Towards Note-Level Prediction for Networked Music
Performance

Reid Oda
Department of Computer
Science
Princeton University
roda@princeton.edu

ABSTRACT

The Internet allows musicians and other artists to collab-
orate remotely. However, network latency presents a fun-
damental challenge for remote collaborators who need to
coordinate and respond to each other’s performance in real
time. In this paper, we investigate the viability of pre-
dicting percussion hits before they have occurred, so that
information about the predicted drum hit can be sent over
a network, and the sound can be synthesized at a receiver’s
location at approximately the same moment the hit occurs
at the sender’s location. Such a system would allow two per-
cussionists to play in perfect synchrony despite the delays
caused by computer networks. To investigate the feasibility
of such an approach, we record vibraphone mallet strikes
with a high-speed camera and track the mallet head posi-
tion. We show that 30 ms before the strike occurs, it is
possible to predict strike time and velocity with acceptable
accuracy. Our method fits a second-order polynomial to the
data to produce a strike-time prediction that is within 10
ms of the actual strike, and a velocity estimate that will
enable the sound pressure level of the synthesized strike to
be accurate within 3 dB.

Keywords

Networked performance, prediction, computer vision

1. INTRODUCTION

The Internet has allowed people who are separated by dis-
tance to more easily collaborate with one another. Email,
cloud storage, and video chat have all increased the speed
with which we can share and exchange information. How-
ever, certain forms of real-time collaboration have still not
gained widespread use. Among these are playing live music
with remotely located musicians.

There are a number of reasons why one might want to play
with another musician over the Internet. First, a musician
might want to work with other artists who have the same
ideals, a complementary aesthetic sense, or valuable skills.
Second, a group of musicians might want to practice pieces
for performance while traveling. Third, they might want to
perform pieces to an audience without having to travel to
a common location. Finally, limits on travel might make it
difficult for an artist to leave or enter a country.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’13, May 27 - 30, 2013, KAIST, Daejeon, Korea.

Copyright remains with the author(s).

Adam Finkelstein
Department of Computer
Science
Princeton University
af@cs.princeton.edu

94

Rebecca Fiebrink
Department of Computer
Science (also Music)
Princeton University
fiebrink@princeton.edu

Playing live with remote collaborators is difficult because
of network latency [3, 6]. Therefore, researchers have de-
vised a variety of approaches for dealing with latency in
musical performance. For example, one strategy is to cre-
ate a low-latency, streamlined client designed to deliver au-
dio data from one computer to another as quickly as pos-
sible [5]. Another approach that addresses latency involves
having the computer learn typical music patterns, predict
which pattern a musician is playing, and have that same
pattern synthesized on a remote machine. With this ap-
proach, patterns on local and remote machines can be syn-
chronized [11]. However, the approach is limited by the
range of patterns that can be learned by an algorithm, and
it offers responsiveness only at the granularity of an entire
sequence of notes.

Inspired by this work, we propose to take the approach
one step further. Instead of predicting patterns, we investi-
gate the viability of predicting individual notes. If we can
predict the onset time and velocity of the next note a musi-
cian will play, we can send the time and velocity prediction
over the network before the note is played, and synthesize
the note sound at the remote machine at approximately the
same moment it is played (Figure 1). We hypothesize that
percussion instruments are a viable class of instruments for
this type of prediction. In this paper, we analyze the travel
of a vibraphone mallet head just before striking a surface,
and we predict the timing and velocity of the oncoming
strike. We study two different factors that contribute to
the accuracy of the prediction: the amount of desired pre-
diction time (in ms), and the sampling frequency of the
sensing device (in Hz).

/By

Play Sense Predict Send Synthesize Sound

Figure 1: The proposed method: Predict a note event before it
is played. Send it over a network to the receiver and synthesize
it at the same moment it is played by the sender.

2. BACKGROUND

The effects of network lag on musical performance have
been studied by Chafe, Céceres, and Gurevich [6] as well
as Bartlette and Bocko [3]. They found that latencies of
60-100 ms can significantly impede pairs of musicians’ abil-
ity to play with one another. High latencies cause tempo
drag as each musician slows down to remain synchronized
with the other.

The current state of the art in low-latency Internet mu-
sic performance clients is JackTrip [5]. JackTrip uses the
UDP protocol for packet delivery, so it does not have the
congestion control and packet verification overhead of TCP.
Packets that arrive late are dropped. Other optimizations

in this client reduce network and host latency as far as pos-
sible. However, Internet path—and therefore the latency
resulting from the path—is largely out of the control of the
user. Overlay networks offer one of the few approaches to
reducing travel time within the network [2], they come with
a cost: slow paths may be avoided, but faster paths may
become slightly slower, due to processing overhead.

Recently, Sarkar and Vercoe proposed a system that uses
pattern recognition to eliminate network latency [11]. In
their approach, two remote tabla players perform together.
Each end of the connection employs a software system that
has learned a collection of canonical tabla beats. The sys-
tem classifies the pattern that the local musician is playing
and sends this information to the remote host, which then
synthesizes a version of the pattern to the remote player.
Because tabla patterns are highly standardized, it is likely
that the receiver hears a close approximation to what is ac-
tually being performed. The spirit of the players’ intention
is communicated and the artists experience playing with
one another in synchrony. Our method builds on this idea
of prediction. However, instead of predicting with pattern
granularity, we propose to predict each individual note.

‘While not all notes can be easily predicted, the overt ges-
tures of a percussionist provide fair warning as to when a
note will be played. In a study of drumstick motion, Dahl
shows that the drumstick travels a repetitive, somewhat
regular path [7]. Onset velocity correlates tightly with the
height to which the drumstick is raised before the strike.
In our paper, we investigate the viability of modeling such
percussion strokes and predicting the timing and velocity of
each strike, with the intention of sending these predictions
over the Internet before the strike occurs, and synthesizing
the strike sound at the receiver’s end.

3. RECORDING SETUP

We study the vibraphone mallet because the head can be
easily tracked using computer vision. To capture mallet
motion, we used a Photron Fastcam SA3 grayscale cam-
era running at 500 frames per second. The resolution is
512 x 512 pixels. The wooden striking surface was oriented
such that mallet contact with the surface could be easily
identified by examining mallet height, as seen in Figure 2.

Figure 2: A single image from the high speed camera. Inset
is the template used to track the mallet head. Best match is
indicated in red.

The mallet head was tracked using a template-matching
algorithm, which takes as input a template image of a mallet
head, and a source image within which to locate the mallet
head [12]. The algorithm computes the normalized cross-
correlation distance between the template and each position
on the source image.

We recorded two patterns, a 4/4 quarter note pattern at

95

300
=
£ 200 i
5
5 100 1
I
0
0 1000 2000 3000 4000 5000 6000
Time (ms)
200
=
k=
£ 100 b
=
[}
T
0
0 1000 2000 3000 4000 5000 6000
Time (ms)

Figure 3: Mallet height over time, as output by our computer
vision tracking algorithm, for quarter notes at 120 bpm (top) and
syncopated notes at 180 bpm (bottom).

120 bpm with an accent on the first beat of each measure
(consisting of 24 notes), and a syncopated rhythm at 180
bpm (consisting of 34 notes). The syncopated rhythm in-
cluded quarter and eighth notes. This yielded 11329 images.
Examples of the tracking algorithm’s raw, unsmoothed height
output appear in Figure 3.

4. EVALUATION

We wish to test the hypothesis that the timing and veloc-
ity of a mallet strike can be predicted accurately and early
enough to be useful in reducing network lag.

We divided the recording into 58 individual strikes, called
cycles in this paper. We chose a simple prediction algo-
rithm, described shortly, that predicts strike time by fitting
a polynomial to a cycle during the descent. Figure 4 illus-
trates one such single cycle in blue: the dashed red line is
the predicted mallet path, and yellow circles represent the
data fed to the polynomial-fitting algorithm. Here, the al-
gorithm predicts the strike time to be 8 ms before the strike
actually occurred.

We conducted a sequence of tests evaluating the accuracy
of predicted strike time and strike velocity, as well as the
number of missed notes, as we varied (1) the anticipation
time (i.e., how far in advance of the strike to commit to a
prediction, and send the prediction over the network to a
receiver), and (2) the sample rate of the camera data. Tests
employed anticipation times of 10, 30, 40, and 50 ms. The
sampling rates tested were 60, 100, 250, and 500 Hz. We
chose these sampling rates because they correspond roughly
to different cost levels of commercial cameras. The dataset
for each sample rate was constructed by downsampling from
the original 500 Hz dataset.

Our prediction algorithm works as follows: For each new
mallet height sample, test to see whether the peak of the
cycle has passed and the mallet is descending. If so, fit
a quadratic using the samples from the previous 30 ms.
The predicted strike time is simply the largest root (zero-
crossing) of this polynomial. Next, we determine if there is

120 T
Actual Path —
O Fitting Data
— — - Predicted Path

100

80

60

Height (pixels)

40

20

0

0 100 200 300 400 500
Time (ms)
Figure 4: Mallet cycle fitted with path prediction. The final
prediction is computed 50 ms before the predicted strike, based
on the data (yellow, 100 Hz). Prediction error is 8 ms.

sufficient time between the current time and the predicted
strike time to take another sample (i.e., wait for another
frame of video to arrive and be processed), to produce an
improved prediction. If so, repeat the above process. If not,
we “send” the event over the network to the receiver. (In
our prototype, the system does not actually send the event;
the prediction is simply recorded for later analysis.)

In our experiments we found empirically that quadratic
polynomials perform better in this context than either linear
or cubic predictors. To produce a ground-truth estimate of
the velocity at the time of contact, we also fit a quadratic to
samples from the 40 ms preceding the strike. We estimate
the ground-truth velocity using the first derivative of the
polynomial at the estimated strike time.

Alternate Prediction Strategy (Data-Driven). We
also experimented with a different prediction strategy that
compares the partially-completed cycle to every previously
recorded note. The previous cycles are each scaled to match
peak height, and slightly stretched in time to match partial
width, and then the best-matching shape (by Le-norm) is
used to predict the strike time. This approach did not per-
form any better than the basic quadratic fitting approach
described above, so for the remainder of the paper we re-
turn to that approach. We believe that this data-driven
approach might perform better in a real performance set-
ting where thousands of notes are captured, and every new
note provides training data. Moreover, in such a setting,
the basic approach might be less robust due to noise.

Desired Accuracy. We would like to gain at least 30 ms
of anticipation time (time between the sending of the pre-
diction and the actual strike). This is equal to the average
network latency between New York City and Chicago, or
Denver and San Diego [1].

We selected a target window for the predicted strike such
that it is within 20 ms of the actual strike, because per-
ceptual studies have shown that humans cannot perceive
ordering in sounds that occur within 20 ms of each other
[4]. The studies show that while a listener may be able to
perceive the existence of two sound onsets, he or she cannot
tell which one occurred first.

Likewise, we aim for the sound pressure level (SPL) of
the synthesized strike to be within 3 dB of the actual strike.
This amount of error is perceivable, but loudness is not as vi-
tal a characteristic as timing. We use a simplified model for
estimating the discrepancy between loudness of the synthe-
sized and actual strikes, based on the Hertz Contact Model
[10], and on empirical testing of how commercial synthesiz-
ers respond to MIDI velocity changes [8]. Specifically, as
in [8], we assume peak RMS varies with the square of im-
pact velocity. We can then express a perceptually-relevant,
if overly simple, estimate of the error in decibels:

LAY
Vim
Vp is the predicted velocity, and V,, is the measured velocity.

Lerror is the difference in SPL between the predicted and
actual note, in decibels.

Lerror = 201o0gy (1)

Missed Notes. Occasionally, the prediction algorithm de-
termines that there is enough time to collect another sample
before making its final prediction, only to find that when
the next prediction is made, the desired anticipation time
cannot be satisfied. The cutoff time has passed. For our
evaluation, we record these as missed notes.

96

S. RESULTS AND DISCUSSION

This section evaluates the effectiveness of this approach un-
der varying conditions.

0.9
0.8
0.7
0.6
0.5
0.4 |
0.3 Anticipation Time
10 ms
02 —30ms
04 ——40ms
—50ms
o T
0 5 10 15 20 0 1 2 3

Timing Error (ms) SPL Error (dB)

Figure 5: Varying Anticipation Time. Empirical cumulative
distribution function of timing and sound pressure level errors
while varying anticipation time. Sampling: 500 Hz.

Varying Anticipation Time. Figure 5 shows the em-
pirical cumulative distribution of the errors in strike time
prediction for various levels of anticipation times, at a sam-
pling rate of 500 Hz. For 10, 30, and 40 ms, 100% of the
measured errors fall within the desired 20 ms. Additionally,
over 80% of the errors for these times are under 5 ms. The
SPL errors also fall within the desired range of error. For
anticipation times of 10, 30, and 40 ms, 100% of the error is
less than the target of 3 dB. Additionally, over 90% of the
errors for these times are under 2 dB.

1

i 1 1
| |
0.9 | 0.9 |
20 ms | 3db |
0.8 | 0.8 |
0.7 | 0.7 I
w | |
3 0.6 ‘r 0.6 }
So05 0 05 |
s | I
£ 0.4 0.4
ui | |
0.3 | 03 Sampling Frequency
‘ 500 Hz
0.2 f 0.2 250 Hz
0.1 | 0.1 —— 100 Hz
[—— 60 Hz
0 ‘ 0 L
0 5 10 15 20 0 1 2 3

Timing Error (ms) SPL Error (dB)

Figure 6: Varying Camera Sampling Rate. Empirical cumula-
tive distribution function of timing and SPL errors while varying
sampling frequency. Anticipation time: 30 ms.

Varying Camera Sampling Rate. Figure 6 shows the
effect of sampling rate on prediction accuracy using an an-
ticipation time of 30 ms. All frequencies performed roughly
equally well. Occasionally the lower frequencies exhibit
lower error than the higher frequencies. This is because
troublesome cycles that are difficult to predict at the higher
frequency ranges become impossible to predict at lower fre-
quencies. They are recorded as missed notes, and are not
included in the CDF.

Missed Notes. Figure 7 shows the result of varying the
sampling rate and the anticipation time as they impact
number of missed notes. At a sampling rate of 500 Hz,
there are no missed notes at any anticipation time. Lower
sampling rates increase the percentage of missed notes, as
do higher anticipation times. We see a sweet spot at 250 Hz
(shown in green) and 30 ms where the error rate is 0.97%.
This means that for roughly every 100 notes played, 1 note
must either be dropped or transmitted knowing it is possible
that it will arrive late enough to be perceived as late.

25Samplmg Frequency

Missed (%)

10 15 20 25 30 35 40 45 50
Anticipation Time (ms)

Figure 7: Missed notes. Fraction of notes missed for various
required anticipation times and camera sampling rates.

Limits, Network Latency and Timing. Faster tempos,
shorter note lengths, and lower sampling rates all have a
similar effect of reducing the number of samples in a cycle.
Our experiments with the number of sample points used in
curve fitting suggested that at least 5 points were necessary
to produce an accurate prediction. With these limitations
in mind, at a tempo of 120 bpm, using a sampling rate of
250 Hz, the fastest note that can be played is a 32nd note.
Additionally, the time from the vertical peak of the swing to
the strike time must be less than the sum of the anticipation
time and the prediction computation time. If it is longer,
the algorithm can’t possibly predict a strike. Furthermore,
if an artist stops a downward swing after the predicted note
has been sent to the receiver, then a false note will sound.
A real-world system will have to contend with changes in
network latency. There is very little literature which studies
changes in latency over time, so we conducted an informal
pilot study, pinging 7 different popular websites over a pe-
riod of 10 minutes. We found that in general 95% of ping
times were within 5 milliseconds of each other. However,
some ping times reached as high as 10 times the baseline.
We intend to investigate latency behavior in a future study.
Finally, our system will have to synchronize timing between
sender and receiver. To address this, messages can be time
stamped and independent clocks on each end of the connec-
tion can be synchronized via GPS time synchronization [9].

Computation Time. In order to further determine the
plausibility of our proposed approach, we analyzed the com-
putation time taken by the various steps of the prediction
process. The computationally significant operations that
must be performed on each image are (1) locating the mal-
let head via template matching and (2) making a new path
prediction via least squares regression.

The complexity of the template matching algorithm is
O(mn) where m and n are the number of pixels in the tem-
plate and source image, respectively. Using the 512 x 512
pixel source image, the operation takes roughly 112 ms (in
Matlab, using a 2.3 GHz Core i5 Duo processor), which is
too long. Therefore, we constrained the search area to a
smaller region around the last known location of the mallet
head. Searching a 64 x 64 area takes roughly 1.4 ms. This
approach works extremely well for higher sampling rates
where the mallet head moves no more than 8 pixels per
sample. However, at 60 Hz, the mallet head in our dataset
moved a maximum of 75 pixels. The size of the template
image is 24 x 31 pixels. This implies that at 60 Hz, we
need a search area of at least 160 x 160 pixels, which takes
roughly 9 ms to search.

The least-squares algorithm used to predict the path al-
gorithm is quite fast, taking roughly 1 ms. We varied the
number of example points between 5 and 100 and found the
fitting time to be empirically constant with regards to the
number of input points. To this we add a 7 ms estimate of
latency for a high performance motion-capture camera.

In summary, for each image captured, our Matlab-based
motion tracking and prediction system requires 17 ms of

97

computation time. We have included this estimate in our
prediction model. This means that in figures 7, 5, and 6,
when the anticipation time of 10, 30, 40, or 50 ms is listed,
the prediction was made 27, 47, 57 and 67 ms before the
predicted strike time, to allow 17 ms before “sending” the
prediction across the network.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the viability of predicting the tim-
ing and velocity of percussion strikes with the intention of
reducing latency in networked musical performance. We
show that a simple algorithm, second-degree polynomial fit-
ting, is sufficient to predict notes 30 ms before they happen,
and that the timing of the predictions are nearly indistin-
guishable from the original strikes. We also show that pre-
dicted and actual sound pressure levels are within 3 dB,
and that the frequency of missed notes is below 1%. Be-
cause of the promising nature of these results, our next step
will be to implement a real-time version of this prediction
system and test the results with human performers. We are
also eager to explore a number of other avenues for future
work, including adapting to the style of a performer in real-
time, incorporating musically-aware analysis by leveraging
tempo tracking and/or score following, devising a robust
treatment of false positive strikes, and tracking multiple
mallets and/or other instruments.

7. ACKNOWLEDGMENTS

This work was supported by the Project X fund at Princeton
University.

8. REFERENCES

[1] Global IP Network Latency, Jan. 2013. http://
ipnetwork.bgtmo.ip.att.net/pws/network_delay.html.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and

R. Morris. Resilient overlay networks. In Proc. ACM

Symposium on Operating Systems Principles, 2001.

C. Bartlette and M. Bocko. Effect of Network Latency

on Interactive Musical Performance. Music

Perception, 24(1), 2006.

D. E. Broadbent and P. Ladefoged. Auditory

perception of temporal order. The Journal of the

Acoustical Society of America, 31(11), 1959.

J. Céceres and C. Chafe. JackTrip: Under the hood of

an engine for network audio. Journal of New Music

Research, 39(3), 2010.

C. Chafe, J. Céaceres, and M. Gurevich. Effect of

temporal separation on synchronization in rhythmic

performance. Perception, 39(7), 2010.

S. Dahl. Striking movements: A survey of motion

analysis of percussionists. Acoustical Science and

Technology, 32(5), 2011.

R. Dannenberg. The Interpretation of MIDI Velocity.

In Proc. ICMC, 2006.

J. Elson, L. Girod, and D. Estrin. Fine-grained

network time synchronization using reference

broadcasts. ACM SIGOPS Operating Systems Review,

36(SI):147-163, 2002.

H. Hertz. On the contact of elastic solids. J. reine

angew. Math, 92(156-171), 1881.

M. Sarkar and B. Vercoe. Recognition and prediction

in a network music performance system for Indian

percussion. Proc. NIME, 2007.

R. Szeliski. Computer vision: Algorithms and

applications. Springer, 2010.

B3l

(4]

(8]

(9]

(10]

(11]

(12]

