Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

Real-Time Feature-Based Synthesis for
Live Musical Performance

Matt Hoffman
Dept. of Computer Science, Princeton University
35 Olden St.
Princeton, NJ, USA 08540

mdhoffma at cs.princeton.edu

ABSTRACT

A crucial set of decisions in digital musical instrument design
deals with choosing mappings between parameters controlled by
the performer and the synthesis algorithms that actually generate
sound. Feature-based synthesis offers a way to parameterize audio
synthesis in terms of the quantifiable perceptual characteristics, or
features, the performer wishes the sound to take on. Techniques
for accomplishing such mappings and enabling feature-based
synthesis to be performed in real time are discussed. An example
is given of how a real-time performance system might be designed
to take advantage of feature-based synthesis’s ability to provide
perceptually meaningful control over a large number of synthesis
parameters.

Keywords
Feature, Synthesis, Analysis, Mapping, Real-time.

1. INTRODUCTION

How best to map from performer intention to sonic output is a
fundamental question in the design of musical instruments
intended to be played in real time [4]. In those cases where an
electronic interface is used to control a software synthesizer, the
problem often reduces to how best to map from some set of
continuous or discrete control signals to a set of synthesis
parameters that provide control over the signal processing
algorithms that generate the synthesizer's audio. In some cases,
these synthesis parameters have a clear, one-dimensional, easily
learned effect on the perceptual content of the sound. An example
might be the frequency of an oscillator, which (often) maps
clearly to the percept of pitch. Sophisticated synthesis algorithms,
however, may have parameters whose effects may be individually
quite subtle, unpredictable, or dependent on the settings of other
parameters. Furthermore, there may be a large number of these
parameters - more than can be explicitly controlled in real-time by
a human being [7].

As a result, real-time control signals are frequently mapped only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Nime’07, Jun 7-9, 2007, New York, NY, USA.

Copyright remains with the author(s).

Perry R. Cook

Depts. of Computer Science, Music,
Princeton University
35 Olden St.
Princeton, NJ, USA 08540

prc at cs.princeton.edu

to a small number of parameters, or a small number of controller
parameters are mapped onto a larger number of synthesis
parameters. In the former case, the full expressive range of the
controller-synthesizer pairing may not be exploited. In the latter
case, a satisfactory one-to-many mapping must be determined.
This can be done by hand by the instrument designer, using what
is likely to be a time-consuming (although potentially insight-
provoking) process of trial and error. Alternatively, the mapping
can be determined automatically by the computer, according to
some set of criteria. When designing a system that performs an
automatic mapping of this kind, the crucial question becomes how
to define the criteria that the computer uses to design the mapping.

Performer Contral
’—> Intention Synthesizer
Perception
L -

Figure 1. A performer can control a few synthesizer
parameters directly, continuously making adjustments to
make perception match intention.

Performer Paremorers
’_> Intention Mapping Algorithm
Paramereis Y ¥ Y Y VYV VY
Perception Synthesizer

Figure 2. Alternatively, a performer can control many
parameters using only a few control signals by means of an
intervening mapping layer.



Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

Our approach looks to research in psychoacoustics and music
information retrieval to answer this question. Many music
information retrieval systems begin by extracting feature vectors
of perceptually motivated features describing successive frames of
audio. The individual features are simply numbers describing the
audio frame in terms of its characteristics along some set of
perceptual dimensions such as loudness, timbre, brightness, pitch,
and harmonicity. The goal of frame-level feature-based synthesis
is to, given values for an arbitrary set of these features and the
ability to compute those features on new audio, produce a frame
of audio that manifests those feature values. In other words,
feature-based synthesis allows us to more directly parameterize
audio synthesis in terms of its quantifiable perceptual content.

2. PREVIOUS WORK

There have been numerous attempts to automatically find
mappings from a few control parameters to many synthesizer
parameters over the years. Lee and Wessel [7] and Johnson and
Gounaropoulos [6] (among many others) have used neural
networks to try to learn user-defined timbre spaces. More
recently, Bencina [1] implemented a sort of mapping-by-example
approach based on nearest neighbor interpolation.

The importance of intelligent parameter mapping to gestural
control has been emphasized by (among others) Hunt, Wanderley,
and Verfaille [4, 12, 13]. Verfaille and Arfib [11] specifically
proposed including a feature-aware mapping layer to add an
adaptive component to digital audio effects control.

Similar ideas to those used in feature-based synthesis have been
used in numerous papers by Andrew Homner et al [3, 14], although
to different purposes and in a less general way. Much recent work
on concatenative synthesis and audio mosaicing by Diemo
Schwarz and others pursue similar goals using methods similar to
feature-based synthesis, although applied to samples of previously
recorded material [9].

3. FEATURE-BASED SYNTHESIS

- 2

Target Feature Vector v

Feature
Evaluator
F ——./ Parameter Parametric
Optimizer |+———| Synthesizer
P S
Distance
Metric
D

Matching Feature Vector
v'=F(a)

Synthesis Parameter Vector
o

‘ Audio Output a = S(u') I

Figure 3. Overall system architecture.

We have implemented a general framework for synthesizing audio
frame by frame to match any set of feature values as they change
over time [2]. Our architecture divides the tasks to be performed
between four main modular components: parametric synthesizers,
feature evaluators, distance metrics, and parameter optimizers.
Feature evaluators take a frame of audio as input and output an n-
dimensional vector of real-valued features. Parametric
synthesizers take an m-dimensional vector of real-valued inputs
and output a frame of audio. Distance metrics define some

310

arbitrarily complex function that determines how “similar” two
feature or parameter vectors are. Finally, parameter optimizers
determine how best to map from an arbitrary vector of feature
values v to a vector of synthesis parameters u’.

An instrument designer can connect this framework to a hardware
controller that sends various control parameters to the computer in
real-time by choosing a set of features and a synthesis algorithm,
mapping the control signal values directly onto feature values, and
choosing an appropriate parameter optimizer and distance metric
(more on this step below). So long as the parameter optimizer
does not take too long to find a set of synthesis parameters that
produces audio with the desired feature values, the system can be
used to produce sound in real time. Alternatively, feature vectors
can be extracted from sounds generated acoustically by the
performer (vocal sounds, for example) and used to control the
synthesis algorithm. The resulting audio will match whatever
perceptual content in the performer-generated audio is captured by
the features used, but will likely sound quite different in ways
characteristic of the synthesizer used. See Janer [5] and Loscos
and Aussenac [8] for feature/synthesizer pairing-specific
examples of this sort of approach.

3.1 Distance Metrics

Distance metrics judge the similarity of two vectors of features or
parameters. They may be defined in any arbitrary way, but a
natural choice is the LN norm of the difference of the two vectors.
The LN norm is defined as the Nth root of the sum of the Nth
powers of each element, so for example the Euclidean norm is
identical to L2, and the Manhattan norm (simply the sum of abso-
lute values on each dimension) is L1. We provide a standard
metric that implements these norms and allows higher or lower
weights to be assigned to more or less important features or
parameters.

For certain synthesizers and small to moderately sized feature sets
there may be numerous quite dissimilar parameter settings that
produce audio with similar feature characteristics. Rapidly
switching between these parameter settings in pursuit of small
improvements in feature distance can lead to undesirable artifacts,
and so our framework allows for the calculation of distances in
parameter space as well as feature space. This parameter distance
can be combined with the feature distance as a secondary criterion
in parameter selection in the interests of smoother-sounding
audio. For example, when looking for a good parameter set one
might give parameter distance 1/4 the weight of feature distance.

Although these metrics can be created by hand with a minimum of
effort, our system also allows each feature evaluator to define its
own default distance metric that attempts to more accurately
capture the overall perceptual distance between two feature
vectors extracted using that feature evaluator. Synthesizers are
also able to define default metrics, for example by weighting
parameters with more dramatic effects more heavily than subtler
parameters.

3.2 Parameter Optimizers

The parameter optimizers used in our framework are not
necessarily expected to have any a priori knowledge about
possible relationships between synthesis parameters and feature
values. Typically, they apply an iterative search algorithm such as
simulated annealing to minimize the distance between the target
feature values and the feature values obtained by analyzing the
synthesizer’s output. Such algorithms run in a loop such as the



Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

one shown in figure 4, generating a frame of audio, analyzing that
audio, comparing the resulting features with the target features
(and optionally the tested synthesis parameters with the previous
frame’s synthesis parameters), and using the resulting distance to
inform the choice of parameters for the next iteration. This
continues until suitably similar feature and parameter values are
obtained.

02
0.73

0.25

0.71

Feature Distan_cc
Evaluator Metric
T 0.12 0.07

0.35 0.34

Feature
Values of
Synthetic

Audio

=

Target
Feature
Values

Test

»+ Distance
from 0.3
Audio Targets l:

0.15
0.62 / 0.23
Parametric Parameter
Synthesizer Chooser
0.97 0.78
0.34 0.6
Test Synth Target Synth
Params Params

Figure 4. Optimizer loop.

Although this approach permits a great deal of flexibility and
robustness, it may take a large number of iterations to find an
acceptably close match. This presents a problem for real-time
applications, since a frame of audio must be synthesized and
analyzed at significant computational cost each iteration.

4. REAL-TIME PERFORMANCE ISSUES

In order to speed up the process of finding synthesis parameters
that produce the desired feature values, we need to incorporate
some information about the relationships between the parameters
of the chosen synthesizer and the features we are attempting to
match. Unfortunately, we are not in general guaranteed that any
simple, predictable relationship between feature values and
synthesis parameters exists. The actual relationships may be
highly nonlinear, rendering them difficult or impossible to
describe in closed form.

If, however, we can safely assume that a given set of synthesizer
parameters will always result in nearly identical feature values,
then we can perform many expensive synthesis/feature evaluation
steps offline and store the results in a database for future reuse. As
long as retrieving these parameter-feature mappings can be done
efficiently, when we need to obtain good synthesis parameters for
a given set of feature values quickly (i.e. during live performance)
we can find the best match cached in the database. These
parameters can be used to produce audio immediately, or they can
be used to give our parameter optimizer a head start on the
process of finding still better parameters.

4.1 Filling the database

The simplest approach to getting useful information into the
database is to simply generate and test random parameter vectors,
saving the results. This will maximize the variety of parameter
values represented in our database, but ultimately we are more
likely to want to maximize the variety of feature values stored.
Since it may be that large segments of the parameter space map to

311

more or less identical feature values while a very small space of
parameter sets might map to a large portion of the feature space,
another approach may yield faster results.

One option is to use an iterative parameter optimizer to search for
random feature values instead of using random parameter values.
The optimizer can be set up to cache each parameter-feature
mapping it tests while searching for the best match for the chosen
random features. This often has the added bonus of storing an
entire path through feature space from one feature vector to
another, and hopefully yields a somewhat more uniform
distribution of information about feature values in the database.

4.2 Accessing the database

Since the number of possible sets of feature values grows
exponentially in the number of features, it may be that for some
feature sets a very large number of mappings must be stored to
provide the maximum speedup. This is especially true if no efforts
are made to avoid redundancy in the database. Performing a linear
search through all of the entries in the database may be
prohibitively expensive, and so some kind of indexing strategy
must be employed to improve lookup speed.

: QLAY .
QY 00

Figure 5. Points in a 2-D space being projected onto an
arbitrary axis (dashed line). The tick marks represent the
boundaries of hash bins into which the points fall. Note that
points near each other are likely to fall into the same bin.

We use a very basic version of locality-sensitive hashing to
perform fast approximate lookups. This technique involves
projecting each feature vector in the database onto an arbitrary
unit vector by computing the inner product of thtwo vectors. The
resulting number is quantized and used as a hash function. As
each point is added, a reference to it is maintained in a hash table
indexed by this hash function. To find the nearest neighbor to a
new point, we determine what hash bin it would map to and check
the points associated with that bin. In general, points that map to
the same bin will be closer to each other than other points.
Although this method does not guarantee that we will find the
single closest point to the query point in the database, in practice
it works fairly well, is simple to implement, eliminates the need to
check large portions of the database, and is quite fast. Its
robustness can also be improved by checking multiple hashes
utilizing different projection functions.

4.3 Direct parameter control

In some cases the mapping from a synthesizer parameter to
perception is so clear that no intervening layer is necessary to
translate from intention to perception. An example might be the
frequency of an oscillator’s relationship with pitch. To avoid the



Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

hassle and expense of controlling such factors indirectly using
feature-based synthesis, we provide a method for directly control-
ling parameters by exempting them from the optimization process.

5. EXAMPLE PERFORMANCE SYSTEM

It may be instructive to go over a complex example of a live
performance system that can be built using feature-based
synthesis. We first describe the synthesizer used by the system,
then the features used to control that synthesizer, and finally the
way in which the user interacts with the system.

5.1 Synthesizer

The synthesizer generates sound by summing the weighted
outputs of a set of four sine oscillators and a white noise generator
filtered by a resonant bandpass filter. In total, the number of
parameters needed to control the synthesizer is 11: four for the
frequencies of the sine oscillators, two for the resonance and
center frequency of the filter, and five for the relative gains of the
four oscillators and the filtered noise. The rms power of the
system’s summed output is kept constant.

5.2 Features

The system uses the spectral centroid (a measure of the brightness
of the sound), the harmonicity (a measure of how strongly pitched
the sound is), and the first five mel-frequency cepstral coefficients
(a.k.a. MFCCs, a measure of the coarse shape of the spectrum
commonly used in speech recognition) to control the synthesizer.
The implementations come from the MARSYAS framework [10].

5.3 Control

The first two features, centroid and harmonicity, can be controlled
simply enough by using a pair of sliders, sensors, or even a
mouse’s X and y coordinates. The MFCCs can be controlled by
extracting the first five MFCC values from the performer’s voice
in real time and passing the results as control values to the system.
The result is that the amplitudes and frequencies of the sine tones
and filtered noise change to match the spectral shape and
brightness specified, and the relative amplitudes of oscillator and
noise adjust to produce the desired harmonicity. Although the
performer cannot control every aspect of the sound, the result is
that he or she is able to exert control over a large number of
parameters in a perceptually meaningful way very quickly.

6. FUTURE WORK

Much can still be done to improve the efficiency and usefulness of
our framework. More feature evaluators and synthesis algorithms
need to be incorporated and implemented. Further improvements
to the efficiency of our parameter optimization and database
algorithms are also in the works.

One important architectural extension that would make our system
more flexible would permit meta-features encapsulating how
features change over time. Another would be to incorporate a
more sophisticated notion of state into the parametric synthesizer
architecture, permitting more interesting synthesizers such as
physical models. We are in the process of deciding on a way to do
so without violating the assumption that a one-to-many mapping
between synthesizer parameters is impossible (and therefore
complicating offline computation of such mappings).

7. REFERENCES

[1] Bencina, R. The Metasurface — Applying Natural Neighbor
Interpolation to Two-to-Many Mapping. In Proceedings of

the Conference on New Interfaces for Musical Expression
(NIMEQ5) (Vancouver, BC, Canada).

[2] Hoftman, M., Cook, P. R.. Feature-Based Synthesis:
Mapping Acoustic and Perceptual Features onto Synthesis
Parameters. In Proceedings of the International Computer
Music Conference (ICMC ’06) (New Orleans, LA, USA,
2006).

[3] Horner, A., Beauchamp, J., and Haken, L. Machine Tongues
XVI: Genetic Algorithms and Their Application to FM
Matching Synthesis. Computer Music Journal 17(3) (1993),
17-29.

[4] Hunt, A. and Kirk, R. Mapping Strategies for Musical
Performance — Trends in Gestural Control of Music. In
Trends in Gestural Control of Music, M. Wanderley and M.
Battier, eds. Paris, France Institut de Recherche et
Coordination Acoustique Musique—Centre Pompidou, 2000,
pp- 231-258.

[5] Janer, J. Voice-Controlled Plucked Bass Guitar Through
Two Synthesis Techniques. In Proceedings of the

Conference on New Interfaces for Musical Expression
(NIMEQ5) (Vancouver, BC, Canada).

[6] Johnson, C. and Gounaropoulos, A. Timbre Interfaces Using
Adjectives and Adverbs. In Proceedings of the Conference
on New Interfaces for Musical Expression (NIME06) (Paris,
France, 2006).

[7] Lee, M., and Wessel, D. Connectionist Models for Real-
Time Control of Synthesis and Compositional Algorithms. In

Proceedings of the International Computer Music
Conference (ICMC ’92) (San Jose, CA, USA, 1992).

[8] Loscos, A. and Aussenac, T. The Wahwactor: a Voice
Controlled Wah-Wah Pedal. In Proceedings of the
Conference on New Interfaces for Musical Expression
(NIMEQ5) (Vancouver, BC, Canada).

[9] Schwarz, D. Current Research in Concatenative Sound
Synthesis. In Proceedings of the International Computer
Music Conference (ICMC ’05) (Barcelona, Spain, 2005).

[10] Tzanetakis, G. and Cook, P. MARSYAS: a Framework for
Audio Analysis. Organized Sound (1999), 4: 169-175.

[11] Verfaille, V. and Arfib, D. A-DAFX: Adaptive Digital Audio
Effects. In Proceedings of the COST G-6 Conference on
Digital Audio Effects (DAFx-01) (Limerick, Ireland,
December 6-8, 2001).

[12] Verfaille, V., Boissinot, J., Depalle, Ph., and Wanderley,
M.M. SSynth: a Real Time Additive Synthesizer with
Flexible Control. In Proceedings of the International
Computer Music Conference (ICMC ’06) (New Orleans, LA,
USA, 2006).

[13] Wanderley, M., Schnell, N., and Rovan, J.B. Escher —
modeling and performing composed instruments in real-time.
In Proc. IEEE Int. Conf. Systems, Man, and Cybernetics
(SMC’98), (San Diego, USA, 1998) pp. 1080-4.

[14] Wun, S., Horner, A., and Ayers, L. A Comparison Between
Local Search and Genetic Algorithm Methods for Wavetable
Matching. In Proceedings of the International Computer
Music Conference (ICMC ’04) (Miami, FL, USA, 2004



