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ABSTRACT

Significant progress in the domains of speech- and singing-

synthesis has enhanced communicative potential of machines.

To make computers more vocally expressive, however, we
need a deeper understanding of how nonlinguistic social sig-
nals are patterned and perceived. In this paper, we focus on
laughter expressions: how a phrase of vocalized notes that
we call “laughter” may be modeled and performed to im-
plicate nuanced meaning imbued in the acoustic signal. In
designing our model, we emphasize (1) using high-level de-
scriptors as control parameters, (2) enabling real-time per-
formable laughter, and (3) prioritizing expressiveness over
realism. We present an interactive system implemented in
ChucK that allows users to systematically play with the mu-
sical ingredients of laughter. A crowdsourced study on the
perception of synthesized laughter showed that our model is
capable of generating a range of laughter types, suggesting
an exciting potential for expressive laughter synthesis.
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1. MOTIVATION

Over the past decades, computers have been made to speak
[11, 21] and sing [5, 19]. Perhaps the next challenge for
them, in their pursuit of vocalizing as humans do, is to per-
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form nonlinguistic expressions that naturally reflect emo-
tions. Various social signals, from gasps and sighs to yawn-
ing and sneezing, serve as important cues to our affective
states. But among these, laughter stands out as being un-
usually musical in its expressiveness and variety.

Although funny jokes and comical situations do make us
laugh, laughter triggered by ludicrousness comprises only a
small proportion of laughter we experience everyday [23]. In
fact, the social functions of laughter cover diverse scenar-
ios, including displaying affiliation, aggression, fear, anxi-
ety, joy, and even sadness [22]. Laughter triggered by dif-
ferent scenarios is characterized by distinctiveness in audi-
tory features that implicate certain state and attitude of the
laughing person. That is, we are able to label a sound of
laughter as, say, “stealthily evil” or “out-of-control ticklish”.
This phenomenon makes us wonder how musical patterns
of laughter lead to expression.

Given such expressive variety of laughter, our ultimate
goal—the larger context behind the research described in
this paper—is to understand how social and emotional mean-
ing arises from a phrase of appropriately shaped vocalized
notes that we call “laughter”. Our methodology is through
interactive musical synthesis and performance; the model
described in this paper is the first (to the best of our knowl-
edge) to realize real-time performable laughter.

2. APPROACH

In his research on vocal modeling, Perry Cook underscores
a difference in priorities between synthesis of singing and
speech: intelligibility is the primary goal in speech and
speech synthesis, while quality is the main goal in singing
and singing synthesis (often compromising intelligibility)
[5]. Now, the prospect of synthesizing laughter forces us to
re-identify our priorities. A laughing agent probably does
not need to make distinctions in subtle phonemic differences
that are necessary for speech recognition, nor does it need
to strive for aesthetic quality in sustained tone production.



The agent should, however, preserve perceptually relevant
characteristics of laughter that trigger certain social, affec-
tive responses from listeners. Thus we identify our prior-
ity in laughter synthesis as expressiveness, operationalized
as the potential to convey a desired social and emotional
meaning through the auditory signal. In this project we
assume the motto of “expressiveness trumps realism.”

3. RELATED WORKS
3.1 Expressive Speech and Singing Interfaces

There exist a great number of studies that contributed to
the synthesis of vocalized sounds, from speech to singing
(and, to lesser degree, laughter). Here we highlight just a
few that particularly emphasize controllable expressivity.

3.1.1 Voder

The voder is a complex machine for vocal synthesis modeled
after the human vocal tract. Developed by Homer Dudley
and demonstrated at the 1939 World’s Fair, the voder al-
lowed trained technicians to manually “perform” speech ut-
terances [10]. A wrist bar, a foot pedal, and ten finger keys
controlled the buzz/hiss selection, pitch, and gains of band-
pass filters, respectively [13]. A few operators who even-
tually attained “virtuosity” could imbue sounds with inflec-
tions in such a way that made synthesized speech humanly
expressive. For example, the voder could respond “She saw
me” to the question “Who saw you?”, and respond “She saw
me” to the question “Did she see you or hear you?”. The
voder challenges us to design an interface for laughter that
has comparable expressive potential but is easier to control.
This would require understanding the invariant features of
laughter and determining controllable parameters that re-
sult in perceptually distinct laughter sounds.

3.1.2  Pattern Playback

In order to better understand laughter, we may learn from
explorations carried out by Franklin Cooper and colleagues
in early 1950s, on the perception of synthetic speech sounds
[9, 18]. The experiments using pattern playback (a ma-
chine that synthesized speech by converting pictures of the
acoustic patterns of speech to sound [8]) led to discoveries in
important acoustic cues for speech perception. One study
identified sixteen two-formant patterns that are closest to
the IPA cardinal vowels [9], and another study analyzed the
shapes of formants in consonant-vowel transitions [18].

3.1.3 SPASM

In the domain of music, SPASM (Singing Physical Artic-
ulatory Synthesis Model) by Perry Cook realizes machine
singing [5, 6]. The graphical user interface in SPASM allows
users to modify various control parameters, including time
domain waveform and spectral content of the glottis, the
radius of each vocal tract section, the velum opening size,
noise spectrum and location for tract turbulence, and much
more. Because the model takes as inputs physical parame-
ters, users can have an intuition for how to improve if the
synthesis does not sound correct [6]. In this way, providing
input parameters that are consistent with the user’s mental
model of the sound’s construction is crucial, and we try to
follow this principle in designing our synthesis interface.

3.1.4 SqueezeVox

In order to naturally and quickly control the singing model
and thereby perform singing, Cook and Leider developed
squeezeVox, an instrument based on an accordion paradigm
[7]. The squeezeVox provides intuitive controls for pitch,
breathing, and articulation through a keyboard with linear
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sensing strip; bellow motion with sensors that monitor air
pressure; and additional buttons, sliders, accelerometer, and
trackpad. Cook explains how the challenge in designing a
universal controller for vocal synthesis stems from a myriad
of control parameters that must be specified, regardless of
what synthesis model we choose® [7].

3.2 Understanding Laughter

Even though a majority of the studies on human laughter
take a theoretical approach (exploring in great depth why
and when humans laugh), some researchers have made valu-
able empirical findings on what laughter sounds like. In this
section, we highlight studies that look at the acoustic corre-
lates of laughter and summarize approaches that have been
applied to synthesizing laughter.

3.2.1 Acoustic Correlates of Laughter

As described earlier, the social functions of laughter cover
diverse scenarios, from joy to fear and sadness [22]. Consis-
tent with this observation and our assumption that much
information about the laughter context is encoded in the
acoustic signal, a few studies have tried to link perceived
emotions in laughter to their acoustics.

Using acted laughter and subjective responses, Kori de-
termined two primary perceptual dimensions of laughter
to be <pleasant-unpleasant> and <superior-inferor> [15].
Kori found that “duration of the strong expiratory noise
at the beginnig of laughter” was strongly correlated with
the pleasantness dimension, while “interval between vowels”,
“F0 maximum or mean value”, and “the rate of overall vowel
amplitude diminishment” were strongly correlated with the
superiority dimension. Put in musical terms, Kori’s finding
suggests that the duration of an initial laugh-note, interon-
set intervals, pitch contour, and dynamic changes across a
laugh-phrase are important features for classifying laughter.

Szameitat and colleagues conducted a related study, in-
vestigating the acoustical correlates of laughter expressing
four emotions: joy, tickling, taunting, and schadenfreude
[31]. Using laughter produced by professional actors, the re-
searchers found that the different emotions can be classified
accurately (84%) from acoustical parameters, with prosodic
parameters providing stronger discriminative power over vowel
quality. For instance, tickling laughter was rapid and high-
pitched; joyful laughter was rich in low-frequency energy
and had the longest time between bouts; and taunting laugh-
ter had the lowest f0. Again, these findings suggest that
pitch and rhythm are important features for laughter clas-
sification. We apply these insights to defining perceptually
relevant control parameters for our model.

3.2.2 Synthesizing Human-like Laughter

There are only a few studies that have tried to synthesize
human-like laughter. In 2006, Sundaram and Narayanan
designed a two-level laughter model for automatic synthe-
sis [29]. One level captures the overall temporal behavior
of a laugh-phrase using the simple harmonic motion of a
mass-spring system. A second level employs a standard lin-
ear prediction based analysis-synthesis method to synthe-
size laugh-note. This architecture allows users to define the
control parameters for the harmonic motion (first level), as
well as for the overall variation of pitch, amplitude envelope,
and LP coefficients (second level). Implemented in Matlab,
the system receives user-defined inputs at runtime. Subjec-
tive rating showed that naturalness of synthesized laughter
is significantly below that of real human expressions; syn-
thesis of realistic laughter remains a challenging problem.

!Synthesis models include formant[14, 24], LPC[L, 16],
FM]3, 4], FOF[25], sinusoids+noise[27], or physical[5].



Parameter Description Possible Values
Rhythm note onset timings, note durations, 101 (in sec. or ms.) (free)
Pitch (f0) fundamental frequency of voiced components in Hz (includes subtle random variations) (free)

Pitch Bending

bending down of pitch upon release of exhale notes

on | off

Voicedness

the extent to which a laugh-note is harmonic vs. noisy

[0.0, 1.0], noisy to harmonic

Vowel Space

first and second formant of voiced component (coordinates in 2D vowel-space)

x[-1.0,1.0] y [-1.0, 1.0]

Inhale vs. Exhale

whether the laugh-note is an exhalation (affects pitch contour and release duration)

true | false

Glottal Waveform

shape of the waveform: lower values (<1) are flowy; higher values (>1) are pressed

approximately 0.5 to 2.0

Decay Rate

how quickly the laugher returns to equilibrium (for semi-automatic mode)

tends to be a small +number

Threshold

the amount of intensity required to vocalize a laugh-note (for semi-automatic mode)

(0.0,1.0)

Figure 1: Summary of control parameters in our synthesis model

In contrast to the laughter-specific modeling by Sundaram
and Narayanan, Lasarcyk and Trouvain (2007) tested whether
existing speech synthesis techniques can be more directly
applied to laughter [17]. Laughter was modeled using artic-
ulatory synthesis and diphone synthesis, though the latter
was shown to be limited because breathing or certain laugh
syllables are not available in the predefined phones used
for speech. Articulatory synthesis allowed for modeling the
articulation process directly, although researchers also ex-
perienced some technical limitations (such as inadequate
upper limit for pulmonic pressure) and limitations arising
from our lack of understanding of laughter physiology.

4. METHODOLOGY

As illustrated by our survey of synthesis techniques, there is
currently no obvious approach to modeling laughter. Given
our priority in achieving expressiveness, our methodology
will contrast prior works in following ways:

(1) Use higher-level descriptors as control parameters
(often borrowing musical terminology), hiding from the user’s
awareness lower-level parameters whose effects on the re-
sulting sound is not immediately perceivable

(2) Be real-time controllable, allowing users to manu-
ally perform laughter by triggering and adjusting synthesis
parameters on-the-fly

(3) Prioritize preserving musically salient features of
laughter over attaining realism

4.1 Control Parameters

Figure 1 summarizes high-level descriptors that define our
model. These parameters have been chosen with hopes that
they are easy to understand for users who do not have expert
knowledge on the vocal tract or voice synthesis, and yet can
represent musically salient characteristics of laughter.

4.1.1 Rhythm

The rhythm of laughter — including note onset timings, note
durations, and interonset intervals — is explicitly definable
in terms of time duration. A study by Bachorowski and
colleagues [2] provides insightful analysis on the patterns of
call durations (laugh-note durations) and intercall intervals
(interonset intervals) that can be applied to our model.

4.1.2  Pitch (f0)

The pitch patterns of laugh-notes shape the melodic contour
of a laugh-phrase, and this can be defined in terms of the
fundamental frequency of laugh-notes.

4.1.3 Pitch Bending

Additionally, the pitch of a laugh-note should change through-
out the attack, sustain, and release stages to reflect natural
variations in human laughter. We incorporate continuous
subtle variations (randomness) in the pitch of a laugh-note,
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and further enable bending down the pitch during the note-
release stage, as we have found this to be an important
feature that gives a “laugh” quality to an otherwise flat-
sounding note (see Figure 2).
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Figure 2: Spectrograms of real laughter (left) and
our synthesized laughter (right) with pitch bending

4.1.4 Voicedness

The extent to which laughter sounds noisy versus harmonic
is encapsulated in the voicedness parameter, ranging from
1 (voiced) to O (noisy). This parameter has been motivated
by our observation that the stochastic components greatly
influence our percept of the nature of laughter. Figure 3
shows how the spectral component of laugh-notes become
smudged as we decrease the voicedness parameter.
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'; - - ~ - - -~ - o~

X 2 - =

~ - - -~ ~ - - - - &
2 2 & & & F 2 & &

Figure 3: Effects of changing the voicedness param-
eter on harmonicity of synthesized laughter

4.1.5 Vowel Space

There are conflicting views on the importance of formants
in a laughter context. Some argue that formants do not pro-
vide significant discriminative power for classification [31],
while others suggest that a higher first formant may be in-
dicative of a more extreme articulation during laughter pro-
duction [32]. Perhaps this disparity can be partially resolved
by specifying whether formants are summarized in absolute
terms or tracked in their relative movements across time.

Based on our experience, continuously changing formant
values—within a laugh-note as well as across laugh-phrase—
greatly affects expression, contributing to a more human-
like quality. Thus, our model provides an abstraction for
specifying the spectral peaks in terms of a two-dimensional
representation of the vowel-space. The x-coordinate roughly
translates to the second formant, from back vowels to front
vowels; the y-coordinate roughly translates to the first for-
mant, from low vowels to high vowels. See Figure 4 for how
changing the coordinates affects spectral peaks in laugh-
notes, contributing to vowel coloring.
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Figure 4: Effects of vowel space coordinates on syn-
thesized formants

4.1.6 Inhale vs. Exhale

One significant way in which laughter differs from speech or
singing is in the expressive power of the inhalation gesture
that often marks the end of a laugh-phrase. For instance,
an abrupt inhalation may imply nervousness, and a voiced
inhalation may imply certain lack of control. Our model
includes a parameter for specifying inhalation, and inhale
notes have different default pitch contour and release dura-
tion than exhalation notes, as shown in Figure 5.
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Figure 5: Comparison of synthesized exhalation
(left) and inhalation (right)
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4.1.7 Glottal Waveform

A parameter for the glottal waveform shape offers users
control over the voice timbre that result from harshness of
glottal closure. This parameter has been inspired by how
the different types of phonation methods humans use, from
“breathy” and “flowy” to “neutral” and “pressed” voices, re-
sult from the changes in the shape of the glottal waveform
[26, 30]. See Figure 6 for the effects of changing waveform
shape on the higher frequency components of laugh-notes.
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Figure 6: Increasing the glottal waveform parame-
ter introduces higher frequency components

4.1.8 Biological Factors

For the semi-automatic performance mode (described in
Section 4.2.2), it is necessary to include parameters that
represent the laughing nature of the person. First, how
quickly can the person recover upon being exposed to a
laughter-inducing stimulus? If the person is slow to recover,
he will likely laugh for a longer time. Second, how much
intensity does it take for this person to vocalize laughter-
notes? Clearly, some people break out into laughter more
easily than others. These characteristics are specified by
the decay rate and threshold parameters, respectively. See
Figure 7 for a graphical illustration of these features.

4.2 Performance Modes

Three different modes of performance have been implemented

on our laughter model.

A
stimulus
intensity decay rate 1

< decay rate 2
e SN~
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duration1 duration 2 time

Figure 7: Modeling laughing-nature of an agent

4.2.1 Manual

The manual mode can be viewed as an instrument for laugh-
ter performance, allowing users to trigger and control laugh-
ter real-time using keyboad and trackpad controls. See Fig-
ure 8 for a summary of mappings.

4.2.2 Semi-automatic

The semi-automatic mode can be regarded as an agent,
laughing according to its preset tendency and stimulus type.
For this mode, the user supplies stimulus for laughter by ei-
ther hitting or tilting the laptop, and the agent responds
with dynamically synthesized laughter. Different stimulus
types (e.g. a tickle, an evil thought, nervous energy, and
sarcasm) are associated with different possible ranges of au-
tomated input parameters. Figure 9 shows a comparison of
laughter triggered from four different stimulus types.
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Figure 9: Laughter output from ticklish, evil, ner-
vous, and sarcastic stimuli (left to right)

4.2.3 Transcription

The transcription mode serves as a musical score. This
mode allows users to compose laughter by specifying the
notes and phrases of laughter. In the current implementa-
tion, the score is written as a ChucK? [33] script that calls a
function for each laugh-note to be synthesized, with control
parameters supplied as function arguments.

5. SYSTEM

In this section, we briefly describe the implementation of
our model. ChucK [33] offers a flexible environment for
designing real-time audio synthesis, and combining it with
SMELT [12] allowed us to easily leverage the laptop’s key-
board, trackpad, and accelerometer-based motion sensor.

// sub patch
SndBuf buffy => TwoZero t => TwoZero tZ => OnePole p;

/ unvoiced (noisy) component
Noise n => HPF highpass => t;

/ formant filters

p => TwoPole f1 => Gain g;
=> TwoPole fZ => g;

=> TwoPole f3 => g;

T o

/ the rest

g => ADSR e => JCRev r =» dac;

*http://chuck.stanford.edu/
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Figure 8: Control parameter mappings for real-time performance

As shown above, the synthesis patch used in our model
is based on a formant-filter model for singing synthesis from
motion-sing.ck®. A built-in sound buffer (special:glot_pop)
from ChucK is used as the glottal source, and a Noise unit
generator was added to introduce the noisy components.

The bew() function, taken from motion-sing.ck, imple-
ments dynamic formant manipulation: formants are gener-
ated by interpolating the frequencies of the formant filters
based on the distances between the target-vowel and each
of the four corners of a two-dimensional vowel space.

Modifications to the shape of the glottal waveform is
achieved by changing the rate at which the buffer is read.
Although this is a very rough simulation, changing the buffer
rate effectively modifies the shape (slope) of the time-domain
glottal waveform, consistent with how the glottis closes more
abruptly in a pressed phonation.

An exponential decay function is used to model the be-
havior of a laughing agent (for the semi-automatic mode).
The decay rate parameter is applied to the exponent, i.e.
f(z) = exp(—decay_rate - kx), such that it controls laugh-
phrase duration. The threshold parameter is applied as a
cutoff such that if f(z) < threshold, then a note is no longer
triggered, thereby terminating the laugh-phrase.

6. EVALUATION

We employed crowdsourcing using Amazon Mechanical Turk*
to evaluate listeners’ perception of our synthesized laugh-
ter. We prepared ten short laughter files to gauge their
potential to convey social and emotional meaning, accord-
ing to our operationalization of expressiveness from Section
2. For each laughter, we collected responses from five lis-
teners, who were asked to describe what they believed to
be a possible setting surrounding the laughter. Here we
present sample responses to the ten laughter files, with the
composer/ performer’s original intention in parentheses:

1.
2.
3.

(ticklish): “could not control”, “laughs uncontrollably”
(like Tickle-Me-Elmo) “in the middle of a laugh panic”
(nervous high-pitch) “came across a result he did not
expect”, “heard some bad news... tries to laugh it off”
(nervous low-pitch): “uneasy, perhaps unsure of what
he is laughing at”, “maybe he is scared a bit”

. (friendly): “laughed to impress the girl and give a pos-
itive reply for her talks”

4.

3http://smelt.cs.princeton.edu/code/motion/
motion-sing.ck

“https://www.mturk.com/. See [20] for techniques on using
crowdsourcing for music perception experiments.
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(like Santa): “role playing Santa... in a mall with a
queue of children”, “Santa laughing in a calm way”
(sarcastic): “like a cartoon laugh... making fun of

someone”, “sarcastic laugh. unconvinced. teases”

(free): “playing with his brother”, «
evil): “sinister laugh”, “patronizing someone... insult-
g g

ing”, “treating others as fool”

play with infant”

10. (contrived): “he is forced to laugh at something”, “de-

pressed”, “an act of laughing”

These responses suggest that our model is capable of gen-
erating a range of laughter types and conveying meaning-
ful expressions. Although some listeners found the synthe-
sized laughter “weird”, “scary”, or “like a strange animal
sound”, others described it as “sweet”, “unique”, and even
“sound[ing] like my laugh.” Interestingly one listener com-
mented, “possibility that the laugh is computer generated,
not sure,” implying that it was not aurally obvious that the
laughter files had been fully synthesized.

7. APPLICATIONS

Our model, with its three modes of performance, naturally
lends itself to a variety of applications. As a real-time con-
troller with support for transcriptions, it can function as an
expressive instrument for a laptop orchestra [28, 34]. For
instance, we can compose a piece that features a virtuosic
soloist bursting into a series of contagious laughter, and sup-
porting ensemble members giggling back in response. On a
more practical level, interactive laughter synthesis could be
applied to speech synthesis, instilling a sense of emotional
responsiveness to machine speech.

8. FUTURE WORK

Our current model is just a beginning in our efforts to syn-
thesize laughter expressions. The model will naturally un-
dergo iterative modifications to improve in usability and ex-
pressive potential; we outline two possible next steps here.

First, a usability study on the control interface would
allow us to evaluate whether its design is consistent with
the user’s mental model. One possibility is to present syn-
thesized laughter to subjects and instruct them to recreate
the sound as closely as possible. Without prior instruction
on how the keyboard and trackpad are mapped to the pa-
rameters, we may observe discoverability of our mappings.
Alternatively, subjects can be given a quick tutorial on the
instrument, and we may observe their usage to gain insights
on the learnability of the controls.



Another direction is to conduct a “challenge” for partici-
pants to compose as expressively diverse laughter as possible
using our model. This challenge would serve as a creative
way to understanding the expressive potential of our model.
Based on the submissions, we can evaluate which types of
laughter our system supports well, and which are more dif-
ficult to generate, motivating us to improve on weaknesses.

9. CONCLUSIONS

We now have an interactive tool, albeit a first prototype,
in the form of a real-time controllable instrument that al-
lows us to systematically play with the musical ingredients
of laughter. We tried to define our model in terms of per-
ceptually salient parameters in ways that prioritized expres-
siveness over realism. A demo of our system can be found
at http://vimeo.com/ge/lolol. Future evaluation on the
interface’s usability and expressive potential should point
us towards the next iteration.

10. REFERENCES

[1] B. Atal and S. Hanauer. Speech analysis and
synthesis by linear prediction of the speech wave. The
Journal of the Acoustical Society of America,
50(2B):637-655, 1971.

J. Bachorowski, M. Smoski, and M. Owren. The
acoustic features of human laughter. The Journal of
the Acoustical Society of America, 110:1581, 2001.

J. Chowning. Computer synthesis of the singing voice.
In Sound Generation in Winds, Strings, Computers.
Royal Swedish Academy of Music, 1980.

J. Chowning. Frequency modulation synthesis of the
singing voice. In Current Directions in Computer
Music Research, pages 57-63. MIT Press, 1989.

P. Cook. Identification of Control Parameters in an
Articulatory Vocal Tract Model, With Applications to
the Synthesis of Singing. PhD thesis, CCRMA,
Stanford University, 1991.

P. Cook. SPASM, a real-time vocal tract physical
model controller; and singer, the companion software
synthesis system. Computer Music Journal,
17(1):30-44, 1993.

P. Cook and C. Leider. SqueezeVox: a new controller
for vocal synthesis models. In Proc. ICMC, 2000.

F. Cooper, A. Liberman, and J. Borst. The
interconversion of audible and visible patterns as a
basis for research in the perception of speech.
Proceedings of the National Academy of Sciences of
the United States of America, 37(5):318, 1951.

P. Delattre, A. Liberman, F. Cooper, and

L. Gerstman. An experimental study of the acoustic
determinants of vowel color; observations on one-and
two-formant vowels synthesized from spectrographic
patterns. Word, 1952.

H. Dudley, R. Riesz, and S. Watkins. A synthetic
speaker. Journal of the Franklin Institute,
227(6):739-764, 1939.

T. Dutoit. An introduction to text-to-speech synthesis,
volume 3. Springer, 1997.

R. Fiebrink, G. Wang, and P. Cook. Don’t forget the
laptop: Using native input capabilities for expressive
musical control. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 164-167, 2007.

J. Flanagan. Voices of men and machines. The
Journal of the Acoustical Society of America,
51(5A):1375-1387, 1972.

[14] D. Klatt. Software for a cascade/parallel formant

3]

[4]

[6]

[10]

[11]

[12]

[13]

195

(15]

(16]

(17]

18]

(19]

[20]

21]

(22]

(23]

24]

(25]

[26]

27]

(28]

29]

30]

(31]

32]

33]

34]

synthesizer. the Journal of the Acoustical Society of
America, 67:971, 1980.

S. Kori. Perceptual dimensions of laughter and their
acoustic correlates. Proc. 11th International Congress
of Phonetic Sciences, 4:255-258, 1989.

P. Lansky. Compositional applications of linear
predictive coding. In Current directions in computer
music research, pages 5—8. MIT Press, 1989.

E. Lasarcyk and J. Trouvain. Imitating conversational
laughter with an articulatory speech synthesizer.
Proceedings of the Interdisciplinary Workshop on the
Phonetics of Laughter, 2007.

A. Liberman, P. Delattre, F. Cooper, and

L. Gerstman. The role of consonant-vowel transitions
in the perception of the stop and nasal consonants.
Psychological Monographs: General and Applied,
68(8):1, 1954.

M. Mathews. Bicycle built for two (1961). Computer
Music Currents no 13, The Historical CD of Digital
Sound Synthesis, 1961.

J. Oh and G. Wang. Evaluating crowdsourcing
through amazon mechanical turk as a technique for
conducting music perception experiments. In
Proceedings of the 12th International Conference on
Music Perception and Cognition, 2012.

J. Olive and M. Liberman. Text to speech — an
overview. The Journal of the Acoustical Society of
America, 78(S1):S6-S6, 1985.

F. Poyatos. The many voices of laughter: A new
audible-visual paralinguistic approach. Semiotica,
93(1-2):61-82, 1993.

R. Provine. Laughter: A scientific investigation.
Penguin Press, 2001.

L. Rabiner. Digital-formant synthesizer for
speech-synthesis studies. The Journal of the
Acoustical Society of America, 43(4):822-828, 1968.
X. Rodet. Time-domain formant-wave-function
synthesis. Computer Music Journal, pages 9-14, 1984.
T. Rossing, F. Moore, and P. Wheeler. The science of
sound. Addison Wesley, San Francisco, CA, 2002.

X. Serra and J. Smith III. Spectral modeling
synthesis: A sound analysis/synthesis system based
on a deterministic plus stochastic decomposition.
Computer Music Journal, pages 12-24, 1990.

S. Smallwood, D. Trueman, P. Cook, and G. Wang.
Composing for laptop orchestra. Computer Music
Journal, 32(1):9-25, 2008.

S. Sundaram and S. Narayanan. Automatic acoustic
synthesis of human-like laughter. The Journal of the
Acoustical Society of America, 121:527, 2007.

J. Sundberg. The Science of the Singing Voice.
Northern Illinois Univ, 1987.

D. Szameitat, K. Alter, A. Szameitat, D. Wildgruber,
A. Sterr, and C. Darwin. Acoustic profiles of distinct
emotional expressions in laughter. The Journal of the
Acoustical Society of America, 126:354, 2009.

D. Szameitat, C. Darwin, A. Szameitat,

D. Wildgruber, and K. Alter. Formant characteristics
of human laughter. Journal of Voice, 25(1):32-37,
2011.

G. Wang. The ChucK Audio Programming Language:
A Strongly-timed and On-the-fly Environ/mentality.
PhD thesis, Princeton University, 2008.

G. Wang, N. Bryan, J. Oh, and R. Hamilton.
Stanford Laptop Orchestra (SLOrk). In Proceedings of
the International Computer Music Conference, 2009.





