features vector are logged
to a database for further analysis in the prediction mode.

3.2.2 Audio Features for Modelling Soundscape

Audio features extracted for analysis are Total loudness,
Perceptual spread, Perceptual sharpness, and Mel Frequency

Cepstral Coe�cients (MFCC). These features are perceptu-
ally motivated, which is a key consideration in soundscape
studies. Total loudness is the characteristic of a sound asso-
ciated with the sensation of intensity. The human auditory
system e↵ects the perception of intensity of sound at dif-
ferent frequencies. The model of loudness provided by Fasl
and Zwicker [6], takes into account the disparity of loudness
at di↵erent frequencies along the Bark-scale, which corre-
spond to the critical bands of hearing. A specific loudness
is the loudness associated at each of these bands. The to-
tal loudness is the sum of individual specific loudness in all
bands.

Perceptual spread is the spread of the loudness coe�cients
computed as the distance from the largest specific loudness
value to the total loudness. Similarly using the Bark-scale,
perceptual sharpness is the sharpness of the loudness co-
e�cients, computed as a distribution of frequencies with
probabilities of observing these as the normalized specific
loudness at the critical bands of hearing.

MFCCs are commonly used in speech recognition sys-
tems, and are found to be an e↵ective feature in music and
environmental sound classification. MFCCs represent the
short time spectrum of an audio signal that are spaced along
the a perceptual scale of pitches that models the response
of human pitch perception. The common representation of
the MFCC is of filter bank values linearly spaced at frequen-
cies below 1000Hz, and logarithmic spaced filters at higher
frequencies.

Audio features were extracted using the YAAFE [11] soft-
ware package. We use a feature vector of the density dis-
tribution of Total loudness, Perceptual spread, Perceptual
sharpness, and 40 MFCC calculated using the BOF ap-
proach, which results in an 86 dimension feature vector.

3.3 Prediction Mode
The aim of Impress, whilst in prediction mode, is to use a
model trained with data from the collection stage for pre-
dicting the position on the a↵ect grid that represents an
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audio signal. Impress is put in prediction mode through a
check box in the interface. When entering this mode, col-
lection stage data is retrieved from the database. The data
is then used to build a multiple regression model for both
axes of the a↵ect grid.

3.3.1 Multiple Linear Regression Predictor

We used a multiple linear regression (MLR) for modelling
the relationship between response variables and predictor
variables. We chose this relatively straightforward model to
observe any positive linear relationships between audio fea-
tures vectors and soundscape a↵ect responses. This type of
model is suited to problems with continuous variables, such
as that we described in our research. The goal of MLR is to
find a vector of coe�cients representing the strength of the
linear relationship between the response variable and pre-
dictor variables. The regression model fits a linear function
to a set of data points. The form of the function is:

Y 0 = A+ �1X1 + �2X2 + · · ·+ �kXk (1)

Where Y 0 is the predicted response, X1...k are the predictor
variables, A is the value of Y 0 when all X1...k = 0, and �1...k

are the regression coe�cients.
In our case we build a separate model for the x and y axes

of the a↵ect grid, where Y 0 are the predicted responses for
pleasantness and eventfulness, X1...k are the features vector
for predicting Y 0, and �i1...k are the regression coe�cients
for each axis.

3.3.2 Prediction Updating

After training is complete, Impress records an audio signal
into a 4 second bu↵er that is continuously updated FIFO.
Impress iteratively copies and processes the bu↵er to make
predictions from an audio features vector. An audio features
vector extracted with the same method as in Section 3.2 is
used to compute a prediction of soundscape a↵ect on both
axes respectively. After each prediction the GUI is updated
by moving a black dot on the a↵ect grid to the reflect the
predicted response. The interface updates are smoothed
using a simple in-out cubic easing algorithm applied to the
movement of the dot.

4. PREDICTOR EVALUATION
The soundscape mood predictor described here uses a su-
pervised machine learning approach for making predictions
of an audio signal. Specifically, we use multiple linear re-
gressions to predict the correct response along two axes of
an a↵ect grid given a vector of audio features. We evaluated
the regression model with 250 data points using a corpus of
4 second sound recordings obtained from a user study. The
user in the experiment was familiar with soundscape and
had been actively involved with soundscape composition.
We developed a tool for building a corpus of audio files.

First, audio files from the Freesound [7] audio repository
are downloaded given search keywords, a number of files
requested, and a duration range of files. Next, sections of
audio recordings are cut for the desired duration of corpus
items. This was achieved using a segmentation algorithm
to search recordings for regions with a consistent sound-
scape characteristic greater or equal to the required dura-
tion [15]. The middle section the region is copied and stored
for further analysis. Lastly, audio features are extracted and
logged to a database with the corresponding file name.
Feature extraction was performed on sound recording re-

gions formatted in AIF and a sample rate of 22500Hz. Au-
dio features were extracted at the frame-level with a 23 ms
Hanning window and a step size of 11.5 ms. Computing

Figure 4: The spread of 250 data points of users

a↵ect response to soundscape recordings from an

evaluation study along the pleasantness and event-
fulness axes.

the means and standard deviations of these frames resulted
in an 86 dimension feature vector for each sound region.
We then used a both-ways stepwise regression to identify
predictor variables for fitting the regression models, result-
ing in subsets of predictors for fitting the pleasantness and
eventfulness models.

In this evaluation, each 4 second sound recording was ob-
tained from separate audio clips tagged as field-recording,
downloaded from the Freesound audio repository. The record-
ings were curated to remove erroneous items from the cor-
pus, such as music loops. The user was asked to listen to
each recording using a desktop computer and headphones.
After the recording finished playing, they input a response
on the a↵ect grid (see Section 3) presented on the computer
monitor by using a mouse. The responses were logged to a
database for further analysis.

4.1 Evaluation Results
The regression models where then fitted with feature vec-
tors and corresponding participant responses. Multiple re-
gression analysis was used to test if the audio features vec-
tor significantly predicted participant’s ratings of sound-
scape a↵ect on two dimensions. The results of the regres-
sion for the dimension of pleasantness indicated the au-
dio features vector explained 71.2% of the variance (R2 =
.712, F (35, 214) = 15.1, p < .001). Whereas, on the dimen-
sion of eventfulness, the results of the regression indicated
the audio features vector explained 71% of the variance
(R2 = .71, F (45, 204) = 11.0, p < .001).

We conducted a k-fold validation and calculated the mean
square error (MSE) to evaluate the prediction accuracy of
the linear regressions. Specifically, a 10-fold cross validation
strategy was used. This technique involved randomizing the
data set and splitting it into equal sized partitions. There-
upon, one partition was separated and the model built with
the remaining partitions. This process was repeated for
all partitions. The MSE over 25 folds for the pleasantness
regression model was 0.0392. Similarly, the eventfulness re-
gression model MSE over 25 folds was 0.0348.
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4.2 Discusion
The methodology for representing soundscape data with
small number of audio descriptors was presented. We showed
an evaluation of the multiple regression models for predict-
ing soundscape a↵ect based upon a user study. The dispar-
ity of the audio descriptors found to fit each model suggests
that a di↵erent criteria is employed by listeners when re-
sponding to a↵ect along these dimensions. This statement
is reinforced by the similar prediction accuracy and MSE
of both models even though di↵erent subsets of predictors
were used.
However, the study results suggest that the models were

not perfect predictors, eventhough a good correlation be-
tween the explanatory and response variables was demon-
strated. Moreover, it means further that there are other
independent variables, not studied, that e↵ect the response
variable. Our nascent hypothesis from these results is that
other cultural factors, such as automobile tra�c or more
natural sounds, contributed to the a↵ects of pleasantness
and eventfulness even though the spectral and temporal
characteristics of the sound may be similar.

5. CONCLUSIONS AND FUTURE WORK
We have shown a system for predicting two quality dimen-
sions of soundscapes using a simple approach to acquiring
and modelling soundscape a↵ect. This work promises to
provide autonomous feedback on soundscape compositions
in performance environments. Performers adopting Impress
will benefit by relegating the task of evaluating the mood of
the composition to the machine. As a result, giving greater
attention to other performance tasks.
We demonstrated the user interaction process for operat-

ing Impress. In particular, how the an a↵ect grid is used
for soundscape evaluation, and, secondly, visual feedback on
the prediction of soundscape. This interface, coupled with
a mobile device, facilitates quick and repeated acquisition
of soundscape data in real-world conditions.
The system describe here is a tool for building a model of

soundscape a↵ect based upon personal evaluations of audio
environments. Primarily, the application of Impress is per-
formance contexts of soundscape composition, where it fa-
cilitates the artistic point of view of the composer. However,
we would like to see the level of agreement between human
subjects of the a↵ect of the soundscapes. Consequently,
investigating how generalizable categories of soundscape af-
fect are. That research will contribute toward future work
of applying soundscape a↵ect prediction in information re-
trieval of audio recordings. Specifically, it will aim at fur-
thering previous work that classified audio recordings based
upon measures of timbral proximity [5]. By further adding
a measure of a↵ect users will be able to request files with
an additional dimension of quality.
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