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ABSTRACT

We present a system for rhythmic analysis of human motion in
real-time. Using a combination of both spectral (Fouriemnyl a
spatial analysis of onsets, we are able to extract repedatiytty-
mic patterns from data collected using accelerometerssd bg-
tracted rhythmic patterns show the relative magnitudescoém-
tuated movements and their spacing in time. Inspired byipuev
work in automatic beat detection of audio recordings, wegiesl
our algorithms to be robust to changes in timing using migtip
analysis techniques and methods for sensor fusion, fitteaimd
clustering. We tested our system using a limited set of meves)

as well as dance movements collected from a profession#h, bo
with promising results.

Keywords

rhythm analysis, dance movement analysis, onset analysis

1. INTRODUCTION

Few would dispute the essential connection between rhytitn a
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music, automatic classification of a dance performancedbase
the extracted rhythm, and rhythm-based approaches tocaiofi
of dance.

Extracting rhythmic information from arbitrary movemeigsa
complex endeavor, and in this work, we present an approach to
tackle a subset of this task — extracting rhythmic patteromf
movement of a single limb using accelerometers in real-tikve
will begin by clarifying the terminology that will be usedrtugh-
out the paper, followed by a discussion of related work thspired
our algorithm design and implementation. We conclude whth t
results of some informal evaluation, both with test data dath
collected from professional dancers.

2. TERMINOLOGY

Despite the ubiquity of the term “rhythm”, its exact defiaiti
remains a matter of some controversyl[16]. Guedes, as péis of
work on studying dance and mus|c[10], studied various viefvs
the term. He notes that the rhythmic perception when watchin
dancer is strongly determined by accompanying music arfd dif

music — some researchers have even claimed that music is thecult to attain in silence. Moreover, a dance often cannoturap

“rhythmization of sound”[[1ll]. Regardless, rhythm indedalys a
strong role in our perception and interpretation of musiés also
one of the key components that form the symbiotic relatigmbi-
tween dance and music that dates back to prehistoric tinosly, b
movements and music are closely linked in a dynamic relakiign
between acting and listening, cause and effect.

Unfortunately, there has been little work studying this roe
tion between rhythm, dance and music in designing new miusica
interfaces. Existing systems for creating music from gestwf-
ten employ spatial mapping5s![9.113] with little considesatifor

the temporal aspect of tempo or rhythm. The work presented in

this paper is part of a larger project aimed at studying nmyth
the context of music and dance. One of the primary reseatah ch
lenges is to extract and identify rhythmic information frafance
movements. Potential applications of this work include stesy
that allows dancers to directly influence the rhythm of reerded
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all of music’s rhythmical elements for physical reasonswigeer,
the spatial elements present in dance (multiple limbs ngp\step-
ping patterns) may provide rhythmic cues. In his work, hepeid
Parncutt’s definition that “a musical rhythm is an acoustigience
evoking a sensation of pulse™[[14].

Another definition, by Dowling and Harwood, is “a temporally
extended pattern of durational and accentual relatiosSH4.
This definition seems to be appropriate when talking abogthrh
and music, and in this paper we adopt a similar definition,reshe
we will refer to a “rhythm pattern” as “a repeating series of a
centuations of impulses separated by time intervals”. Inugim
setting, impulses would be notes and their accentuationksl ¢z
determined by their volume, and in a dance setting, theydcbal
movements with their respective maximal momentum. A gregdhi
representation of an example rhythm pattern is shown inrE[du
We will also use the term “beat” to refer to a single elemenhimi
the pattern. A rhythm pattern as we have defined it, then s
multiple beats of varying magnitudes spaced roughly evapbyt.

3. RELATED WORK

Our work is inspired by two main areas of research: analyzing
dance movements, and analyzing musical rhythm. Due to space
constraints, we are only able to provide a short overviewheg¢
works here; a more exhaustive review can be foundlin [6].
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Figure 1: An example representation of a rhythm. Each circle
along the horizontal time axis represents an impulse, its 2é sig-
nifying the impulse’s magnitude. As the patternstrong—weak—
weakis repeating, it can be called a rhythm.

3.1 Dance Movement Analysis

Paradiso et al.'®anceShodd?], in its most current incarnation,
produces readings of 16 different parameters, includingehof
differently tilted accelerometers and pressure sensarius po-
sitions. The goal of their work was to give “improvisationancers
a ‘palette’ of action-to-sound rules and relationships’vafying
nature, using acceleration sensors either as a potengorteet.,
correlating a tilt angle with an instrument’s pitch) or asiaany
switch (shock movements causing individual sounds or ptag
drumroll while doing a handstand).

Feldmeier [[7] also uses accelerometers for creating aydito
feedback from multiple dancers, and employs Fourier aisatygs
efficiently analyze pulses from the dancers, triggered viherac-
celeration exceeded a certain threshold. Among the infooma
that could be obtained from this analysis was tempo.

Other approaches include using floor sendors [18] and dagtur
video of dancers 110]; Guedes, in particular, shows how aean
performance’s tempo can be determined by examining brigistn
changes between video frames.

In the works described above, the temporal informationveeri
from dance movements is limited (e.g., only tempo), if at all

3.2 Musical Rhythm Analysis

The problem of extracting musical rhythm from acceleromete
data is, in some ways, similar to analyzing audio recordinigs
such analysis, there is often first a conversion to a symlvefie
resentation, from which the desired information is exedctal-
though there have been attempts to process the raw audialidata
rectly using comb filter<[15], auto-correlatidri [8], or Fiau anal-
ysis [17].

Cemgil and Kapperi]2] employed various probabilistic mdto
for quantization and tempo tracking built around Bayesbtieen.
Brown employed auto-correlation to determine the musicaiem
of a scorel[lL]; while her method worked well with perfectlyngd
files, she was not as successful with performance recordihgd,
by nature, carry a certain level of imprecision in the timigpme
current research has focused on rule-based beat induEtibriZ]
analyzed several rule-based approaches, and compare@dte b
they identified on a meter grid with what human listenersiiiviely
tapped to. The generalized detection algorithm assumeché¢ber
hierarchy to be known, however.

A popular method of inferring meter information from symicol
sequences of impulses is to analyze the intervals betweerone
sets, commonly referred to as inter-onset intervals (LOfs)sta-
tistical analysis of 10ls could give an indication of thatjgence’s
beat interval and measure length. Dixdh [3] used clusteonde-
termine the tempo of a recording, and Seppaheh [16] used-a hi
togram approach.

3.3 Intended Contribution

There are several aspects in which this work builds upon the
works presented above. The first is the application of rhighm
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extraction to motion data. Among those dealing with danpes,
only Guedes was interested in the extraction of rhythmiorimta-
tion; however, his analysis was based on video data ratlzer th
accelerometer data. Accelerometer data has the advarfthgého
finer spatial granularity and higher temporal resolution.

Current systems that extract tempo and meter informationsfo
on music recordings, and often exploit additional inforimamnot
present in motion data, such as harmonic and tonal hint$eiin t
analysis. Moreover, many of these algorithms do not worleal-r
time. In this work, we also produce a representation of theahc
rhythm — most of the mentioned works concentrate on findieg th
tempo or limit other output to low-level information such, &s
Guedes’ case, the tempo’s harmonics. Finally, our algmsthave
been designed to be robust to data collected from exprepsive
formances, where the rhythm timing varies as the piece pesgs.

4. DESIGN

The design of our algorithm is inspired by the musical rhythm
analysis literature outlined above. We incorporate twe$ypf sen-
sor data analysis: interval and frequency. Interval aiiglyas the
benefit of low latency (an impulse can be processed and barteri
to an updated result as soon as it is detected); frequendysana
on the other hand, has the benefit of being more robust in e pr
ence of noise. Figuld 2 shows a block diagram illustratingaqu
proach to rhythmic analysis of accelerometer data. In theviing
sections, we will outline in detail each of the steps: movenuke-
tection, interval analysis, frequency analysis, datacfusimpulse
folding, and impulse clustering.

4.1 Movement Detection

Movement detection takes each channel of sensor data and ex-
tracts an impulse sequence.

The accelerometer data for a single downwards movement is
shown in Figurél3. There are two opposing pulses: an actielera
pulse when the movement starts, and a deceleration pulse whe
the movement is stopped. This pulse pattern can also bdyclear
seen for regular up-down movements, and we have a sequence of
acceleration and counter-acceleration pulses (see Ejufde in-
tensity of the movements also corresponds to the size ofitlseq

Unfortunately, the pattern becomes increasingly compexi-
restricted movements (see Figlle 5). This “noise” can bibated
to a variety of causes: involuntary twitches, interfereatearious
limbs’ and other body parts’ movements or the influence oftEar
gravity. Fourier analysis methods help in extracting sofrte@pa-
rameters needed for the rhythmic analysis in the presensaabf
noise, and are discussed later in this paper.

To analyze movements of interest, we extract three paramete
from the sensor data for each impulse (see Fifllire 6):

e Timestamp: Determining a suitable timestamiim) for a
movementn is largely dependent on the type of movement.
For some movements, such as hand-clapping, the time of in-
terest is clearly when the two hands come together; for oth-
ers, such as ballroom dancing, the mapping between the mu-
sical rhythm and the swings and turns of the movements is
less clear. For the purposes of this work, we arbitrarily de-
cided to use the midpoint between the start and maximum
point of acceleration as the timestamp of the movement, and
leave the problem of studying the exact temporal mapping of
movements for specific dance genres to future work. We be-
lieve the results of such studies could be easily incorpdrat
into our algorithms as a function of the impulse spread.
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Figure 2: Block diagram of our rhythmic analysis system.
The raw signal data from the accelerometers is processed ungj
movement detection followed by interval analysis, and a sead

path using frequency analysis. The results are combined us-

ing data fusion, followed by impulse folding and clusteringto
obtain the final result.
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Figure 3: Acceleration graph of a sudden drop of the sensor.
The first pulse is a result of the increase in acceleration, ahthe
second pulse a deceleration to stop the movement.
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Figure 4. Acceleration graph of continuous up-down move-
ments. There is no explicit deceleration pulse, and pulsesea
balanced in both directions.
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Figure 5: Acceleration graphs of the right shin of aCha-cha-
cha dancer. The movements are not equidistant because the
dancer alternated step sequences between the left and right
feet.

e Magnitude: We use the area of the acceleration pulse as
a measurement of the impulse magnitudeg(m), corre-

sponding to the intensity of the movement; the area is com-
puted using a sum of all sensor values over the impulse
spread. We experimented with other schemes, such as using
an pulse’s amplitude relative to the current average agtivi
level; such a scheme would, in theory, extract only the most
prominent movements from the data. However, we found
that it also unrealistically assigns more importance tg tin
movements in almost motionless sensors.

e Spread The impulse spread\(m) is defined by where the

In

acceleration pulse crosses the zero point on either sida- Co
bined with the area, it is thus possible to distinguish betwe
slow, soft movements and fast, sudden movements.

the subsequent analysis it is desirable to differentateel-

eration pulses (which start a movement) from deceleratidgees

(whi

ch stop a movement). However, as can be seen in Fifilires 3

and3, such a distinction is not possible; to address thispliethe
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Figure 6: The three parameters extracted for movement de-
tection. The midpoint between the start of the pulse and its
maximum point of acceleration is used for the timestamp. The
magnitude is simply the area of the acceleration pulse, anche
spread is calculated from the two closest zero-crossings tfe
acceleration graph.
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positive and negative pulses into two streams. We founchize|-
eration pulses usually have lower magnitude, which is auissl
for in the data fusion stage.

4.2 Interval Analysis

The aim of the interval analysis is to find an interval between
individual events in a repeating rhythmic pattern. We defhre
distance between two rhythmic events abeat intervaland the
length of a repeating rhythmic pattermpattern length

We first compute a set of weightéater-impulse intervalgllls).
llls are analogous to the inter-onset intervals defined ligthm
analysis of music; we use the interval between the impufsegi
tamps computed in the previous step:

IIT = 7(m1) — 7(m2) (1)

These intervals are assigned a weight, which is the minimum o
the two magnitudes:

@
The inter-impulse interval spread also provides a measemem
of uncertainty:

mag(/II) = min (mag(m1), mag(mz))

A(ma) ; A(ma) @3)

All possible inter-impulse intervals for the last two sedsrof
data are then accumulated into a histogram; the histogranthiea
interval size on the horizontal axis and the magnitude onehigcal
axis (see Figuld7). The interval size is quantized in 20 es\vals,
also referred to as “buckets”. To account for the spreacessmting
the uncertainty, the llls are not accumulated as impulsassingle
bucket, but as triangles with heightag(711) and widthA(I11)
(the spread value).

To account for history beyond the last two seconds, and also t
guard against erratic data, the histogram is averaged kgthrievi-
ously calculated histogram. This one pole low pass filtenneue
across histograms was also employed by Seppanén [16fdasi
reasons.

A(IIT) =

From Figurd, we can see that the pattern length occurs at the

maximum peak in the histogram, and the beat interval at tee fir
“significant” peak. When searching for peaks, we use tw@dgt

a data point is considered a peak if it is larger than its twighre
boring buckets on either side. A peak must also be largerttian
average magnitude across the entire histogram.

4.3 Frequency Analysis

The frequencies we are interested in extracting from themen
data are in the range of a few Hertz or less, which requirese ti
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Figure 7: Example of histogram accumulation. The histogram
is created using all possible inter-impulse intervals ovethe last
two seconds of data. The colored bars represent the llis be-
tween the impulses; the thickness of the bars is an indicatio
of their magnitude. To account for uncertainty, a triangle with
width equal to the Il spread is accumulated into the histogram.
The highest peak at 0.9 s is the pattern length; the first peakta
0.3 s is the beat interval.

dh  Jh  dh

1.2s 1.5s 1.8s

types (interval and frequency). We use a voting scheme where
results of the analyses are again histogrammed based oorife ¢
puted beat interval and pattern length. The values with iteest
count are then passed to the impulse folding module. We again
adopt the one pole low pass filtering technique with prewvioas-
cumulated histograms here, with the assumption that datze®
that were previously reliable remain reliable for the sherm.

4.5 Impulse Folding

With the beat interval and pattern length, we now know, appro
imately, the length of a repeating rhythm pattern. We use dpk
proximate length to divide the impulse stream into shorgnsents
and overlay them on top of each other so that they form a rigggeat
pattern.

We assume the first beat of the pattern is the strongest ode, an
use that to decide where to perform this “folding” operatidine
divided segments will be of slightly different length, amdassist

window of a few seconds. This latency makes the results from a the subsequent clustering process, we normalize the leridtie

pure frequency analysis, in general, unsuitable for rigad-t How-
ever, we still perform the analysis, and combine it with tagsults
of our interval analysis to increase the reliability of cesults. We
transform a ten-second time window of sensor data into teetsm
domain; the fundamental frequency, then, is our previodsfined
beat interval. In our current implementation, we first doamgple
the data by a factor of six, followed by a 256-point Fast Fewri
Transform (FFT). We consider a data point to be a peak in the si
nal spectrum when the amplitude is larger than its two neighb
frequency bins.

4.4 Data Fusion

impulse segments to the pattern length (see Figure 8).

4.6 Impulse Clustering

In this final step of the algorithm, we look for impulses thet a
close to each other and combine them into a single impulge; th
average of the magnitudes are taken. This produces thetirgpea
pattern shown at the bottom of Figiide 2.

5. IMPLEMENTATION

The various modules described in the previous section are im
plemented as a set of Java classes. We also wrote a set ofarsapp

We require a data fusion scheme to combine the results from to these classes so that they can be used as Max/MSP eXlernals

both multiple sensors (one for each axis of movement) anlysina
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For the accelerometers, we used prototype hardware designe
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Figure 8: Animpulse stream is folded by dividing the impulses
into segments based on the calculated pattern length. The-in

dividual segments are then normalized to this pattern lengdt to
assist in the clustering process.

one of the authors in conjunction with an engineering grouRo-
mania; details of this hardware, which consists of acceteters
communicating with a base unit and supporting software uare
fortunately beyond the scope of this paper. However, our/M&P
patches communicate with the sensor base unit using OperdSou
Control, making it possible to use any type of acceleronszasor.

Sensor Data
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Figure 9: Result of a user gesturing in a 3-beatgtrong-weak-
weal) pattern using circular movements. Such movements trig-
ger accelerometers along two axes, which are in turn split ito

Figure[® shows an example of the system running under Max/MSP positive and negative pulses, resulting in four histogramsThe

on Mac OS X.

6. EVALUATION

We tested our algorithms with a variety of rhythm patterns pe
formed by test users. Sensors were attached to the fingendr ha
and the rhythm pattern was performed by waving in mid-aihwit
circular gesturing motions to trigger multiple axes of muemnt
(such as thetrong-weak-weagattern shown in Figuid 9). The sys-
tem works well for these types of movements; the rhythmitepat
is recognized within 6 seconds, starting from rest. Bothokt in-
terval and the pattern length are correctly reported. Qgorahm
can correctly identify patterns with pauses in betweenh siscthe
patternstrong-weak-rest-wealkalthough with less reliability than
patterns with evenly spaced beats.

We did identify several cases where our algorithm reports pa
tially inaccurate results. In cases where both the first @odrsd
beat are performed with roughly equivalent magnitude, sagh
strong-strong-weak-weakhe pattern is folded at the correct point;
however, the second beat event is visibly more pronouncad th
the first. We attribute this to an artifact of the histogramgnand
clustering inaccuracy.

A second case where the algorithm is problematic in repgprtin
correct results is when the rhythmic pattern contains mbae t
5 beats. In this case, half of the histograms report that tisé fi
impulse is the largest (if only by a small amount), resultimgn
incorrect pattern length (see Figdrd 10). It would appeathis
case that the sheer number of pairs one interval apart qgita/é¢he
magnitude difference.

We also ran our algorithm through data recorded from a profes
sional Cha-cha-chadancer (see Figufell1l). While it is not able
to capture the exacne-two-three-cha-chehythnfl, it was able to
correctly identify the pattern length and the accents orfiteeand

1The source code for this project is freely available at
nttp://nmedia.intormati K. rw h- aachen. de/ enke. ht m.
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three numbers beside each histogram are the beat interval gt-
tern length, and number of beats per pattern, respectivelyThe
resulting pattern is correctly identified.

third beats.
We hope to address these shortcomings in future work.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a system for extracting rhythpait-
terns from human movements using accelerometer data. réaspi
by previous work in automatic beat and tempo detection inicalis
recordings, our system converts accelerometer data inteans
of impulses from which beat interval and pattern length rimfa-
tion are extracted. This information is then used to idgntpeat-
ing patterns in the rhythmic stream, and output them asgstrirf

2The Cha-cha-chahythm is also commonly written agtep-step-
cha-cha-cha- however, the last¢cha’ corresponds to the first ac-
cented beat.

Mzso

A a & & & A powE]
\_LLL‘_‘.LJZQO
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Figure 10: The histograms generated for a 6-beatstrong-
weak-weak-weak-weak-weppattern. Even though the pattern
length should be 6, the sixth peak is slightly lower than the fst
peak in two of the four histograms, and the algorithm incor-
rectly reports a pattern length of 1.
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Figure 11: Results of running our algorithm with data col-
lected from a Cha-cha-chadancer. The exact rhythm is not
captured, but the correct pattern length is identified, and he
algorithm correctly detects the emphasis on the first beat atha
smaller emphasis on the third beat.

weighted values and their spacing in time. We use a combimafi
spatial and spectral algorithms in our analysis. Spatgdrithms
have the benefit of lower latency, but are more prone to esp@¢-
tral algorithms are more robust, but introduce more laténiythe

system. A voting mechanism allows us to combine the restilts o

these analyses for increased reliability.

Our current system has been shown to work reliably for well-

defined movements from a single limb, and we have identified a

number of areas of future work:

e Multiple sources: A rhythmic pattern is often created from ) X X :
two limbs with a phase offset, much as a drummer would do, [13] J. Paradiso, K.-Y. Hsiao, J. Strickon, J. Lifton, andAdller.
and identifying such patterns would be a natural extengion t

this work.

e Alternative analysis methods In addition to the spatial and

frequency-based analysis methods we would like to explore

analyses based on the wavelet transform.

e Analysis with real dance movements Our work focused

on showing that such an analysis is viable. As we continue
this work, we hope to run more user tests with professional [16]
dancers, and correlate their mental models of rhythm with

the output from our system.

We hope our work will inspire further studies of the intrieat

mappings between music, rhythm, and human motion.
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