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ABSTRACT

Electroencephalography (EEG) has been used to generate
music for over 40 years, but the most recent developments in
brain—computer interfaces (BCI) allow greater control and
more flexible expression to use new musical instruments via
EEG. We developed a real-time musical performance system
using BCI technology and sonification techniques to gener-
ate chords with organically fluctuating timbre. We aimed to
emulate the expressivity of traditional acoustic instruments
by adding “non-coded” expressions that were not marked in
the score. The BCI part of the system classifies patterns
during neural activity while a performer imagines a chord.
The sonification part of the system captures non-stationary
changes in the brain waves and reflects them in the timbre
by additive synthesis. In this paper, we discuss the concep-
tual design, system development, and the performance of
this instrument.
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1. INTRODUCTION

A musician can dream about an ideal performance without
any physical limitations, where the performer plays with
the expressivity imagined in their mind. At the heart of
this dream, however, there is an assumption that the human
mind is capable of free expression (our imagination of music
is supposed to be spontaneous, without constraint, and in
perfect accord) but its physical rendering, i.e., the musical
performance, is a limited delivery of the overall imagined
performance. In this project, we attempted to capture a
glimpse of the imagination of music to generate a perfor-
mance with the aim of making music an organic expression
that reflects the lively and subtle transitions of psychologi-
cal states.
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Thus, we developed an expressive musical instrument for
concert performances, which renders musical chords with
organic nuances (dynamics and timbre) in real time based
on the brain waves measured during musical imagination,
using a brain—computer interface (BCI) technique and soni-
fication techniques. A study by Herholz et al. showed that
there are overlapping areas in the brain during melody per-
ception and imagery[5]. Thus, we aimed to employ these
types of brain waves related to musical imagery for gener-
ating musical expression. Table 1 shows the features of our
BCI instrument compared with an acoustic instrument.

A traditional acoustic instrument is highly expressive when
it has been mastered after extensive training. A survey
showed that humans add expressive performance actions
that are not marked in the score, which can also be found
in pre-20th century music. Many instruments also provide
the ability to change intonation, vibrato, and timbre in an
expressive manner [8]. We consider that this expressivity of-
ten relies on the capacity for intended codes, such as notes
and rhythms, and non-coded expressions, such as dynamics,
timbre, and subtle micro-timing.

Using our new instrument, we aimed to generate the same
degree of expressivity based on coded and non-coded in-
formation from brain waves. The coded musical elements
(e.g., musical chords) are generated based on the classifi-
cation of brain waves, i.e., qualitative information whereas
the non-coded, organic nuances (e.g., dynamics and tim-
bre) are generated from the transitional characteristics of
the brain waves, i.e., quantitative information. In addition,
our instrument has a video projection element that corre-
sponds to the state of the brain waves, which aims to reflect
the music imagery.

This instrument was developed for practical musical ex-
pression but we hope also that it has the potential for un-
derstanding the neural activity in the brain when a player
is engaged in musical expression.

1.1 Advantages of Using Electroencephalog-
raphy to Produce Music

Electroencephalography (EEG) is a method for measuring
the electrical activity produced by brain neurons. Com-
pared with other biological methods, it has some appealing
points for use in music generation. The time resolution of
the data acquired using EEG is very fine, which makes it
suitable for generating musical changes over time. Other
methods used to observe brain activity, such as fMRI and



Table 1: Comparison of Musical Expressivity Using an Acoustic Instrument and our Instrument

Acoustic Instrument

Our BCI Instrument

Control Physical motion to

generate physical sound

Imagery, psychological motion to induce neural activity

Music (coded, qualitative) Notation

Chords generated by classification (BCI)

Music (non-coded, quantitative)

Non-notated articulation

Dynamics and timbre as sonification (sonification)

Vision Gestural presentation

Video corresponding to music imagery

MEG, require extremely large equipment, whereas many
portable and handy EEG systems are available on the mar-
ket. However, the most attractive aspect of EEG is that the
brain waves reflect thoughts and emotional states. Thus,
producing music using EEG may reveal actual emotions,
which is an attractive prospect.

In addition, research into BCIs has been growing in recent
decades. The ultimate goal of BCI is to build a system that
reads human thoughts, which can provide a bridge between
the brain and an external device. Many analytical methods
have used BCI to identify thought states and emotions in
the mind. Thus, BCI provides the possibility of extracting
the patterns of musical imagery from neural activity.

1.2 Related Work

Many notable composers have attempted to produce mu-
sic using EEG. The American composer Alvin Lucier was
the first person to use EEG as a source of music. In his
piece Music for Solo Performer (1965), alpha waves were
used to vibrate percussion instruments. David Rosenboom
is another famous composer who used EEG for sound and
music creation. One of his contributions was the use of a
biofeedback process during musical performances where he
made the brain state of the performer audible [14].

In recent years, many artists have worked using EEG,
which has been facilitated by the smaller size and low price
of the latest EEG devices. For example, Angel [1] pro-
duced interactive art using EEG data, while visual effects
and sounds were generated based on brain, heart, and respi-
ration signals by Filatriau [3]. Some notable projects have
been presented at past NIME conferences [4, 10, 11, 13].

Previous studies have used BCI for music creation. Mi-
randa developed a brain—computer music interface (BCMI)
that comprised a MIDI-controlled mechanical acoustic pi-
ano controlled by EEG using generative musical rules[12].
Another group, The MiND Ensemble, delivered stage per-
formances using a portable EEG system!. In their per-
formances, psychological parameters were estimated from
brain waves and assigned to musical parameters.

1.3 Problems and Solutions

All of the aforementioned studies developed functional meth-
ods for music performance using EEG, which allowed the
audience to perceive musically expressed neural activities
from various perspectives. These studies typically analyzed
brain waves and presented them as sounds. Thus, they ex-
tracted useful information from neural activity and mapped
it to musical parameters, before presenting the music to au-
diences. In our study, we considered the different types
of biosignal information that can be obtained and used for
music generation.

1.3.1 Qualitative and Quantitative Information

Most biosignal information can be classified as qualitative
or quantitative.

The book Biomedical Signals and Sensors I by Eugenijus
Kaniusas provides a historical account of the methods used

"http://www.themindensemble . com/
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for collecting biosignals [7]. Early research was based on
verbal descriptions provided by patients, which were subjec-
tive and qualitative. By contrast, the use of technical tools
to make biological measurements has reduced the level of
subjectivity because these approaches are based on quanti-
tative data. Interestingly, a flute teacher, Francois Nicolas
Marquet, attempted to code heart pulses as a musical nota-
tion. This case is regarded as a combination of qualitative
and quantitative data.

Kaniusas regarded the difference between qualitative and
quantitative information as a problem of subjectivity versus
objectivity. When considering the use of biosignals for mu-
sical expression, this approach facilitates a clear mapping to
musical parameters. This is because music may be consid-
ered to be composed of coded information, such as notated
pitch, and non-coded information, such as non-notated ar-
ticulation, which correspond to qualitative and quantitative
data, respectively. Therefore, playing an instrument is con-
sidered to be an action where the player produces sounds
based on their subjective (or sometimes subconscious) ideas
and feelings, whereas the sound produced by the player con-
veys both qualitative and quantitative information to the
audience.

In this context, we propose a method that integrates
the qualitative and quantitative information obtained us-
ing EEG before its use for musical expression. The major
advantage of our approach is that quantitative information
can be contextualized using qualitative information. Both
qualitative and quantitative information are then mapped
onto musical parameters, which are coded musical elements
and non-coded organic nuances, respectively. In this man-
ner, the integrated information is transformed into musical
expression.

2. GOALS

Based on the solutions proposed above, we aimed to pro-
duce a musical performance by integrating the qualitative
and quantitative data extracted from EEG outputs. Thus,
a player wearing an EEG system imagines chords, i.e., sets
of musical notes, in their mind. Our BCI instrument ex-
tracts various patterns and characteristics from the EEG
data and converts them into sounds and visual images. The
amplitude of the EEG data affects the timbre of chords via
sonification. This allows music to be played using brain
waves as an instrument where the sounds reflect the brain
activity during the imagination of music. Based on this
idea, we aimed to design our instrument for practical use in
musical performances, such as a concert.

To accomplish this goal, the Brain dreams Music (BdM)
Project was initiated in April 2011 by researchers from di-
verse domains, such as music composition, neuroscience,
and computer science. This group has conducted research
to develop this new instrument.?

*http://brain-dreams-music.net/



3. DESIGN AND IMPLEMENTATION
3.1 Design of the Performance

Before formulating the specifications of the instrument, we
designed the overall process of our musical performance as
follows. Figure 1 shows the overall procedure used to ac-
quire EEG data, which are processed and delivered to the
audience using BCI. In this procedure, the instrument esti-
mates the music imagined by a player and generates sounds
and visual images automatically in real time.

[A] EEG Analysis

~
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Brain Player
imagines chords.

EEG data acquisition

*Raw EEG data stream

Preprocessing (filtering)

v

Feature extraction
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transition
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Figure 1: Schematic diagram of the procedure used
during musical performances with BCI. The ex-
tracted qualitative and quantitative information are
integrated to produce sound and vision representa-
tions.

The procedure can be divided into two stages, which are
indicated by the grey areas [A] and [B] in the figure.

3.1.1 EEG Analysis ([A])

The first stage is the EEG analysis. The computer estimates
the patterns of imagined musical chords as qualitative infor-
mation and extracts other quantitative information. These
processes are conducted in parallel.

EEG Data Acquisition.

First, the player known as the Brain Player wears an
EEG cap and imagines notes as if they were actually playing
music. In the latest version, the player selects one of four
different types of chords during each imagination session.
The time frame for each chord is 3 s and it is repeated
more than 10 times. During this period, the EEG signal is
recorded by the computer.
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Preprocessing.

The acquired EEG data are processed using a band-pass
filter during the Preprocessing stage. This removes any ar-
tifacts, including noise components such as the electric hum
noise or the pulse from the heart.

Feature Extraction, Classifier Learning, and Classifi-
cation.

To estimate the patterns imagined by the player, it is
necessary to make the computer learn the correlations be-
tween features in the brain-wave patterns and the imagined
chords. However, the electrophysiological brain signals cap-
tured non-invasively via the human scalp using EEG are
non-linear and non-stationary. We addressed this problem
by combining two methods, i.e., the common spatial pat-
terns (CSP) method is used for feature extraction and bi-
nary linear discriminant analysis (LDA) is used for classifi-
cation.

To determine the order of processing, common features
are extracted from each imagery pattern using the CSP fea-
ture extraction process and the filtered EEG signals. CSP
has been used widely in BCI research to identify linear spa-
tial filters for extracting discriminative brain activities dur-
ing two different mental imagery tasks. We used CSP to
find the optimal spatial filter for each imagery class, which
maximizes the average energy of that particular class while
minimizing the other remaining classes.

The extracted features are stored and organized during
the classifier learning process. This learning process is con-
ducted every time before a performance because the state of
the brain waves changes on a daily basis and the computer
needs to be recalibrated.

After the computer learns the feature of the EEG pattern,
it is ready for classification. During the Classification pro-
cess, the newly acquired data is classified according to four
predefined patterns. To implement a multi-class machine
learning approach, we utilized a cascade of LDA classifiers
in a one-versus-all configuration. During each classification
step, “a winner takes all” method is applied by choosing the
best one-versus-all classification posterior probability result.
The results of the pattern analysis and the probability are
used to generate sounds and visual images.

In another path, the filtered EEG signal is used directly
without processing as a source for sonification.

This instrument applies different information properties
using the classification results and the filtered EEG signals
as qualitative and quantitative information, respectively.

3.1.2 Generation ([B])

Various types of data produced by the analysis process are
mapped to the parameters of the sounds and images, which
are used to generate an entity that will be received by the
audience.

Sound.

The synthesizer receives the classification results and gen-
erates the sound of chords with an additive synthesis. The
dynamics of the sound vary depending on the probability
value, which indicates the degree to which the classification
results are likely to be correct. Each note sound comprises
one fundamental tone and seven overtones, i.e., a total of
eight sinusoidal waves. These waves are multiplied by pro-
cessing the raw EEG data from each electrode channel, and
modulated. To enhance the effect of timbre, the overtones
are set with various degrees of inharmonicity with weighting
coefficients for each overtone. This is an extension of over-
tone mapping [15] and it produces a unified sound effect
when integrating multichannel EEG signals. Finally, each



overtone is played separately from eight speakers, which
mixes all of the overtones in the acoustic space.

The timing of the imagery, EEG recording, classification,
and onset of the playing sound are triggered by the score
data. The score is made by the composer beforehand us-
ing four predefined chords. During our performances, the
player attempts to play music by imagining each chord a
short time before it is actually played. This can be slightly
confusing for the player and the player has to know when
to imagine. To address this situation, we implemented a
time-synchronized score display. The score reflects the com-
poser’s musical intention to some extent. After the score
display starts playing, each chord the player needs to imag-
ine is shown on the player’s iPad in sequence so the player
can concentrate on imagining that chord. In other words,
the score simply indicates the timing but does not affect
any of the result of the analysis, including the classification
results.

Visualization.

Visual images are also generated by the same informa-
tion used to produce sounds and they are presented to the
audience at the same time.

The positional arrangement of the electrodes is shown
on the screen so the audience can observe the classification
results and the brain activity simultaneously. Thus, the
overall color represents the classified pattern, the transition
speed of the color reflects the probability value, and the
brightness of each electrode position represents the ampli-
tude of the filtered EEG signal.

3.2 Implementation of the Instrument

To implement this performance paradigm, we constructed
the BCI shown in Figure 2.

Hardware -
Software :l

Data stream

Text messaging

«bluetooth»
Raw EEG Data

Control Surface

EEG Monitor

Score Display

Messaging Server

EEG Streaming Server l

syneser [] [ vivtzr |

Cvevsene ||

«|[EEE 802.11g»

Figure 2: Diagram of the system architecture of our
BCI instrument.
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Table 2: List of Programming Languages and APIs
Used in the BCI

Process Languages and APIs used
EEG Streaming Server | MATLAB
Messaging Server Java
Web Server Node.js
Classifier MATLAB
Synthesizer Max/MSP
Visualizer Java, OpenGL
Control Surface Java, OpenGL

3.2.1 Hardware

A mobile wireless EEG amplifier g. MOBIlab+ was used in
combination with dry EEG electrodes g.SAHARA manu-
factured by g.tec>. g.MOBIlab+ also sent EEG data to
the computer in real time at a 256 Hz sampling rate via
Bluetooth serial communication. Unlike typical wet EEG
electrodes, the g.SAHARA dry electrodes did not require
gel or paste. Thus, the preparation was faster and there
was no need to wash the head after use. The number of
measurement positions was up to eight each time and the
arrangement could be changed freely. Based on the results
of our experiment using another wet 32-point EEG elec-
trode system, we selected the eight channels that worked
the most efficiently and effectively. The portability of this
EEG device indicated that it was suited perfectly to our
musical performance.

We used a MacBook Pro with Windows 7, which was in-
stalled with BootCamp. Some physical MIDI controllers
were connected to it to allow more convenient control dur-
ing performances. In addition, we used iPads to provide a
visual presentation of the imagery and to give other accom-
panying acoustic instrument players cues that facilitated
musical synchronization.

Finally, the generated sound was played by 8-channel
speakers and the visualization was shown on dual screen.
The multi-channel speakers produced an acoustic space where
the audience could hear precise changes in brain activity.

3.2.2 Software

The software configured several internal processes using mul-
tiple programming languages and APIs (Table 2).

Each process operates independently in parallel while in-
formation is exchanged between processes via networking.
The exchanged information belongs to two types, i.e., a
stream of EEG data and text messages. Both types of data
are transferred via UDP. Three types of servers, i.e., an
EEG Streaming Server, Messaging Server, and Web Server
were developed using MATLAB and Node.js?.

All of the controls required for a performance are handled
on the Control Surface. A preview monitor of the raw EEG
waveforms and the topographic map, the controls used for
the classification process, and the sequencer for playing con-
trol were implemented on the Control Surface (Figure 3).

4. PERFORMANCE

‘We conducted five performances during 1.5 years using this
musical BCI, including domestic and overseas events. Three
of the performances were given in large concert halls in in-
ternational conferences or exchange concert programs. Oth-
ers were parts of concerts in small lecture rooms.

The latest performance took place at Kubus (Cube) in
Zentrum fiir Kunst und Medientechnologie Karlsruhe on

Shttp://wuw.gtec.at/
‘http://nodejs.org/
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Figure 3: Screenshot of the control surface.

September 2012° (Figure 4). The seating capacity was around
50 and eight speakers were arranged at regular intervals on
the stage. Visual projections were displayed on a large cen-
tral screen for the Visualizer and another monitor at the
side displayed the Control Surface. We provided a demon-
stration and gave a live performance to verify the usability
and expressivity of our instrument. The brain player was
not allowed to move his body so the audience could see
that the player was sitting still. During the performance,
the audience listened to the sound and recognized certain
musical structures that partly reflected the player’s inten-
tions. The fluctuating timbre also allowed the audience to
perceive dynamical changes in brain activity. The visual
images synchronized with sounds allowed the audience to
appreciate the brain activity.

Figure 4: Performance at Zentrum fiir Kunst und
Medientechnologie Karlsruhe (ZKM), September
2012.

The brain player usually plays music with one or several
accompanists. We have delivered performances on many oc-
casions with a clarinet player and once with a string quartet.
These acoustic instrument players interact with the sound
generated by the brain player, which produces a dialogue
between the players (Figure 5).

Video recordings and pictures of past performances have
been uploaded on the website of the BAM Project.

"http://on1.zkm.de/zkm/stories/storyReader$8116
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Figure 5: Stage diagram.

S. DISCUSSION

In this section, we discuss the technical novelty of BCI for
communicating the aesthetics of musical expression.

5.1 Analysis methods

The classification algorithm was the main factor that im-
proved our instrument. The average accuracy was 50% us-
ing four classes. This result was sufficiently high because
the chance level was 25%. During a musical performance,
however, it was difficult to get the feeling that the player
was controlling the instrument on their own. Thus, the ac-
curacy needs to be improved to enhance the level of control.
Possible solutions are to improve the algorithm or to use
more advanced methods such as SVM or cross-validation.
These techniques may improve the results but they require
more computational time, which is why methods need to be
devised for online implementation. Another possibility is
making improvements using portable EEG devices. Exper-
imental evaluations are required in future to address these
points.

Two other possible analytical methods could be used in
our BCI instrument. First, music is a temporal art form
so temporal change appears to be an important element in
the imagery of music, which may also involve the anticipa-
tion of different musical states. In future, we could use an
EEG analysis method to evaluate the causal relations be-
tween channels relative to time, such as a Directed Transfer
Function where imagery patterns related to changes in the
music might be captured.

Another possibility is the measurement of emotional states.
The components of music are considered to be associated
with specific types of emotions so the imagery of music
may contain images of emotional states. Previous stud-
ies have measured biological signals to estimate emotional
states during musical performances [6, 9]. Estimating emo-
tions during musical imagery would be a novel application
of the BCI instrument.

5.2 Musical Elements Used for Imagery

The choice of the music elements used for imagery is impor-
tant from another perspective. In our instrument, we used
long tones of chords with a certain degree of complexity. We
used them because the player could imagine the temporally
steady state of a sound and each chord had a characteristic
that was distinct from another. We conducted an experi-
ment to compare various types of musical elements during
imagery and determined the classification accuracy. We as-
sumed that a steady-state imagery while sustaining chords
was favorable for our classification method, which analyzed
the pattern of specific time frame in the EEG data.



5.3 Improvement of Human Imagery

The computer we used was not responsible entirely for the
classification results because the human operator also had
room for improvement. If the human operator could imag-
ine the music better, the computer would find it consider-
ably easier to classify the brain-wave patterns. Many in-
struments require training before an expert musical perfor-
mance can be produced and this was also the case for our in-
strument. Thus, if the controllability could be increased by
user imagery enhancement training, it would be closer to its
ideal form and the user could produce an instrument with a
wide range of expressivity. At present, we have not verified
whether non-musicians with a limited ability for imagin-
ing music can operate the instrument. If we can develop a
methodology for learning musical imagery, this would open
up the possibilities of brain music performance by many
people. A previous study demonstrated that brains learn to
control BCI adaptively citeblake:control. This type of hu-
man self-transformation process based on interactions with
an instrument may improve expressivity.

5.4 Evaluation

As described above, we consider that it is always important
to explore the effectiveness of musical BCI by coupling an
analysis method with imagery elements and human imagery
enhancement. These issues can be verified by technical eval-
uation in a scientific manner.

However, yet another type of evaluation is still required,
which is the artistic meaning of the musical performance
itself and the results produced by that performance. For
example, it is not clear whether the player might exhibit
better musical expression of the neural musical imagery with
bodily movement. Davidson and Correia showed that the
body is vital for the generation of expressive ideas about
music, as well as being essential for the physical manipula-
tion of the instrument[2]. Thus, we would like to compare
physically embodied performances with disembodied brain
performances.

6. CONCLUSION

We developed a BCI-based musical instrument that uses
a combination of qualitative and quantitative information,
i.e., the classification of musical imagery and the sonifica-
tion of brain activity. This instrument was designed for use
during a concert performance. It is our dream to convert
natural expressions such as the mental images of emotions
or memories directly into musical imagery, which would be
free from physical constraints. This goal has only been
partly achieved so far, but this was a first step that helps to
elucidate the relationship between musical expression and
the performance intent. As mentioned in Section 5.4, the
multidimensional evaluation of this project need to address
scientific and artistic issues. Thus, we will continue to ex-
plore our experiments and performances interactively be-
cause they are the most fascinating parts of this project.
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