
NEXUS: Collaborative Performance for the Masses,
Handling Instrument Interface Distribution through the

Web

Jesse Allison
Louisiana State University

216 Johnston Hall
Baton Rouge, Louisiana

70803
jtallison@lsu.edu

Yemin Oh
Louisiana State University

216 Johnston Hall
Baton Rouge, Louisiana

70803
yoh1@lsu.edu

Benjamin Taylor
Louisiana State University

216 Johnston Hall
Baton Rouge, Louisiana

70803
btayl61@lsu.edu

ABSTRACT
Distributed performance systems present many challenges
to the artist in managing performance information, distri-
bution and coordination of interface to many users, and
cross platform support to provide a reasonable level of in-
teraction to the widest possible user base.

Now that many features of HTML 5 are implemented,
powerful browser based interfaces can be utilized for distri-
bution across a variety of static and mobile devices. The
author proposes leveraging the power of a web application
to handle distribution of user interfaces and passing interac-
tions via OSC to and from realtime audio/video processing
software. Interfaces developed in this fashion can reach po-
tential performers by distributing a unique user interface to
any device with a browser anywhere in the world.

Keywords
NIME, distributed performance systems, Ruby on Rails,
collaborative performance, distributed instruments, distributed
interface, HTML5, browser based interface

1. INTRODUCTION
With the proliferation of mobile devices, avenues for dis-
tributing a live performance system, or instrument, for col-
laborative performance are growing. Distributed perfor-
mance systems have undergone many leaps forward with the
increased speed of networks, proliferation of smart phones,
and the emergence of ensembles such as laptop orchestras
that are ideal for exploring these kinds of interaction. As
mobile devices continue to become more powerful and ubiq-
uitous, integrating them into performance systems is in-
creasingly desired[8]. Along with these explorations in col-
laborative performance come some significant distribution
and data management challenges. A number of approaches
for distributing a performance system, the challenges in im-
plementing them, and a testable solution will be examined.
Many of the approaches have been put into practice in the
author’s collection of laptop ensemble and audience pieces
entitled Perception[3] and will be noted when appropriate.

2. DISTRIBUTED PERFORMANCE SYSTEMS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

Distribution of an instrument for collaborative performance
requires breaking down the system into parts and deciding
what to distribute and how these separated parts should
communicate[6]. Typical parts of such a composed instru-
ment[10] system are the user interface such as buttons,
sliders, and accelerometers, the mapping structure defining
how the controls are interpreted by the instrument to create
sound, the communication system defining how instrument
parts pass and receive control messages, and the audio pro-
duction engine or audio graph actually producing the wave-
forms. With these components of performance systems in
mind a number of approaches to distributed instruments
become apparent.

Audience

Figure 1: Autonomous Performance System.

2.1 Autonomous Collaborative Performance
System

Perhaps the simplest approach is to have the instrument be
self-contained, installed on each performer’s device, and op-
erating individually. Each user has an interface, mapping
structure, and audio production engine installed on their
device. This approach is taken by many pieces for laptop

�1

orchestra1, traditional mobile music applications such as
ThumbJam2 and Ocarina3, as well as the approach by such
toolkits and libraries as libPd[4], MoMU Toolkit[5], and uR-
Mus[7]. Although such a system may communicate with
each other or with a central server/coordinator to increase
the collaboration in performance, at its core, each could
operate and make sounds autonomously. The collaborative
nature in this type of system would be analogous to a band
where each individual has a sonic contribution to the sound
of the ensemble. Admittedly the delineation between en-
semble and collaborative meta-instrument is debatable, but
the idea of a group of collaborating performers combining to
form a meta-instrument is a useful analogy, and as software
can augment communication and influence between indi-
vidual performers, the meta-instrument metaphor becomes
even more significant (Figure 1).

2.2 Centralized Audio Production, Distributed
Interface

A second approach is through seperation of the interface
for an instrument and the sound production engine of the
instrument itself. This approach is taken by such software
as TouchOSC4, Squidy Interaction Library5, and OSCula-
tor6, among many others, to pass control parameters from
graphic user interfaces and sensors to a central audio en-
gine for sound production. This separation requires a good
deal more structure and coordination in the software de-
sign which by necessity makes the interface more rigid once
deployed. Computationally, it is both restrictive and free-
ing to have a centralized audio engine. The audio engine is
no longer restricted by the computational power of an in-
dividual mobile device, but cannot leverage the power and
scalability of many individual rendering engines. Another
difference is the localization of the final produced sound.
The sound can no longer emanate from the point of interac-
tion except through the use of streaming audio back to the
interface which has inherent latency and bandwidth issues.
Also, instead of relying on the small and typically impotent
sound system on mobile devices, the sound can be produced
over a more adequate sound system.

A consequent approach that is conceptually distinct, yet
still derives from audio engine and interface separation, is
the division of the interface into parts, with distribution
of those smaller parts of the overall instrument to many
devices/performers. In this scenario, performers contribute
to the state of a central audio engine and collaboratively
define what sonic events are produced(Figure 2).

2.3 Responsive Server, Adaptive Interface
Finally, a responsive system could be created where the cen-
tral server handling distribution of the interface would also
receive, process, and send messages and data back to the
interfaces. These commands could be displayed directly to
the performer, setting parameters on the interface, or com-
pletely updating the interface. In Perception[Divergence] [3],
a system was built where images can be drawn on a de-
vice and submitted back to the server. Once received, the
server passes them out to another user for further annota-
tion, creating a collaborative image interface. All sorts of
coordinated collaborative experiences could be envisioned.

1examples: Plork http://plork.cs.princeton.edu/
and the Laptop Orchestra of Louisiana
http://laptoporchestrala.wordpress.com/
2http://www.thumbjam.com/
3http://ocarina.smule.com/
4http://hexler.net/software/touchosc
5http://merkur61.inf.uni-konstanz.de:8080/squidy/
6http://www.osculator.net/

Audience

Interface Server

Centralized Audio
Production Engine

(MaxMSP)

Aggregate
Control Changes

Control Changes

Figure 2: Distributed interface with centralized au-
dio production.

�2

2.4 Possibility of Other Approaches
Note that there are many degrees of variation between each
of these types of systems. One could envision distributed en-
vironments that span the range of cross-performer influence,
instrument segmentation and distribution, local versus cen-
tralized sound production, and bi-directional influence on
the user interface itself. The main similarity is a need for
distributing an interface, coordinating communications be-
tween collaborators, and coordinating control changes for
audio production.

2.5 Challenges to Distribution
There are many varieties of operating systems, development
kits, frameworks, and proprietary code making the incorpo-
ration of more than one type or generation of device difficult
to do except under very narrow use cases. Although there
are cross-platform development efforts such as OpenFrame-
works7, they are not yet fully realized and are constantly
dealing with upgrades and incompatabilities across many
devices. The current state of the art requires a platform
dependent application to be built for each device to be in-
corporated in the system. This can be very daunting and
in many cases down right impossible due to budgetary and
time constraints. The simple idea of distributing an instru-
ment to people with mobile phones may require supporting
iOS, Android, Blackberry OS, Symbian, PalmOs, Windows
Phone, and any other system who may want to participate.

Once the application is built, managing communications
between more than just a few devices becomes remarkably
complex. Beyond the significant task of defining the inter-
action, a suitable communications protocol must be chosen
along with a framework to support it on each platform.
Then, a system must be coded for passing, receiving, and
handling the interactions. Master/slave pairings must be
negotiated, not to mention the difficulties of trying to ag-
gregate many sources of information to create a final pa-
rameter. The complexity of such a system only increases as
more devices are added to the system, or even worse, added
and taken away dynamically.

2.6 Enter the Web
In each of the distributed performance systems described
above, two significant problems arise: cross-platform appli-
cation development and coordinating communication and
interaction.

Pushing the user interface of a distributed performance
system into the browser helps to alleviate both of these
issues. Due in large part to the ubiquitous usage of the
internet, much effort has been poured into creating stan-
dards for display and interaction with web pages8. Al-
though browsers are notorious for behaving somewhat dif-
ferently, overall they can be made to look and function
similarly across a wide variety of platforms both desktop
and mobile. Compared to other cross platform initiatives,
browser functionality is quite well developed. Once the
choice to adopt a browser based UI is made, the artist can
develop a single interface that can be utilized by most web
enabled devices.

An additional concern with browser based performance is
that of perceived latency. Interactivity in the browser has a
few bottlenecks - notably, javascript as the coding language,
http requests and AJAX as the communications protocol,
and the lack of availability of sensor data within browsers.
Fortunately, browser implementations of javascript in HTML5

7http://www.openframeworks.cc/
8W3C’s latest specification of HTML5:
http://dev.w3.org/html5/spec/Overview.html

are making marked speed improvements to the point that
most types of interactivity can be made to feel responsive.
AJAX is a bit slower than the ubiquitous UDP used in most
distributed user interface software, however with the rise of
web sockets as well as browsers embedded in applications,
communications can be made quite snappy, or simply made
through UDP instead. Finally, browsers are gaining more
and more functionality including access to accelerometers,
multi-touch data, camera, audio input, and location infor-
mation; finally approaching the performance of their native
counterparts. In Divergence (Figure 3)the browser was used
in an iPad to send continuous accelerometer and touch data
to a central server to control the sampling and pitch shifting
of a marimba.[2]

Figure 3: Browser based accelerometer and touch
performance interface.

3. BROWSER BASED USER INTERFACE
Moving the display and interaction of a user interface into
a browser allows for cross-platform distribution. Dynamic
webpage distribution is typically handled through a server
side web application. There are a variety of approaches and
solutions to web communication, state management, and
control logic, which have tradeoffs in complexity, ease of use,
ease of support and deployment, and compliance to evolv-
ing best practices. Various options include everything from
javascript, Perl, and php, to full frameworks like Rails and
.NET. The authors have created a php based distributed
UI, Node.js, and full web app implementations using Ruby
on Rails.

Ruby on Rails is quickly adaptable to a wide variety of
scenarios that allow for interesting performance paradigms.
The MVC architecture can be easily adapted to cover in-
strument interface distribution, parameter management, and
control logic. As the Rails community focus on Agile de-
velopment supports the ability to quickly try out various
implementations and Rails tends to be painfully near or at
the cutting edge of web best practices, we chose to do much
of our prototypical development utilizing the framework and
will discuss further implementation details in that light.

3.1 Rails: a useful solution
Ruby on Rails is a framework for developing web applica-
tions that handles much of the distribution and informa-
tion management issues through well-trodden conventions
as opposed to configuration. The end result is a very rapid
development process that is easily adaptable to the devel-
oper’s specific goals. It handles many of the normal issues
of scalability, testing, database configuration and manage-
ment, session management, and customized user interface

�3

generation. When applied to the distribution of user in-
terface objects and coordinating their incoming responses,
standard Rails techniques have performed admirably.

3.2 MVC Architecture Adapted for Performance
Instrument

Rails uses a traditional MVC software architecture, adopted
for handling web applications. The process for serving tra-
ditional web pages goes something like this (Figure 4):

routes.rb

Request

Controller

Active Record

Database

Method Call

CRUD

Active View
render .erb.html

files

Data Variables

Figure 4: Overview of the Rails process.

An incoming page request is handled by the route.rb file
specifying what controller method to call. The controller
method then handles the gathering and processing of any
information needed for the requested page. This step typ-
ically involves polling the Model (database) to retrieve in-
formation like blog posts, calendar events, and user infor-
mation for display. Once the controller has prepared the
needed information, it is passed to the appropriate view files
for display. The view files are usually written with embed-
ded ruby (ex. index.erb.html) which handles the iteration
through arrays and hashes of information, the generation
of html tags, image names, user control options, inserting
partials and the like. These ruby commands are processed
to produce the final markup which is passed back to the
requesting browser.

Of course this can become much more complicated with
logic occuring in the view in the form of helpers, AJAX
methods, end user specific code, etc., but for the most part,
this series of events is the standard approach. In usage as a
performance instrument environment, the model/view/controller
activities are divided in the following ways.

The Model in our application handles any data that we
want to store and recall. In the simplest use cases no in-
formation would be stored, instead passing interactions di-
rectly along to the audio engine. The model could be used
to store user specific information such as which parameters
are actively assigned to which user, routings, musical sec-

tions, etc. In a complex scenario, it could store user defined
sequences, images, preferences, snippets of audio, aggregate
parameters, just about anything.

The Controller has the assignment of divvying up the
user interface parameters and coordinating the incoming
responses. Upon first request from a potential participant
this would include selecting parameters and controls to be
assigned to the user, storing any user specific information
that may be used later, and calling the appropriate view
files to be rendered. Further contact from the page would
be from UI changes. The controller would then either put
them into the database or simply pass them along to the
audio production engine as an OSC message (Figure 5). The
controller would also handle sending each user any updates
to the UI that may occur: waveform changes, color events,
complete UI replacement, etc.

Rails Controller
• Keep track of
user's session id
• Assign UI objects
and UI-ID's for
each view
• Pass UI
movements to
Audio engine

1. UI Requests

2. UI
Returned

3. AJAX UI
MovementsAction View

. n

Figure 5: Rails UI Distribution.

Finally, the View receives information from the controller
and uses that to create user specific interfaces. These can
take the form of traditional buttons, drop down menues, and
text boxes, but can also incorporate sophisticated graphi-
cal UI objects through javascript. The widespread adop-
tion of the HTML5 canvas tag allows for dynamic draw-
ing and interaction with a graphical element. The NEXUS
open source project [1] contains a set of nexusUI javascript
objects demonstrating many dynamic functions that can
be done within the canvas object including: timer based
automation, inter-canvas communications, multi-touch, ac-
celerometer input, and AJAX callbacks.

3.3 Web App as Parameter Pass-Through
The web application can be used to simply split up the
interface and pass any returning commands directly to the
audio rendering engine. In this simple scenario, after the
interface has been distributed to the user, any returning
posts are simply routed on to the audio engine through rosc.
Individual users can be identified via session information
with each request, or by customizing the submit name when
the original html interface file is generated (Figure 6).

Here you can see the id of the slider inserted into the id
attribute of the canvas tag.

�4

<canvas id="slider_<%=@slider_id%>" > [Slider] </can-

vas>

This will generate code like:
<canvas id="slider_1" > [Slider] </canvas>

The id can then be used as an osc name when passed on
to the audio rendering engine.

routes.rb

Request for
Interface

Controller

Interface
Request

Active View
render individual

interface

Variables

AJAX
Commands

MaxMSP, etc.OSC

AJAX

HTML View

Figure 6: Rails distributed interface and interaction
pass-through.

3.4 Web App as Instrument Distribution Cen-
ter

To divide and distribute an instrument, Rails can handle
this in two ways. For simple matters, it can dynamically
assign a different parameter value for each slider, button,
or UI element that is dispensed, for example: slider_1,

slider_2. This works well if there are a finite number of
UI elements in the instrument and you know how many
people are playing it at any one time.

A more sophisticated approach would involve the use of
sessions. Every browser request has a session id that can be
used to identify who is making the request. With this ap-
proach, information can be stored through the model about
each users interactions, then as an interaction is received
the controller can use this collected knowledge to respond.
For instance, the model can store the fact that user xyz is
assigned sliders 5 and 7. Then when a slider change is re-
ceived it can pull up the slider assignment and pass along
the correct changes.

In Relativity, (Figure 7) a movement of Perception, a vari-
able number of audience members is provided a radial se-
quencing interface where a pulse emanates from the center
and any points that they touch in its path triggers musical
events.[2] The web application distributes a unique inter-
face to each audience-performer. It then receives the inter-
actions via AJAX and sends OSC to the audio production
engine for rendering the collaborative musical experience.
The communication is also bi-directional allowing for the
server to send messages to each user to set the pace of the
pulse collectively for the group. At the premiere in March
of 2012, more than 100 unique devices were connected at
one point during the performance.

3.5 Database as State Engine
Another approach is to use the Database for state manage-
ment for the instrument. Every change in user interface
objects can be stored in the database as well as setting the
audio engine. The database could store many users’ input
and aggregate it to come to a collaborative parameter set-

Figure 7: Radial sequencing interface distributed to
audience’ mobile devices.

ting. In these scenarios, the database state could also be
copied and stored as a preset and complicated states could
be quickly retrieved or even interpolated.

4. FUTURE DIRECTIONS
The viability of these methods have been established through
performances, interactive kiosks, and installations, and many
new avenues of exploration present themselves. On the web
application front, various use cases could include: small
ensemble with direct realtime responses, broad distribu-
tion utilizing audio streaming, location awareness, a con-
trol parameter database for aggregating interactions, and
picture/drawing based interactions.

A library of javascript user interface objects, nexusUI, has
been developed to facilitate performance actions and ease
of incorporation into Rails applications, other web technolo-
gies like Node.js, other programming platforms implement-
ing javascript canvas drawing, embedded browsers, and Web
Audio.

Embedding browsers into native applications and using
them for user interface has proved to be a fruitful field. It
allows us to use the nexusUI javascript library to quickly
create native user interfaces which can then engage extra
sensors, audio/video processing, or UDP communications
for added responsivity.

Another interesting development concerns the growth of
the Jamoma Audio Graph9. In a recent incarnation, cross
compilation was added allowing one to create an audio graph
in Max and export it as a pd patch, c++ code, or ruby[9]. In
a series of experiments we were able to get a Ruby Jamoma
Audio Graph running inside a rails application. This would
allow for a web service to be deployed which would handle
all of the audio production as well as user interaction.

Further testing and benchmarking are being carried out
to see what kinds of performance interactions will be viable
for various scales of participants.

9Jamoma Foundation, http://jamoma.org

�5

5. CONCLUSIONS
Web applications such as those built on Ruby on Rails have
proven to be a viable framework for handling the serving
of web pages containing user interface objects to many po-
tential performers. The cross-platform nature of current
browsers solves many issues dealing with dissemination and
support. The ability to coordinate dynamically assigned
user interface objects is very useful. A built in database
gives flexibility in the types of interactions that can be ac-
quired and used. Finally, a well trodden path for scalability
is available so that the accomodation of many simultaneous
users is possible.

Now that many features of HTML 5 are being incorpo-
rated among the leading browsers, powerful browser based
interfaces can be utilized for distribution across a variety of
static and mobile devices - making worldwide collaborative
creative arts a distinct possibility. Interfaces developed in
this fashion can reach potential performers by distributing
a unique user interface to any device with a browser any-
where in the world. In overcoming platform dependency
issues, the emerging viability of browser based interface has
become an exciting frontier.

6. ACKNOWLEDGMENTS
Many thanks to the CCT and LSU AVATAR Initiative, the
LSU School of Music, as well as Timothy Place and the
Jamoma Foundation for their work on the Jamoma Audio
Graph and Ruby.

7. REFERENCES
[1] J. Allison. Nexus,

https://github.com/jesseallison/nexus.

[2] J. Allison. Divergence for marimba and mobile
ensemble, http://perceptionevent.com, March 2012.

[3] J. Allison. Perception, http://perceptionevent.com,
March 2012.

[4] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,
M. Roth, and H.-C. Steiner. Embedding pure data
with libpd. In Proc Pure Data Convention 2011, 2011.

[5] N. J. Bryan, J. Herrera, J. Oh, and G. Wang. Momu:
A mobile music toolkit. In Proceedings of the
International Conference on New Interfaces for
Musical Expression (NIME), Sydney, Australia, 2010.

[6] P. L. Burk. Jammin’ on the web - a new client/server
architecture for multi-user musical performance. In
ICMC 2000 Conference Proceedings. International
Computer Music Conference, 2000.

[7] G. Essl and A. Müller. Designing mobile musical
instruments and environments with urmus. In New
Interfaces for Musical Expression, pages 76–81, 2010.

[8] L. Gaye, L. E. Holmquist, F. Behrendt, and
A. Tanaka. Mobile music technology: report on an
emerging community. In Proceedings of the 2006
conference on New interfaces for musical expression,
NIME ’06, pages 22–25, Paris, France, 2006. IRCAM -
Centre Pompidou.

[9] T. Place, T. Lossius, and N. Peters. The jamoma
audio graph layer. In Proc. of the 13th Int.
Conference on Digital Audio Effects (DAFx10), pages
78–86, September 2010.

[10] N. Schnell and M. Battier. Introducing composed
instruments, technical and musicological implications.
In Proceedings of the 2002 conference on New
interfaces for musical expression, NIME ’02, pages
1–5, Singapore, 2002. National University of
Singapore.

�6

