SWARMED: Captive Portals, Mobile Devices, and
Audience Participation in Multi-User Music Performance

Abram Hindle
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
abram.hindle@ualberta.ca

ABSTRACT

Audience participation in computer music has long been
limited by resources such as sensor technology or the mate-
rial goods necessary to share such an instrument. A recent
paradigm is to take advantage of the incredible popularity
of the smart-phone, a pocket sized computer, and other mo-
bile devices, to provide the audience an interface into a com-
puter music instrument. In this paper we discuss a method
of sharing a computer music instrument’s interface with an
audience to allow them to interact via their smartphones.
We propose a method that is relatively cross-platform and
device-agnostic, yet still allows for a rich user-interactive
experience. By emulating a captive-portal or hotspot we
reduce the adoptability issues and configuration problems
facing performers and their audience. We share our experi-
ences with this system, as well as an implementation of the
system itself.

Keywords

Wifi, Smartphone, Audience Interaction, Adoption, Captive
Portal, Multi-User, Hotspot

1. INTRODUCTION

Audience interaction has classically been limited by phys-
ical and monetary resource constraints. If one wanted to
share an instrument with an audience and allow them to
interact often an entire installation fitted with sensors was
needed, or the audience needed to provide their own materi-
als. Smartphones have gained popularity in computer music
performance, with smart phone orchestras and groups be-
ing formed [10]. Often these groups share the same apps
and play together either through their speakers, or over
MIDI, or via a mixer. One barrier to audience interaction
in the case of smartphones was coding something that was
cross-platform enough to run on the major vendors smart-
phones [17]. In the case of the iPhone, one would even
need a developer license and their application would have
to appear in the app store. Yet aiming for the smartphone
makes sense, each audience member essentially is bringing
their own computer and running your software. Yet the
least restrictive and most cross-platform method of utiliz-
ing smartphones is not apps, it is their ability to view and
interact with webpages [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’13, May 27 - 30, 2013, KAIST, Daejeon, Korea.

Copyright remains with the author(s).

174

In this paper we present and propose a method of allow-
ing anyone with a web-enabled mobile device to participate
in a performance by providing an interface to a shared com-
puter music instrument over a wireless network (WiFi), or
an Internet connection, via an interactive webpage. We di-
rect users directly to the relevant pages by taking advantage
of captive-wifi portal /hotspot technology. Thus the issue of
distributing and downloading an app is avoided, as the web-
interface of the instrument is distributed locally via WiFi
or globally via the internet.

Providing internet access to 20 or more devices can often
be prohibitive due to bandwidth constraints and latency is-
sues, thus in this paper we focus mostly on providing instru-
ment interfaces via a local wifi-network configured much like
a captive-wifi portal in a hotel. Hotel wifi networks are often
captive-wifi portals that require authentication or payment
in order to enable internet access, these captive portals in-
tercept and replace your hypertezttransportprotocol (HTTP)
requests with an authentication and payment interface. In-
stead of asking you to authenticate, one can use a captive-
portal to drive the smart-phones to the computer music
instrument’s interface.

For the rest of the paper we will describe and discuss
SWARMED: a Shared Wifi Audience Reactive Musical Fx-
temporization Design. SWARMED is a captive-wifi-portal
that serves up web-based user interfaces which allow users to
interact with and control a running computer music instru-
ment with their web-enabled devices such as smart-phones,
tablets and laptops. SWARMED solves many tool adop-
tion and portability issues by relying on standardized and
portable web technologies to deliver interactive instruments.

Thus our contributions in this paper are:

e We propose using captive-portal to drive WiFi users
an instrument’s user interface (UI);

e We describe the SWARMED system abstractly and
concretely;

e We provide a free open-source implementation of the
SWARMED system [5];

e We discuss our experience performing with SWARMED
and suggest future uses for such a system;

2. PREVIOUS WORK

In this section we discuss some of the previous work rel-
evant to audience collaboration, adoptability, and the use
of portable digital devices in audience-interactive computer
music performances.

In terms of experiments and discussions regarding audi-
ence participation using smartphones and mobile devices
Oh et al.[11] in “Audience-Participation Techniques Based
on Social Mobile Computing” argue that smartphone ori-
ented performances are convenient for both the audience



Interactive
HTML5/Javascript
Instrument
User Interface

Application
Webserver

El Software System/Component

q Unidirectional Communication
H Bidirectional Communication

[T 1] 0 or more components

Instrument Server
Handler

Instrument Server
Handler

/

PA System
or
Audio Stream

Mixer

Figure 1: Abstract Software Architecture and Communication of Software Components of the SWARMED Network

and performer. Furthermore they discuss different kinds of
social interaction ranging from social network interaction
(Tweetdreams [3]), through to interactive web applications.
They highlight that audience interaction does not have to
be musical in nature, it can be about communicating back
to the performers or researchers.

Unsilent Night is an example of audience based participa-
tion and adoption. Unsilent Night, by Phil Kline [9], invited
audience members to join in a performance of playing a lim-
ited set of audio samples in an open space with their own
boom-boxes and portable speakers. Kline also provided an
iPhone app one can install in order to participate.

TweetDreams, by Dahl et al. [3], is an excellent example
of audiences interacting with a music instrument via a web
interface (Twitter). The audience participates by tweeting
at the performer’s Twitter account. Their architecture is
very similar to SWARMED except that they rely on Twitter
to mediate the messages. TweetDreams requires an internet
connection and the use of Twitter.

From an infrastructural point of view, Jesse Allison [1]
describes an implementation of a distributed performance
system that is web-based (HTML5) and uses an application
webserver (Ruby on Rails). Allison argues that adhering to
HTML5 standards allows for client-side instrument Uls to
be distributed without having to address excessive porta-
bility issues.

massMobile by Weitzner et al. [17] describes a system
meant to allow smartphones to interact with and Max/MSP
via web standards (HTMLS5), over a variety of wireless net-
works. Their configuration includes a persistent internet
accessible sound server running Max/MSP. Our work dif-
fers because we leveraged a captive-portal technique and do
not necessarily rely on Max/MSP (although we tended to
use CSound [15] on the backend).

Tanaka [13] carefully evaluates the capabilities of mobile
devices and their affordances for mobile music performance
and interaction. Tanaka’s work seeks to address the lim-
itations and affordances of the mobile devices and argues
that developers of mobile instruments should pay attention
to how users use their devices. For instance many users
hold their phone with one hand and manipulate it with the
other, thus two-handed interaction is not an affordance of
mobile phones.

Jorda [7] discusses methods used to play or interact with
multi-user Instruments and how instruments differ regard-
ing shared collective control. The SWARMED instrument
would be classified as a variable-number of users, single-role
(but changing) instrument, with differing inter-dependencies,
as some instruments share state between users.

Other fields, such as software engineering, have focused
on the issue of adoptability, especially in the context of soft-

175

ware [14]. Adoptability is different than portability. Porta-
bility is about whether or not software can run on a plat-
form, adoptability is whether or not the software is com-
patible enough with a user such that the user adopts and
uses a tool. In the case of a computer music interfaces on
mobile devices, both portability and adoptability are im-
portant as the audience will have a wide range of mobile
devices (portability) but they will receive minimal training
and yet must navigate to and learn the user interface (UI)
quickly: they will have to adopt the use of the UI. Soft-
ware engineers try to make tools adoptable by integrating
their tools into user interfaces that users already use (like
Microsoft Office) [14].

Thus we propose a system different from previous systems
that addresses user adoption via captive-portal technology,
addresses portability via web-standard browsers, and at-
tempts to enable audience collaboration by leveraging the
mobile devices of the audience.

3. ABSTRACT FRAMEWORK

In this section we describe the abstract structure of a SWA-
RMED instrument. A SWARMED instrument would in-
clude the user, the performer, the network, the infrastruc-
ture, and the computer music instrument under control.
This is depicted in Figure 1.

The user interacts with the instrument by logging onto a
captive-wifi-portal, a wireless network. The captive-portal
whisks the user’s web browser away to an initial webpage
that determines the capability of the the user’s mobile de-
vice and webbrowser and then navigates the user to appro-
priate and compatible user interfaces.

When the user interacts with the instrument their browser
sends HTTP commands over the wireless network back to
an application webserver. This application webserver is
dedicated to passing on the user’s input to the computer
music instrument. Application webservers, such as Ruby
on Rails [1] or Mongrel2 [12], are used because they allow
handlers to run, which are functions or processes (running
programs) that respond to a request. These handlers often
interact with longer running processes, such as an instru-
ment. A handler receives and responds to a HTTP request
at a particular Uniform Resource Locator (URL), massages
the input, and then sends appropriate signals to the com-
puter music instrument.

Often it is useful to model the instrument as a contin-
uously running process that receives instructions from the
user interpreted by the application webserver. Often the
handler is the computer music instrument itself and the
input from the user is immediately interpreted. The instru-
ment is then responsible for producing audio that can be



again routed through audio interfaces and played back to
the audience.

Thus a SWARMED instrument consists of web-based user
interfaces delivered via a captive-portal to the web-browsers
hosted on the audience’s mobile devices. These Uls send
requests back to an application webserver, that massages
the requests as necessary and then signals the computer
music instrument, which produces audio for the audience
to hear, often over a central public announcement system

(PA).

4. CONCRETE FRAMEWORK

We performed SWARMED 3 times using the same, but
slowly evolving, implementation. Our concrete version of
SWARMED is available for download at http://url.ca/
chkz5 [5], and is Open Source. Figure 2 depicts a concrete
configuration of SWARMED.

The wireless network was provided by a Linksys WRT
(a popular Wi-Fi router) which routed traffic to a laptop
that acted as an internet gateway. The laptop was running
dnsmasq [8] which rewrote all domain name system (DNS)
requests back to the laptop itself, and acted as a Dynamic
Host Configuration Protocol (DHCP) server, which assigns
IP addresses to computers, for the Linksys WRT. Thus all
hostnames would resolve back to the laptop so any HTTP
URL, such as http://ualberta.ca/ would be redirected to
application webserver on the laptop.

The laptop ran the mongrel2 webserver [12], an applica-
tion webserver. For instruments that had provided no feed-
back to the user, we passed off the requests off to a 1-way
handler. For applications that had a shared state across
multiple users, that had bi-directional communication, we
implemented separate bidirectional handlers.

The handlers would usually take the input, transform
the inputs and then set global values or trigger instrument
events within an running CSound-based [15] instrument.

A generic handler, a front-page, routed the users to the
instruments. It also checked the user-agent string of the
user’s web browser and limits the user to instrument Uls
compatible with their browser.

4.1 Wireless Network Configuration

While a sole laptop can operate as the master in a WiFi net-
work, we opted to use a third party WiFi router (a Linksys
WRT) to handle the wireless side of the network. This
router was plugged into the laptop’s Ethernet port and as-
sumed that the laptop was an internet gateway.

The laptop ran DNSMasq and acted as a gateway to the
Linksys WRT, the Linksys WRT would route requests from
clients to the webserver via this gateway. The DNSMasq
program would act as a DNS server and rewrite all DNS
queries back to the laptop. This meant that if you at-

tempted to go to any URL or webpage while on the SWARMED

network you were routed directly back to the SWARMED
webserver.

4.2 SWARMED WebServer

The SWARMED Webserver had 3 goals: to inspect the
user’s browser and route it to the appropriate instrument,
to host the instrument HTML and JavaScript (JS) files, and
to ferry requests from the clients to the handlers.

We used the mongrel2 webserver to host our instruments
because it was known to have good performance and it al-
lowed handlers to be long running and independent pro-
cesses. Handlers have to respond to events, but they can
maintain state, connections, and do other work in the back-
ground, such as maintaining an instance of CSound [15] run-
ning so that we could send it real-time instrument events.

176

Furthermore the webserver allowed us to host the static
files, HTML, cascading style sheets (CSS), JavaScript (JS),
images, that were part of the instrument Uls that we send
to the client browsers. The mongrel2 webserver supports
static content directories in which we placed our instrument
UI definitions.

We also configured the webserver with instrument han-
dlers meant to interpret HTTP gets, HT'TP posts, and
HTTP XMLHTTPRequest messages (asynchronous HT'TP
requests) sent from the client browsers relevant to the in-
struments.

4.3 Front Page Handler

The welcome page was actually a 404 error-code (page not
found) server-side handler meant to handle any URL that
did not already exist. This meant any file not hosted would
be handled by this handler and redirected to our instru-
ments. The handler would inspect the HTTP headers of the
client’s HTTP request, and determine which instruments
were compatible with the client.

Browsers for Android 2.3 and prior tended not to sup-
port scalable vector graphics (SVG), while most versions
of i0OS did. Blackberry phone browsers tended to support
SVG and so did many of the Windows phones. Laptops and
desktop devices supported SVG as well. Any compatibility
issue like this that was found would be encoded into this
welcome page handler. Thus it would determine the appro-
priate instruments compatible with the user-agent string of
the client browser.

Once the browser compatibility was resolved, an instru-
ment was chosen from the compatible list. We later added a
feature where at different times different instruments were
enabled or disabled. This meant that the set of instru-
ments in use would slowly evolve and change and the sound
of the improvisation would evolve and change as well. The
welcome page served as a way to distribute instruments to
allow for some composition of the audience’s improvisation.

4.4 Handlers

The Mongrel2 webserver is built around the idea of pro-
cesses that act as handlers. The webserver communicates
via an interprocess-communication (IPC) protocol (zero-
mq) to the processes acting as handlers, and sends a request
package containing the information that the client browser
had sent. Then the handler is meant to interpret the request
and build a response, which is sent back to the webserver
and client browser.

In the asynchronous case, where the client browser does
not update state from the handler, a simple OK message
was returned. In the synchronous case, where state or data
from the handler would be shared with the client, a differ-
ent response would be built (in our case a JSON response
message) and sent back to the client. The client code would
interpret the response and update the Ul. Complicated in-
struments, with shared global state could be built using the
handler’s unidirectional or bidirectional communication ca-
pabilities.

We had one instrument (see Figure 7) that relied heavily
on bidirectional communication, as it had to synchronize
state between clients. Clients would view and modify an
array of values, represented as a bar graph plot of a wave-
form. They could drag the bars to change the value. When
a value was changed that new value was sent back to the
handler via an XMLHTTPRequest. The response object
would often provide a new state that integrated that new
change and thus update the client’s UI with the new values.
More than one client could modify the same values and thus
client browsers had to also poll for state updates, allowing



Participant wi
a mobile device

(ieh

Another particip
with a mobile device

Figure 3: Basic HI'ML Soundboard UI

Figure 4: Springy Bouncy Ball Flute Instrument UI based
on Siver K. Volle’s JS1k entry [16]

users to collaborate using the same instrument.

Most handlers simply had to interpret client messages,
update their internal state and then update the underlying
Csound [15] instrument controlled by the handler. Usually
each handler ran its own instance of Csound [15], which
would be routed and audio-mixed by the jackd audio-routing
daemon.

4.5 Instruments

Each instrument consisted of 3 parts:
e An HTML/JavaScript User Interface,
e A handler/server to massage events,
e And a Csound instrument that generated the audio.

We had 7 instruments concurrently running that could
play at the same time:

A virtual bell, that grew louder the more the user waited
between triggering the bell. It consisted of a simple HTML
button whose click would be received by a handler set to
calculate the duration and loudness of the bell based on the

Laptop Running Webserver
and Instrument Sound Server,

177

Performance PA speaker
system

FIRE

Figure 5: Virtual Bell with wait-time based amplitude

==

Figure 6: A Virtual Cloth Instrument based on Andrew
Hoyer’s cloth simulation [6]

Figure 7: Drawable Wavetable instrument



Figure 8: Force Directed Springy Graph Instrument UI
based on D3.js by Bostock’s et al. [2]

=

Figure 9: Voronoi Map location and cell based instrument
on D3.js by Bostock’s et al. [2]

time between button clicks. See Figure 5. This instrument
used only HTML and JS and was deployed to all browsers.

The Force Directed Springy Graph Instrument is a graph
visualization where the tension and oscillation of graph nodes
created buzzy filtered noise and jiggly sounds FM synthe-
sis sounds, see Figure 8. The users can pluck a node and it
snaps back into place with spring-like motion. Node motion
was a parameter of excitation to the instrument, fast motion
makes aggressive sounds. Using HTML, JS and SVG this
instrument was only deployed to SVG compatible devices:
laptops, 108, BlackBerry, and later versions of Android.

The soundboard, a simple HTML table based instrument
that produces audio based on the Force Directed Springy
Graph Instrument, it played similar sounds but in a more
syncopated manner based on which part of the grid was
clicked. When one clicked a grid box, it quickly inflated,
triggering the associated noises and then deflated. See Fig-
ure 3. Using only HTML and JS this instrument was de-
ployed to all devices and browsers.

A Voronoi map (a mathematical structure that looks like
stained glass, see Figure 9) instrument where the users could
drag and select shards, where the size and position of the
shard where used as parameters to a dissonant screeching
piano/string instrument. The Voronoi map was randomly
generated, and not shared. Using HTML, JS and SVG this
instrument was only deployed to SVG compatible devices.

A wvirtual cloth simulation where the shape and control
point position of the cloth, depicted in Figure 6, control 36
different oscillators whose frequency and phase were offset
by their positions on the cloth. When the cloth was moved
or manipulated, the resulting motion of the fabric produced
a kind of wooshing sound. This instrument used HTML, JS
and Canvas and was deployed to laptops and most phones
except Android version 1.6 or less due to performance issues.

Springy Bouncy Ball simulationd relies on the spring-like
motion of a weighted ball oscillating between a fixed point
and a point that the user drags. It was used to trigger flute

178

Figure 10: SWARMED being performed at the 2012 Ed-
monton Works Festival (left) and the 2012 Victoria Noise
Festival (right)

sounds where the speed of the weighted ball determined the
amplitude of the flute and the direction of the ball’s motion
determined its pitch. Using only HTML, JS and Canvas
this instrument was deployed to laptops and most phones.
Finally, a drawable wavetable where the users would draw
and share the same waveform, waveform pitch table, and
pitch table of the waveform pitch table. Users could see
the changes to these values caused by other users as shown
in Figure 7. This instrument was similar to Fabiani et al.’s
MoodifierLive [4]. We allocate 4 or more shared instances to
the audience, each of which runs concurrently in two modes:
linear interpolation and no-interpolation. Linear interpola-
tion sounded smooth and fluid while no-interpolation had
a very digital abrasive aspect to it. Using only HTML, JS
and Canvas this instrument is deployed to all platforms.
Events were triggered by motion of objects on the user’s
screen and the user’s interaction. If a node on a spring was
plucked it would generate events until it was done oscil-
lating. These events would be serialized across HT'TP as
XMLHTTPRequest objects, sent asynchronously from the
user’s browser. Too many XMLHTTPRequests can flood
the webserver and flood the wifi network (networks have
limited bandwidth), thus batching up requests or limiting
requests to 10 to 30 per second was appropriate (this can
be done within the JS UI running on the client browser).

S. DISCUSSION

SWARMED was performed at the 2012 Edmonton Works
Festival and at the 2012 Victoria Noise festival. The maxi-
mum audience size was 80 individuals with at least 20 mo-
bile devices (although the system has been performance
tested allowing for 60+ concurrent users). See Figure 10
for a photo montage of the performances.

5.1 User Perspective

From the point of view of a user, they received instructions
how to connect to the network, and they proceeded to scan
for WiFi networks and then connected their device to the
SWARMED network. Afterwards their browser was redi-
rected to a welcome page that has chosen an instrument for
them to use. They clicked or waited and were redirected to
an instrument that they could interact with. Through the
event’s PA they could hear their interaction broadcast to
everyone in the room. The instrument would timeout after
a few minutes and switch to a new instrument.



5.2 Intuitiveness

We found that many users lacked the knowledge to connect
their phones to a Wifi network. Thus simply connecting to
a network was a barrier for some users. This kind of issue
can often be addressed with simple instructions printed out
on a flyer (Oh et al.[11] used QR codes).

The Uls for the instrument should be simple enough and
intuitive enough, in particular they should be aimed at
mouse or touch input without a keyboard. Buttons and ob-
jects being clicked should be large enough for users on small
screens to pick out. One should address the affordances of
the devices being used [13].

Since SWARMED relies on audience participation, often
the performer has to decide how much time during their
performance (if there is any) will be used to address the
technical issues of the audience. During our SWARMED
performances we often took the role of I'T support or sysad-
min, as some users will need help getting on the network,
some might need help using or navigating the instrument
UL

5.3 Improvisation and Collaboration

One problem with a large number of participants is that
each participant wants to hear their contribution, thus one
should consider methods of limiting input from a large num-
ber of participants. The virtual bell instrument allowed
users to play bell sounds, but too many bells would flood
the performance, so we limited the amplitude of the bell by
scaling the bell amplitude by the duration between a trig-
gering a bell. Thus users who waited longer would produce
louder bells than users who did not.

5.4 Timed Sections

One instrument or one set of parameters used throughout
a performance can get monotonous. We limited the use of
an instrument Ul to 3 minutes, after which the user would
be shuttled to another instrument UI. We had different dis-
tributions or proportions of instruments at different times,
this allowed the performance to evolve and change, as well
it avoid boring the audience with a single simple user inter-
face. Thus while the audience interaction could be classified
as improvisation since their actions are not scripted, they
are limited by these timed sections which provide some level
of composition and limit free improvisation.

6. FUTURE WORK

This kind of web controlled collaborative instrument can
also be used in other settings. For an installation this
method of interaction reduces the wear and tear costs but
also allows users to interact with an installation using poten-
tially complex software. Furthermore web delivery avoids
app compatibility and deployment headaches.

This work can be leveraged in realms other than audio,
such as the Heart map by Oh et al. [11]. A user visit-
ing an installation could control the mood, the lighting, or
interactions within the installation without actually touch-
ing or physically manipulating the installation. Museums
could make dioramas more interactive, as users could inter-
act with a rear-screen projection of the diorama’s sky.

Furthermore, the flexibility of the web approach allows

URLs and hyperlinks to become powerful musical commands.

Simple client-side embedded JavaScript or Greasemonkey
plugins could turn websites into musical instruments.

7. CONCLUSIONS

In conclusion we have described a framework, that pro-
vides for adoptable and interactive audience participation

179

in a musical piece using the audience’s own mobile devices.
SWARMED is both an abstract and concrete framework for
allowing the audience to use the browser that accompanies
their mobile device to control part of an audio performance
or installation. We described the benefits of this kind of
local but virtual interaction in terms of cost, equipment,
as well as software engineering concerns such as portability
and adoptability. Our use of the captive portal paradigm
is novel as it allows for easy configuration and adoption of
the audience’s mobile devices to control the instrument, and
hopefully will be of use to other mobile musical interaction
musicians, researchers and developers.

8. ACKNOWLEDGEMENTS

Thanks to Scott Smallwood for inspiration, and to NSERC
(Discovery Grant) for their support of my research.

9. REFERENCES

[1] J. Allison. Distributed performance systems using html5
and rails. In Proceedings of the 26th Annual Conference of
the Society for Electro-Acoustic Music, 2011.

M. Bostock. D3.js - Data-Driven Documents.
http://d3js.org/, 2012.

L. Dahl, J. Herrera, and C. Wilkerson. T'weetdreams:
Making music with the audience and the world using
real-time twitter data. In International Conference on New
Interfaces For Musical Ezpression, Oslo, Norway, 2011.
M. Fabiani, G. Dubus, and R. Bresin. MoodifierLive :
Interactive and Collaborative Expressive Music
Performance on Mobile Devices. In Proceedings of the
International Conference on New Interfaces for Musical
FExpression, pages 116-119, 2011.

A. Hindle. SWARMED blog post. http://url.ca/chkz5
and http://skruntskrunt.ca/blog/2012/06/23/swarmed/,
2012.

A. Hoyer. The cloth simulation. http:
//andrew-hoyer.com/andrewhoyer/experiments/cloth/,
2010.

S. Jorda. Multi-user Instruments: Models, Examples and
Promises. In Proceedings of the International Conference
on New Interfaces for Musical Expression, pages 2326,
2005.

S. Kelley. Dnsmasq, a dns forwarder for nat firewalls.
http://www.thekelleys.org.uk/dnsmasq/doc.html, 2012.
P. Kline. Unsilent night website.
http://unsilentnight.com/, 2012.

J. Oh, J. Herrera, N. Bryan, and G. Wang. Evolving the
mobile phone orchestra. In International Conference on
New Interfaces for Musical Expression, Sydney, Australia,
2010.

J. Oh and G. Wang. Audience-participation techniques
based on social mobile computing. In Proceedings of the
International Computer Music Conference 2011 (ICMC
2011), Huddersfield, Kirkless, UK, 2011.

Z. Shaw. Mongrel2 web server project.
http://mongrel2.org, 2011.

A. Tanaka. Mapping Out Instruments, Affordances, and
Mobiles. In Proceedings of the International Conference on
New Interfaces for Musical Expression, pages 8893, 2010.
S. Tilley, H. Muller, L. O’Brien, and K. Wong. Report from
the second international workshop on adoption-centric
software engineering (acse 2002). In Software Technology
and Engineering Practice, 2002. STEP 2002. Proceedings.
10th International Workshop on, pages 74 — 78, Oct. 2002.
B. Vercoe. Csound: A manual for the audio processing
system and supporting programs with tutorials. MIT, 1992.
S. K. Volle. JS1k, 1k demo submission [385].
http://jslk.com/2010-first/demo/385, 2010.

N. Weitzner, J. Freeman, S. Garrett, and Y.-L. Chen.
massMobile - an Audience Participation Framework. In
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME), Ann Arbor,
Michigan, May 21-23 2012. University of Michigan.

[2]
[3]

[4]

[6

7

(10]

(11]

(12]

(13]

(14]

[15]
(16]

(17)





