
Synchronous Data Flow Modeling for DMIs

Danielle Bragg
Department of Computer Science

Princeton University
dbragg@princeton.edu

ABSTRACT
This paper proposes a graph-theoretic model that supports
the design and analysis of data flow within digital musical
instruments (DMIs). The state of the art in DMI design
does not provide standards for the scheduling of compu-
tations within a DMI’s data flow. Without a theoretical
framework, analysis of different scheduling protocols and
their impact on the DMI’s performance is extremely dif-
ficult. As a result, the mapping between the DMI’s sen-
sory inputs and sonic outputs is classically treated as a
black box. DMI builders are forced to design and sched-
ule the flow of data through this black box on their own.
Improper design of the data flow can produce undesirable
results, ranging from overflowing buffers that cause system
crashes to misaligned sensory data that result in strange or
disordered sonic events. In this paper, we attempt to rem-
edy this problem by providing a framework for the design
and analysis of the DMI data flow closely modeled after a
framework for digital signal processing. We also propose
the use of a scheduling algorithm built upon that frame-
work, and prove that it guarantees desirable properties for
the resulting DMI.

Keywords
DMI design, data flow, mapping function

1. INTRODUCTION
Designing the data flow of a DMI is a complex task. A
DMI typically takes input data from sensors and passes this
data through a set of functions. This set of functions, the
paths along which data is directed from one function to the
next, data buffering along these paths, and the timing of
the function executions constitute a data flow design.

To build a system, the designer must determine how data
is directed through the system; where and how to store data
temporarily in the data flow; how to encode delays; how
to fuse data from diverse sensor sources; and how varying
computational times for the functions involved impact sys-
tem performance. Mistakes in the data flow design have
varying impact on DMI performance. Some mistakes can
result in nuanced changes, while others result in obviously
undesirable performance, or even system crashes. Design-
ing robust data flows will only become more difficult as sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

tem complexity increases, and yet no framework is currently
employed in state-of-the-art DMI design to help designers
navigate the design of these complex systems.

Our work provides this crucial infrastructure, as well as a
scheduling algorithm for the data flow with desirable perfor-
mance guarantees. It forms the foundation for new instrument-
building tools that are capable of appropriately automating
choices about when to trigger computations. Further, this
approach to automating choices about computation trigger-
ing is demonstrably suitable for a very wide set of potential
DMI designs. For example, it can handle DMIs with var-
ied data sources, DMIs with deep data flow topologies, and
DMIs with rampant latency and buffering considerations. A
design tool supported by such a scheduling algorithm would
both enable more efficient, less error-prone experimentation
with data flow designs and facilitate building more compli-
cated instruments that are not currently practical for de-
signers working with ad hoc approaches.

1.1 Meeting Performance Requirements
Data flow design is complicated by a number of technical
and artistic requirements. Since a DMI is used for artis-
tic purposes, there are no universal artistic requirements.
Nonetheless, there are some natural performance require-
ments that a designer or musician might have for a DMI.
Our framework for DMI data flow design facilitates design
analysis to ensure that such criteria are met.

A basic performance requirement is that the system does
not crash. System crashes can be caused by faulty buffer
management in the data flow. As data flows through the
DMI’s pipeline, small queues typically store the data until
it can be used. Bounded queue size is required to prevent
overloading the system’s memory and causing the system to
crash. Even if a system crash does not occur within the time
period that the instrument is in use, buffer growth increases
delay since data must remain in the system longer before
it is output. When data that passes through unbounded
buffers meets data that passes through bounded buffers,
increasing misalignment is also likely to occur.

Another minimal performance requirement is that the
DMI produces sound according to the basic functionality
intended. For example, consider a piano-inspired DMI con-
trolled by hand motions. Hand position, detected by pro-
cessing Kinect data, maps to pitch. Acceleration, detected
by an accelerometer attached to the hand, maps to volume.
Deducing hand position from the Kinect data takes more
time than minimally processing the raw accelerometer data.
As a result, a naive data flow design that ignores these com-
putational differences will mismatch data to produce pitches
at the wrong volumes (or volumes at the wrong pitches).
Similarly, varied data collection rates across sensor inputs
can contribute to undesirable sonic outputs. Synchrony is
not always required, but is certainly the desired behavior in

�2�3�7



some contexts and is difficult to enforce. The algorithm we
suggest in this work makes synchrony enforceable.

Latency and jitter should typically be minimized or bounded
in order for the tool to serve as an effective expressive tool.
Latency is defined as the processing delay between a phys-
ical control and the resulting sonic event. Jitter refers to
variability in latency due to slight variations in data pro-
cessing and transmission times. A very general guideline is
that latency should be under 10 ms, with jitter ±1 ms [21].
This extremely low bound on latency and jitter requires
efficient DMI data flow design and scheduling.

It is often desirable for DMIs to control synthesis events
sequentially. To define sequential control, suppose there are
two control inputs c1 and c2 generated at times t1 and t2
respectively, where t1 ≤ t2. Also suppose that c1 triggers
sonic response r1, and c2 triggers response r2. If r1 hap-
pens at time t3 and r2 happens at time t4, we seek t3 ≤ t4.
Sequential control is guaranteed by all acoustic instruments
since the performer’s movements directly generate the re-
sponding sound. Realistic digitization of acoustic instru-
ments must preserve this property. In general, if sequential
control is not guaranteed, the instrument runs the risk of
not responding according to the user’s expectations.

It is difficult for DMI designers to guarantee these perfor-
mance requirements because there are no standard schedul-
ing protocols or theoretical framework for analyzing the
data flow through a DMI. In this absence of standards,
DMI builders often implement naive scheduling protocols.
For example, the built-in protocol in Max/MSP executes a
computational node whenever a particular input is received.
Such scheduling protocols come with no guarantees about
system performance. In order to evaluate and refine our
protocols, we need a theoretic framework within which to
work. In this paper, we propose just such a framework, as
well as a scheduling algorithm with performance guarantees.

1.2 Contribution
As we have discussed, the design of a DMI data flow is often
complex. The designer must meet both technical and artis-
tic performance criteria through his design and scheduling
of the DMI data flow. In order to guarantee performance,
DMI builders must be able to analyze the data flow explic-
itly. Consequently, a framework for designing, scheduling,
and analyzing the data flow becomes crucial.

In this paper, we propose such a framework in a graph-
theoretic model of the DMI data flow. We propose extend-
ing Lee and Messerschmitt’s graph-theoretic framework for
modeling data flows in digital signal processing [12] to model
DMI data flows, and demonstrate its power in doing so.
When applied to DMIs, this model supports efficient and
accurate design and analysis by facilitating the following:

• Identification of relationships between inputs and out-
puts.
• Analysis of system performance under various schedul-

ing algorithms.
• Development and deployment of scheduling algorithms

that guarantee desired system performance.

We also propose applying Lee and Messerschmitt’s PASS
scheduling algorithms to DMIs, and prove that these algo-
rithms produce DMIs with the following properties:

• The DMI can run forever with bounded buffer size.
• Whenever a computational component is scheduled to

execute, sufficient input data is available.
• The DMI performer has sequential control over the

instrument outputs.
• Heterogeneous sensor collection rates are handled safely.

1.3 Related Work
DMI builders and researchers have focused on some por-
tions of the DMI data flow design separately. In particular,
the mapping function that embodies the relationship be-
tween controls and synthesis events has been explored [19,
7, 8]. In that work, researchers present high-level organiza-
tions and properties of the mapping space, but not the de-
tailed picture required for implementation-level design and
analysis. Sensor fusion is another challenge that many DMI
builders must face. When diverse sensors gather data about
the same physical event, it is often difficult to synchronize
data gathered by different devices. System-specific solutions
have been developed with varying degrees of success [16, 14,
20]. However, because these solutions are non-generalizable,
DMI designers who wish to create systems that can be con-
trolled by any type of controller must solve this problem
from scratch. Systems for collaborative development and
networked playing of DMIs [15, 14] highlight these design
problems. As these systems move from local area networks
to the internet, the larger distances increase latency and
jitter and amplify the effects of scheduling protocols [3]. A
framework that supports the design of the entire data flow
would allow for the development of generalized solutions for
all parts of the DMI data flow design.

To aid in the implementation of data flow for DMIs, work
has been done on the design of the data that passes through
interactive systems. Open Sound Control (OSC) protocol
was developed with DMI construction in mind [18]. While
OSC provides infrastructure for piping data through a sys-
tem, it does not provide guidelines for the scheduling of
that data. Programming languages and environments like
Max/MSP still leave scheduling problems largely unsolved
and up to the programmer [17]. A Max/MSP program-
mer can create complex patches, but he is still responsible
for ensuring proper data flow within the patch. Max pro-
gramming requires careful planning to ensure that an ob-
ject’s computation is triggered at the left inlet only once
other inlets have received appropriate data, and that the
flow of data from an object’s outputs to the “downstream”
objects in the patch continues to trigger computations in a
sensible order. Even existing toolkits like MnM [4] do not
fully address this problem of data flow design. The commu-
nity needs standards and models to facilitate more complex
projects without overburdening the designer. In this work,
we attempt to fill this need for DMI data flow design.

Problems of data flow organization and analysis are not
unique to DMIs. Indeed, any field where data streams
through a system in a non-trivial course must face similar
problems. For example, data flow modeling and analysis
also has strong applications in low-level systems operations
(e.g., [5]). More closely related to DMIs, data flow has
also been richly explored within the field of digital signal
processing (DSP) [13, 12, 10]. In that work, various graphs
are used to model DSP operations. Nodes represent compu-
tational units, while directed edges represent data passing
from one computation to the next. Much of that work fo-
cuses on the scheduling of the computational units so that
certain conditions are met. [2] proposed a scheduling proto-
col specialized for time-triggered multimedia systems, but
not for human-controlled DMIs. In our work, we exploit
the close relationship between DSP and DMIs to extend
synchronous data flow modeling, a canonical framework de-
signed for DSP algorithms, to DMI data flows. Examples
of DMIs that fit the synchronous data flow model include
an instrument that uses biosignals to constantly produce
sound and an instrument that continuously produces sounds
based on a dancer’s position on the stage. Using this frame-
work, we analyze DMI designs and provide new theorems

�2�3�8



about DMI system performance under a particular class of
scheduling algorithms.

2. THE MODEL
In this section, we propose our graph-theoretic model of
the data flow of a DMI. The model is heavily based on
the foundational work of Lee and Messerschmitt [12], whose
data flow model is designed especially for DSP. Since DSP
operations are often part of a DMI’s data flow, the model
naturally extends to the DMI’s data flow. We begin by
describing basic features of the data flow model presented
by Lee and Messerschmitt that we incorporate in our work.

We represent the DMI as a directed graph G = (V,E),
where V is a set of nodes (called blocks in [12]), and E is a
set of directed edges (called arcs in [12]). Each node repre-
sents a computational function invoked by the DMI. Edge
(ni, nj) from node ni to node nj represents the fact that
ni’s computations produce data that is directly consumed
by node nj . Figure 1 shows the graph representing a data
flow involving three independent operations. The first oper-
ation receives inputs, and pipes outputs to two subsequent
operations. Each of those operations also produces some
output. A sample input or output unit is a numerical value
or a vector of values.

Figure 1: Simple data flow graph.

A node is called “synchronous” if we know a-priori how
many units of inputs it will consume and produce for each
computation that it performs. On a synchronous graph,
each edge leading into a given node is labeled with a num-
ber. This number represents the number of data samples
the computation must take in along each channel to per-
form a computation. We use the word “channel” to refer
to a contiguous sequence of edges, or directed path, in the
graph. Each edge leading out of a given node is also la-
beled with a number. Note that these numbers will always
be whole numbers, since the concept of a fraction of a data
sample does not make sense. Conversely, an “asynchronous”
node is one where the number of inputs and outputs is data-
dependent. In a DMI, a synchronous node might be respon-
sible for scaling data collected by a particular sensor. An
asynchronous node might be responsible for filtering that
data, only passing on the incoming data if it satisfies a par-
ticular condition. For simplicity, we focus on synchronous
data flows in this work. Figure 2 depicts a simple data
flow graph, with specified computation input and output
requirements.

Figure 2: Simple synchronous data flow graph with
displayed computational inputs and outputs.

Any synchronous graph can be represented as a matrix,
called a “topology matrix”M , where M(i, j) represents the
data flow along edge i w.r.t. node j. If data flows into node

j along edge i, this is a positive number of inputs. If data
flows out of node j along edge i, then this is a negative
number. And if edge i is not directly connected to node
j, then this is 0. The topology matrix for the synchronous
graph given in Figure 2 is matrix(

a −c 0
b 0 −d

)
.

Each edge can be replaced by a queue used to store data
passed between nodes. Buffer sizes will inevitably vary over
time. We will use b(t) to represent the vector of queue
lengths at time t. Lee and Messerschmitt model each edge
as a first-in-first-out (FIFO) queue, and we do the same.
Alternative queueing strategies exist, and we will discuss
their performance consequences in Section 5.

3. MODELING A DMI
At a high level, a DMI operates by streaming data through
a sequence of computational components. Each component
performs a specified set of computations on the inputs to
produce a set of outputs that are piped to the next com-
ponent. Because the data flow is primarily linear through
this sequence, the basic graph structure we use to represent
a DMI is a multi-layered graph. Each layer in the graph
corresponds to a sequential component of the linear data
flow. We can further decompose each component into a
set of independent functions. Each independent function
is represented as a node in the graph at an equal depth in
the graph. If a given component is not decomposable in this
way, then it is simply represented by a single node. Figure 3
depicts this basic layered graph structure for a DMI.

Figure 3: Data flow model of an arbitrary DMI with
n sequential computational components.

Though a layered model of a DMI’s data flow is practical
and useful for many purposes, it is not entirely correct. In
many DMIs, the computational components are not strictly
ordered [18]. Specifically, feedback loops might stream data
produced by a particular component to a preceding com-
ponent. Conversely, some data might bypass one or more
components, thereby skipping layers in the layered model.

We can easily expand our layered graph to model DMIs
with non-linear pipelines. Figure 4 depicts an example of
a DMI data flow where the layers are not strictly ordered.
Specifically, it contains one edge that acts as a feedback
loop, and one edge that bypasses layers of the data flow, to
pipe data directly to the final layer.

The model can also represent delays within the data flow
and inputs from the outside world. Each buffer is initialized
with a given number of data units, and the initial buffer size
along a given edge equals the delay along that edge. Addi-
tionally, we can model inputs to the system as nodes with
no edges leading to them, only edges originating from them.
In the case of DMIs, the inputs from the outside world gen-
erally exist in the form of sensors. Thus, the nodes in the
first level of the DMI graph represent the set of sensors gen-
erating data used to control the instrument. We can model

�2�3�9



Figure 4: Data flow model of an arbitrary, non-
strictly sequential DMI. The two edges in blue rep-
resent the non-sequential pipelines. The upper edge
represents a feedback loop, while the other edge
represents data that skips layers.

varying sensor collection rates by labeling each node’s out-
put as the collection rate, i.e., the number of samples gath-
ered in one unit of time.

4. APPLYING THE MODEL
In this section, we discuss some design decisions facilitated
by our graph-theoretic model of the DMI data flow.

4.1 Inputs and Outputs
The data flow model exposes relationships between DMI
inputs and outputs. To find all outputs that are affected
by a given input, we construct a spanning tree of the sub-
graph affected by the given input node. To do this, we
follow forward edges starting at a given control node with-
out revisiting nodes. Symmetrically, to find all inputs that
control a given output, we simply follow all backward edges
starting at the given synthesis parameter node without re-
visiting nodes. These algorithms are simple, but they are
useful for checking that inputs impact outputs according to
the designer’s specifications. A tool that implements these
algorithms for a given DMI design could be used by DMI
designers to analyze and improve their design choices.

The graph representation of the system also facilitates the
consideration of integrality and separability in design deci-
sions. The concepts of integrality and separability were first
established by Jacob et al [9]. Integral attributes combine
perceptually and are hard to differentiate from one another,
while separable ones are not. Similarly, integral control di-
mensions allow the user to move “diagonally” across the in-
put space, while separable control dimensions force the user
to move across one dimension at a time. Furthermore, inte-
gral control dimensions are most effectively used to control
integral attributes [9]. Applying this principle to DMI de-
sign, we see that integral control dimensions should control
integral synthesis parameters.

We can use the graph to check that integral control di-
mensions are in fact used to control integral synthesis pa-
rameters. To verify that a set C of integral control nodes
control a set S of synthesis parameter nodes, we construct
the spanning tree of the subgraph affected by data gener-
ated at each control ci ∈ C. Each spanning tree should
cover a subset of S, and every member of S should appear
in at least one spanning tree. This verification can be done
manually, or incorporated into design tools that evaluate
design decisions and suggest better designs.

4.2 Other Design Decisions
Modeling the DMI data flow as a graph facilitates other de-
sign decisions. For example, the designer can clearly plan
the placement of operations involved in event detection.
Placement of event detection can have a large impact on

system performance by either preventing or allowing data
from being piped through the system unnecessarily. The
designer can also analyze the bandwidth consumed by the
system by examining the number of edges between two lay-
ers of the graph. Meeting bandwidth requirements is partic-
ularly important for networked DMI systems and complex
DMIs running on systems with limited resources.

The designer can also use the graph to identify channels
of control that are completely independent. Each connected
component of the graph operates completely independent of
every other connected component. In this sense, each con-
nected component can be viewed as a separate DMI. Fur-
thermore, the input controls piped into a particular con-
nected component will have no impact on any other con-
nected component. Such independent components reveal
valuable information about the experience of playing the
instrument being designed.

5. ANALYSIS OF NAIVE SCHEDULING PRO-
TOCOLS

In this section, we analyze two naive scheduling protocols
under our graph-theoretic model. With the help of the
model, we can analyze performance of these protocols, and
identify shortcomings.

5.1 Execution by Any New Input
Perhaps the most naive scheduling protocol executes a node
whenever it receives a new input along any incoming edge.
We can easily represent the basic data flow within this DMI
as a layered graph that is not strictly ordered, as explained
above. Each node is also labeled with the number of samples
required along each incoming edge for a single execution, as
well as the number of samples that a single execution yields
along each outgoing edge.

If we use a FIFO queue to model data transmission and
storage along edges, we run the risk of unbounded queue
growth. To prevent unbounded growth, we can use a spe-
cialized queue. The queue has a fixed length equal to the
number of sample inputs required by the subsequent node
along this edge. Whenever a new input arrives, it is placed
at the end of the queue and the top sample is discarded. At
this time, the node executes using the set of samples stored
along each incoming edge.

This protocol fails to guarantee that synthesis events ex-
ecute according to the order that the physical gestures con-
trolling those events were executed. To see how this fails,
consider a DMI with a single input sensor and two output
synthesis parameters, as in Figure 5. Also suppose that the
computation time for each of nodes 2, 4, and 6 is c units,
while the computation time for each of nodes 3, 5, and 7 is
2c units. Also suppose node 1 has a data generation rate
of 1 sample every c time units. Because data can be piped
along the top channel at sample rate, all data sent along this
channel will reach the output parameter node 6. However,
the bottom channel cannot keep up with the data genera-
tion rate. This will result in either an infinitely long buffer
along the edge (1, 3) or data being dropped. Additionally,
the same data will trigger a sonic result at node 7 3c time
units after the same data triggers a sonic result at node 6.
It is worth noting that the designer could solve these prob-
lems by executing nodes 2, 4, and 6 twice as frequently as
3, 5, and 7. The protocol proposed in Section 6 would make
this adjustment for the designer.

5.2 Execution by Specific New Input
Another common protocol executes a node whenever the
function receives a new input along a particular incoming

�2�4�0



Figure 5: Arbitrary DMI with a single sensor input
and two output synthesis parameters. Each compu-
tation both inputs and outputs one unit of data.

edge. This is the fundamental protocol built into Max/MSP
for object triggering. Again, we can represent the basic
data flow as a layered graph that is not strictly ordered.
Computational input requirements and output results are
again depicted as numbers along the edges leading to and
from each node.

Just like the previous protocol, this protocol is ill-suited
for a classic FIFO queue along edges due to the possibility
of unbounded queue growth. Instead, we again use a spe-
cialized queue. The queue has a fixed length equal to the
number of sample inputs required by the subsequent node
along this edge. Whenever a new input arrives, it is placed
at the end of the queue and the top sample is discarded.
If the new sample arrived along the designated edge, the
node executes at this time using the set of samples stored
along each incoming edge. This protocol suffers from the
same disadvantages as the previous protocol, and an equiv-
alent analysis of the protocol on Figure 5 would demonstrate
these problems.

Either of these two protocols can be modified to guarantee
desired performance for a specific system. For example, in
Figure 5, nodes 3, 5, and 7 might be scheduled to execute
half as often. However, the adjustments to the protocols
must be tailored to each individual system. Furthermore,
depending on the system complexity and configuration, it
might be exceedingly difficult to modify these protocols ap-
propriately. We proceed to propose a universally applicable
protocol that can be used to automate scheduling of the
data flow in any DMI.

6. PROPOSED SCHEDULING ALGORITHM
In this section, we propose scheduling the data flow of a
DMI according to a periodic admissible sequential sched-
ule (PASS) [12]. A PASS is an ordered list of nodes such
that if the nodes are repeatedly executed according to the
sequence, all buffers will remain bounded in size.

Lee and Messerschmitt present a class of algorithms, called
class S algorithms, that find a PASS for a given data flow if
one exists. We propose using the following class S algorithm
from [12].

1. Solve for the smallest positive integer vector q ∈ η(M),
where M is the topology matrix described above and
η(M) is the nullspace of M .

2. Form an arbitrarily ordered list L of all nodes in the
system.

3. For each α ∈ L, schedule α if it is runnable, trying
each node once.

4. If each node α has been scheduled qα times, STOP.
5. If no node in L can be scheduled, indicate a deadlock

(an error in the graph).
6. Else, go to 3 and repeat.
The vector q found in the first step of the algorithm tells

us how many times each node must execute in one cycle of
the PASS. Also, since q is the smallest integer vector in the
nullspace of M , this algorithm will find the shortest possible
PASS, meaning that the total number of nodes that must

execute is minimized. Adding up the values in q yields the
number of nodes that must execute in the PASS (counting
nodes that re-execute).

7. DMI PERFORMANCE GUARANTEES
The PASS found by this algorithm (if one exists) guarantees
certain properties for our DMI.

7.1 Stable Buffers
If we use any PASS to schedule the node execution, we are
guaranteed stable buffer sizes [12]. This helps prevent sys-
tem crashes due to unbounded buffer growth overloading
memory. It simultaneously helps prevent increasing mis-
alignment of data that can occur when increasingly old
data is used by some subset of nodes with growing incoming
queues, while other nodes process data of a fixed age.

7.2 Bounded Maximal Latency
A PASS guarantees that sufficient amounts of data are buffered
along each incoming edge to a given node whenever that
node is scheduled to execute. Consequently, a node can fire
immediately when its turn arrives. This means that the al-
gorithm makes the most efficient use of computation time.
Time spent during a cycle of the PASS consists of the time
it takes for the nodes to execute their computations, plus
the data transmission and queueing time. No time is spent
idly waiting. We present a theorem summarizing this idea.

Theorem 1. When using a PASS to schedule node exe-
cutions, the maximal latency between any input and output
is bounded by the time it takes to execute one cycle of the
PASS (ignoring delay lines).

Because the PASS executes every node at least once, each
sensor node executes at least once. And by the end of a cycle
of the PASS, no buffer sizes have changed, since q is a vector
in the nullspace of M . This means that no data is “lost” in
the middle of the graph, but is piped through to the end.

The speed at which the PASS executes depends on the
number of processors available. If a single processor is used,
the class S algorithm we use guarantees that it will find the
PASS with the smallest maximal latency, since all other
PASSes are multiples of the one this algorithm finds [12]. If
multiple processors are used, then the maximal latency can
be greatly reduced. Optimizing the multi-processor sched-
ule is combinatorially difficult, and heuristic solutions ex-
ist [1, 6, 11]. These algorithms can be applied to our graph-
theoretic model if multiple processors are available.

7.3 Sequential Control
If we use a class S algorithm, we can guarantee sequential
control of the outputs (ignoring delay lines) by postponing
execution of the nodes in the final layer of the graph, placing
them at the end of the PASS. The last layer of nodes only
have incoming edges, since they represent functions that
produce sound. Because their outputs are not consumed
by other nodes, their execution in the PASS may be post-
poned until the end of the PASS. We can then order the
execution of these nodes according to the earliest control
data responsible for their generation.

This ordering guarantees sequential control of sonic events
within each period of the PASS. Sequential control across
periods of the PASS is guaranteed by the fact that each cy-
cle of the PASS must complete before the next may start.
This means that all data collected in a single time period
of the PASS will be completely piped through the system
before new data enters the system.

�2�4�1



7.4 Sensor Collection Rates
Nodes with no incoming edges represent relationships with
the outside world. In the context of DMI modeling, such
nodes represent sensors gathering data on physical move-
ments that control the instrument. These nodes comprise
the first layer of the graph. A PASS does not handle the
buffering of data sent to these nodes. However, using a
PASS does give us useful information about acceptable data
collection rates for our sensors.

Consider the PASS found by the class S algorithm above.
Each node i must execute qi times in the PASS. Since sen-
sors are represented as nodes, sensor j must also gather data
qj times in the PASS. If the sensor’s data collection rate ex-
ceeds this, data will accumulate indefinitely along the buffer
leading into it, eventually crashing the system. Data gath-
ered by different sensors will also be increasingly misaligned
since the age of data taken off the buffer will increase over
time. Conversely, if a sensor gathers fewer than qs samples
each period of the PASS, s will not be able to execute when
its turn in the PASS arrives. We present this idea in the
following theorem.

Theorem 2. qi
P

is the required incoming data rate (data
collection rate) for sensor i, where P is the period of the
PASS (the time for one round of the PASS to execute).

Note that sensor collection rates can be artificially forced
to match this requirement. If we need to reduce the col-
lection rate, we simply discard the appropriate number of
incoming samples every period of the PASS. Similarly, if we
wish to increase the collection rate, we can perform sample
interpolation, inserting the appropriate number of “artifi-
cial” values every period of the PASS. These artificial sam-
ples might take their value from their “real” neighbors, an
average of their neighbors, or some other reasonable esti-
mate of what we would expect the inserted data to be.

8. CONCLUSIONS
DMI design is a complex problem, frustrated by varying sen-
sor rates and computational times, data alignment, latency
requirements, and buffering problems, among other chal-
lenges. In this paper, we propose a graph-theoretic model
derived from a digital signal processing model that allevi-
ates these problems by providing a framework within which
DMIs can be designed and analyzed. We also provide a
scheduling algorithm of functional components within the
DMI, and prove that it guarantees several desirable proper-
ties for the resulting DMI. This is the first such framework
proposed for the design and analysis of DMIs, and serves as
a starting point for further development of the framework
and scheduling algorithms. The importance of this work will
only increase as DMIs become increasingly complex with the
introduction of new sensing technologies, mappings, synthe-
sis algorithms, and distributed performance opportunities,
and as the bar rises for DMI performance expectations.

9. ACKNOWLEDGMENTS
This work was supported by an award from the Microsoft
Research Graduate Women’s Scholarship Program.

10. REFERENCES
[1] T. Adam, K. Chandy, and J. Dickson. A comparison

of list schedules for parallel processing systems.
Communications of the ACM, 17(12):685–690, 1974.

[2] P. Arumi and X. Amatriain. Time-triggered static
schedulable dataflows for multimedia systems. In
IS&T/SPIE Electronic Imaging, 2009.

[3] C. Bartlette, D. Headlam, M. Bocko, and G. Velikic.
Effect of network latency on interactive musical
performance. Music Perception, 24(1):49–62, 2006.

[4] F. Bevilacqua, R. Müller, and N. Schnell. MnM: a
Max/MSP mapping toolbox. In Proc. NIME, pages
85–88, 2005.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proc. IEEE, 79(9):1305–1320, 1991.

[6] T. Hu. Parallel sequencing and assembly line
problems. Operations research, 9(6):841–848, 1961.

[7] A. Hunt and M. Wanderley. Mapping performer
parameters to synthesis engines. Organised Sound,
7(2):97–108, 2002.

[8] A. Hunt, M. Wanderley, and M. Paradis. The
importance of parameter mapping in electronic
instrument design. Journal of New Music Research,
32(4):429–440, 2003.

[9] R. Jacob, L. Sibert, D. McFarlane, and M. Mullen Jr.
Integrality and separability of input devices. ACM
TOCHI, 1(1):3–26, 1994.

[10] R. Karp and R. Miller. Properties of a model for
parallel computations: Determinacy, termination,
queueing. SIAM Journal on Applied Mathematics,
14(6):1390–1411, 1966.

[11] W. Kohler. A preliminary evaluation of the critical
path method for scheduling tasks on multiprocessor
systems. IEEE Transactions on Computers,
100(12):1235–1238, 1975.

[12] E. Lee and D. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal
processing. IEEE Transactions on Computers,
100(1):24–35, 1987.

[13] E. Lee and D. Messerschmitt. Synchronous data flow.
Proc. IEEE, 75(9):1235–1245, 1987.

[14] J. Malloch, S. Sinclair, and M. Wanderley. From
controller to sound: Tools for collaborative
development of digital musical instruments. In Proc.
ICMC, pages 65–72, 2007.

[15] J. Malloch, S. Sinclair, and M. Wanderley. A
network-based framework for collaborative
development and performance of digital musical
instruments. Proc. CMMR, pages 401–425, 2008.

[16] G. Odowichuk, S. Trail, P. Driessen, W. Nie, and
W. Page. Sensor fusion: Towards a fully expressive 3d
music control interface. In IEEE PacRim, pages
836–841, 2011.

[17] M. Puckette. Max at seventeen. Computer Music
Journal, 26(4):31–43, 2002.

[18] A. Schmeder, A. Freed, and D. Wessel. Best practices
for Open Sound Control. In Proc. Linux Audio
Conference, volume 10, 2010.

[19] M. Wanderley. Gestural control of music. In Human
Supervision and Control in Engineering and Music,
pages 632–644, 2001.

[20] M. Wanderley, N. Schnell, and J. Rovan. ESCHER -
modeling and performing composed instruments in
real-time. In IEEE International Conference on
Systems, Man, and Cybernetics, volume 2, pages
1080–1084, 1998.

[21] J. Wright and E. Brandt. System-level MIDI
performance testing. In Proc. ICMC, pages 318–321,
2001.

�2�4�2




