Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

A Unified Toolkit for Accessing Human Interface Devices in
Pure Data and Max/MSP

Hans-Christoph Steiner
IDMI/Polytechnic University
Brooklyn, NY, USA

hans@at.or.at

ABSTRACT

In this paper we discuss our progress on the HID toolkit,
a collection of software modules for the Pure Data and
Max/MSP programming environments that provide unified,
user-friendly and cross-platform access to human interface
devices (HIDs) such as joysticks, digitizer tablets, and
stomp-pads. These HIDs are ubiquitous, inexpensive and
capable of sensing a wide range of human gesture, making
them appealing interfaces for interactive media control.
However, it is difficult to utilize many of these devices for
custom-made applications, particularly for novices. The
modules we discuss in this paper are [hidiol !, which
handles incoming and outgoing data between a patch
and a HID, and [input_noticer], which monitors HID
plug/unplug events. The goal in creating these modules
is to preserve maximal flexibility in accessing the input
and output capabilities of HIDs, in a manner that is ap-
proachable for both sophisticated and beginning designers.
This paper documents our design notes and implementa-
tion considerations, current progress, and ideas for future
extensions to the HID toolkit.

1. INTRODUCTION AND MOTIVATION

Human Interface Devices (HIDs?) such as joysticks, digi-
tizer tablets, keyboards, mice, gamepads and ‘stomp-pads’
have become widely available and inexpensive. Most ex-
isting HIDs are built robustly, and due to their prevalence
and low cost, there is growing interest in utilizing them for
musical control and other performance applications.

1a word in square brackets denotes a Max/Pd object

?Human Interface Device (HID) has become the standard
term to describe devices designed to sense physical human-
computer input, and to send feedback from computers to
users. The term ‘HID’ most commonly refers to the USB-
HID specification, which is a USB device class that describes
human interface devices that utilize USB communication.
We use ‘HID’ more generally, to mean the larger set of hu-
man interface devices that may or may not use USB.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIMEO7, June 7-9, 2007 New York, NY, USA

Copyright 2007. Copyright remains with the authors.

375

David Merrill
MIT Media Lab
Cambridge, MA, USA

dmerrill@media.mit.edu

Olaf Matthes
nullmedium
Greifswald, Germany

olaf@nullmedium.de

For an electronic musical instrument designer, easy ac-
cess to gestural data (motion, pressure, buttonpresses, etc.)
and output capabilities (lights, force feedback) enables rapid
prototyping of musical affordances and mapping strategies.
Many HIDs are temporally and gesturally sensitive enough
for musical performance, including gaming mice, certain joy-
sticks, and most graphics tablets. Another factor that makes
many existing HIDs appealing for electronic music perfor-
mances is that they are relatively familiar objects (as com-
pared to custom electronic hardware), which can allow an
audience to more easily understand the connection between
a performer’s actions and the resulting sonic output. A num-
ber of contemporary musicians have used standard HIDs as
musical controllers. Leon Gruenbaum’s Samchillian Tip Tip
Tip Cheeepeeeee [10] is built upon a standard ergonomic
keyboard; Luke Dubois plays the Wacom tablet with The
Freight Elevator Quartet [8]; August Black started by hack-
ing existing devices to make his El Lechero [6]; Loic Kessous
has built his instrument using a Wacom tablet and a joystick
[11].

In addition to the ranks of experienced professionals lever-
aging HIDs, there is a growing number of students and other
novices around the world interested in ‘physical computing’
and its application to media art. Several universities now
offer courses specifically in physical computing and/or the
design of electronic music controllers [16] [7] [3] [2]. For stu-
dents, the utilization of HIDs for expressive control of sound,
video, or other media can be an appealing alternative to the
construction of custom hardware, an endeavor that requires
a much greater level of technical sophistication. A number
of prototyping platforms have become available lately that
also support HID standards, such as CUI [14] and Phidgets
[9].

As well as input capabilities, some HIDs provide audi-
tory, visual or haptic feedback. Our goal is to provide easy-
to-use input and output access to a wide range of HIDs,
through a unified, cross-platform, standardized and coher-
ent approach.

[hidio] is a software object for Pure Data and Max/MSP
that provides unified and standardized access to HIDs. Pure
Data and Max/MSP are popular environments for imple-
menting physical interfaces for musical performance or other
media-rich interactive applications. Owur goal in creating
[hidio] is that the end user of these environments will not
have to learn how to use a separate object for each differ-
ent HID, and that a patch written on one operating system
platform should work in the same way on another. We have
tried to preserve flexibility while simplifying the complicated

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

HID APIs as much as possible.

In this paper we present our current progress implement-
ing [hidio]. We also discuss [input_noticer] external that
monitors device plug/unplug events, that works in concert
with [hidio] to allow a patch to be responsive to these
events. We will discuss the design decisions that have led
to our current implementation, and will point out our plans
for future work on the HID toolkit.

2. PREVIOUS WORK

We are aware of a range of existing work, including some
HID access tools outside the Pd and Max/MSP environ-
ments. However, Max’s [hi] and Pd’s [hid] are the most
related to what the HID Toolkit is trying to accomplish, so
we investigated these existing tools in more depth.

2.1 Max’s [hi]

A number of objects exist within Max/MSP for
getting data from HIDs, such as [hi], [hidin] [13],
[MouseState], [Insprock], [Wacom], [forcefeedback],
and [MTCcentroid]. Each has a distinct programming
interface. [hi] is a good example for coherent integration
because it provides a single interface for getting input data
from many different kinds of HIDs. However, [hi] has
limitations that impact its usefulness for creating and per-
forming with new instruments. For instance, it only checks
for new devices on startup, and blocks other instances of
[hi] (and other programs) from accessing a connected
device. Also, device elements like buttons and axes are
identified with numeric tags rather than semantically
meaningful categorical identifiers. Finally, [hi] does not
support any HID output, making it incapable of controlling
on-device feedback.

2.2 Pd’s [hid]

Pd has a number of objects and patches for using
HIDs such as [MouseState], [linuxmouse], [linuxevent],
[joystick], the Gem HID objects, and [hid] [15]. But,
like the Max/MSP objects, these objects all have different
interfaces, requiring a user to learn each object separately
in order to use the device it supports. We feel that since
a large range of HIDs all share the same basic capabilities
for input and output, the interface to access these objects
should be unified. Although parts of the current project
are firmly rooted in the existing [hid] object for Pd, a
number of limitations of [hid] motivated our work: [hid]
has no support for elements which appear more than once
on a given device; it has very limited output support; no
Windows support; and, like Max’s [hi], multiple instances
of [hid] ‘steal’ events from each other.

3. HID DESIGN ISSUES

3.1 HID APIs

A wide variety of available HID APIs exist, ranging from
cross- platform to operating system specific, which some
even being device- specific. We have researched and used
many of the relevant APIs, finding strengths and weaknesses
of each. Ultimately, we decided to use each operating sys-
tem’s primary API, which were the most flexible but also
more difficult to use. For detailed information about the
APIs that we considered, please visit our web page on the
topic [5].

376

3.2 Managing Devices

A common programmer’s frustration in handling user in-
put is how to specify the device to open for communication.
A number of schemes exist for identifying devices, each with
its own advantages and disadvantages. The HID Toolkit
supports several methods for selecting devices: device num-
ber, device type (gamepad, joystick, keyboard, etc.), and
vendor ID/product ID. The device number is a unique nu-
meric identifier assigned by the operating system. It is of-
ten useful behind the scenes in a selection menu, to select
between multiple devices of the same type. However, of-
ten the specific model of the device is not as important as
the general type. For example, a patch designed around a
mouse and joystick may work acceptably with any mouse
and joystick. In these cases, the device type would be an
appropriate way to select the first ‘mouse’ and a ‘joystick’
found by the system. Vendor and product IDs and provide
the most detailed device information, but typically in a less
human-friendly format. These values can be used to select a
particular device, even when there might be multiple devices
of the same type plugged in. See figure 1 for more details.

[hidio] does not monitor HID plug/unplug events,
instead it builds a device list just before it tries to open a
device. The ability to monitor device insertion and removal
can be useful though, to avoid having to restart a patch
if a device is removed and reconnected, or to mute sound
if a control device is unplugged. The [input_noticer]
object was designed to communicate HID plug/unplug
events. It is currently implemented on GNU/Linux, and
[input_noticer] objects are created with a human-readable
argument such as ‘Microsoft Sidewinder Dual Strike’ caus-
ing them to filter incoming messages for devices of that
model. In the future, [input_noticer] will recognize iden-
tical ways of specifying devices as [hidio] so that the same
message can be used to specify devices in both [hidio] and
[input_noticer].

3.3 Device Polling

Most USB mice have a poll interval of 10ms [12]. While
it is possible to get input reports more frequently, we be-
lieve that it would not be perceptible nor would it affect
performance in a noticeable way. In certain specialized cir-
cumstances, such as accurately measuring human response
times or implementing a PID loop, it could be useful to
set the interval to a smaller time. We are currently explor-
ing whether it is effective to set the poll interval to very
low times when using output reports. This could allow the
processing of haptic feedback to happen on the host com-
puter rather than on the embedded microcontroller in haptic
HIDs. We use a default fixed poll interval of 5ms.

4. INTERFACE DESIGN ISSUES

4.1 Event Scheme

For [hidio], the labeling of the HID events was carefully
designed for flexibility and human comprehension. The sym-
bols should clearly represent the device’s elements, adhering
to existing schemes as much as possible. It is derived from
the Linux input system, and USB HID [1], USB PID[4], and
is used on all platforms. While the Linux scheme was gen-
erally well organized, some aspects are difficult to abstract.
USB HID specifies a number of different kinds of absolute X

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

get info about current device: open by device type:

[open pointer 4

open by number: =

open mouse 1

[open joystick @

open gamepad 3
open by vendorID/productID:
Logitech USB-PS/2 Optical Mouse:

open Ox046d 0xcOld

Gravis/Destroyer Tiltpad:

open keyboard 9

[open multiaxiscontroller 4 [

or just open the first one:
[open mouse[[open joystick[

Figure 1: Multiple ways to select a HID with [hidio]

axes for different ‘usage pages’ like ‘Generic Desktop’, ‘Sim-
ulation’, ‘VR’, ‘Sports’, and ‘Game’. [hidio] uses the same
event names for all related movements: ‘x’, ‘y’, ‘z’, ‘rx’,
‘ry’, ‘rz’, 2 ‘slider’, ‘dial’, ‘wheel’, and ‘hatswitch’. For out-
putting data to control LEDs and force feedback, [hidio]
sticks quite close the USB specifications.

For the button scheme we followed USB HID, which sim-
ply numbers the buttons. The Linux input system uses a
different naming scheme for each device type, for example,
btn_left, btn_middle for mice or btn _trigger, btn_base for
joysticks. Onme key advantage of the numbering scheme is
that it allows buttons on one device to work in patches writ-
ten for other devices. A patch written for a joystick could
be used by any other device with buttons and absolute axes,
like a gamepad or tablet. A disadvantage is that the user
might have to test the device to find the number scheme,
rather than reading the label (‘button_0’ vs. ‘btn_trigger’).

All joysticks and gamepads have absolute X and Y axes,
which are labeled as ‘absolute x’ and ‘absolute y’. This
allows a patch built for a gamepad to be controlled by a
joystick, and vice versa. The event labels aim to describe
the physical motion of the human with the device; ‘absolute
y’ means moving a physical element towards and away from
oneself, while ‘absolute x” means moving that same physical
element from left to right. In addition, some devices report
events using the ‘vendor defined’ codes, which by definition
do not have names ascribed to them. These events are re-
ported using the hex value as a symbol.

4.2 status outlet

As part of the push to handle as much as possible in the
patching environment [hidio] can be queried, and the re-
sults processed within Pd/Max. An example status message
is the minimum and maximum values a given HID element
can report. A joystick’s X axis might output data between 0
and 127, and the value could be used to automatically scale
the X axis data to between 0 and 1 in order to match most
parameters (audio amplitude, OpenGL colors, etc.). Cur-
rently the user can get the following parameters from the
status outlet: product and vendor IDs, manufacturer and
product strings, data ranges for each element, the USB HID
‘Application Usage’, open status, poll interval in millisec-
onds, and transport bus.

3¢ stands for rotation here

377

4.3 Output to a HID

Using HID APIs, there are two ways of sending data to
a device. One is using Force Feedback (FF), a standard
that was designed allow gaming devices to present haptic
feedback to the user. Another option is sending raw output
commands directly to a device. The FF APIs are essentially
a wrapper that send standard HID output commands, mean-
ing that every FF-capable device can understand these HID
commands. The more flexible method is to send HID out-
put commands directly, since this permits control of more
parameters, only limited by the capabilities of the device
itself. The output commands are structured like the in-
put reports. As with inputs, each device provides a list of
supported output elements. In the current implementation
(Max/MSP on Windows only) data can be sent to a device
using a Max/Pd message with the same format as the input
events are reported. [hidio] then builds an output report
and sends it to the device. This includes an instance number
in case there are several instances of the same usage page and
usage id being present as output elements. We plan to use
symbolic labels for the output elements, although [hidio]
will also need to respond to numeric labels for the output
labels in order to support the limitless number of ”vendor
defined” output element types.

S. MEASUREMENTS

In this section we discuss our investigations latency and
jitter in computer-HID communication.

5.1 latency

In order to measure the latency induced by various design
decisions, we set up some latency measurements on Mac
OS X. We compared the timestamp on each event to the
mach_absolute_time(), which is claimed to be accurate in
the range of nanoseconds, or at least microseconds. Then,
the last 8192 latency values were averaged, while exclud-
ing event latencies greater than 100 which would sometimes
arise. Only x,y mouse movement and keyboard presses were
measured.

We have noticed that there is actually quite a bit of jit-
ter, and we plan to perform further jitter-related analysis.
Since human performers can more easily compensate for la-
tency than jitter, it may be useful to add latency in order to
smooth out the jitter. We have not yet discovered a method
for getting a timestamp for each event on Windows, so we do
not yet know if this approach is possible on that platform.

5.2 HID echo test

In order to determine the speed at which data can be
transmitted to and from a HID device a ‘Create USB Inter-
face’ (CUI) [14] with a special loopback firmware was used.
This firmware implements a device that has both input and
output elements, and we configured the outputs to be di-
rectly connected to the inputs, meaning that every byte of
data sent by PD to one of the outputs gets immediately re-
ported as input. A test patch was created to send arbitrary
integers at short intervals to the device, and the the echoed
data was monitored for missing information. Transmit in-
tervals of down to 12 ms succeeded, but with shorter inter-
vals the echoed data began to show many missing values.
The same test was repeated with a normal input / output
firmware and a cable connecting output pins directly with

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIMEO7), New York, NY, USA

Table 1: average latency at a given poll time for two
implementations

Ims | 3ms | bms | 10ms | 25ms
threaded 4 4 4 4-5 10
threadless 4 4 4 4-5 10

input pins. This setup showed similar results to the loop-
back firmware tests.

An adjustable parameter that affects latency is the ‘bIn-
terval’, a value that each HID reports to the system to sug-
gest a polling interval. We ran another test after lowering
this suggested rate from 10 to 5 milliseconds, and found
that we could then reduce the transmit interval to 7 ms
before data was lost. This result suggests that maximum
data rate depends on the blnterval setting within the de-
vice’s firmware, and may not be completely determined by
the [hidio] object. This test was performed on a computer
running Windows XP, and tests on Linux and OS X will be
needed to understand whether they respond similarly.

6. CONCLUSION

In this paper we have presented our ongoing work to
permit human interface device usage on Max/MSP and
Pure Data. Our work aims to provide access to HIDs in
a consistent, usable manner on GNU/Linux, Mac OS X,
and Windows. Our primary goal in creating [hidio] and
[input_noticer] is to encapsulate the overly-complicated
HID API and to enable device plug/unplug monitoring,
facilitating the usage of HIDs in interactive patches. We
believe that a good interface to HIDs can be flexible and
high-performance while still remaining accessible to novices.
However, abstraction of complexity necessarily produces
a tension between ease of use and flexibility, and we have
attempted to find a satisfying balance. We expect the HID
Toolkit to reach a broad audience with a wide range of
technical sophistication, from expert designers of electronic
instruments to students taking their first physical comput-
ing course. We hope that the existence of the HID Toolkit
expands the set of possibilities for these audiences in their
creative work at the intersection of art and technology.

7. FUTURE WORK

In the future, we plan to undertake a more rigorous analy-
sis of latency data from various HIDs, in order to understand
better the causes of jitter and how best to mitigate this prob-
lem. Bluetooth connectivity is another exciting feature that
we hope to enable, since the growing number of Bluetooth
HIDs provide a convenient way to make a musical device
wireless. Finally, with the help of the growing user com-
munities for Pure Data and Max/MSP, we plan to expand
our growing library of ‘wrapper’ abstractions that encapsu-
late the basic [hidio] object to work with a wider range of
high-level device classes, as well as with specific devices that
require special data handling.

8. ACKNOWLEDGEMENTS

We thank the user and developer communities of Pure
Data and Max/MSP for their ongoing input and assistance
throughout our development.

378

9. REFERENCES

[1] Hid information.
http://wuw.usb.org/developers/hidpage/.

[2] Interactive Studio Seminar 2.
http://idmi.poly.edu/ms.

[3] Principles of Electronic Music Controllers. http:
//www.media.mit.edu/resenv/classes/MAS960/.

[4] Usb pid. http://www.usb.org/developers/
devclass_docs/pid1_01.pdf.

[5] Working with USB HIDs.
http://at.or.at/hans/research/nime/hid/.

[6] A. Black. El Lechero.
http://aug.ment.org/lechero/.

[7] G. D’Arcangelo. Creating a context for musical
innovation: a nime curriculum. Proceedings of the
2002 conference on New Interfaces for Musical
Expression (NIME’02), 2002.

[8] R. L. DuBois. An Interview with Luke DuBois.
http://cycling74.com/community/lukedubois.html.

[9] S. Greenberg and C. Fitchett. Phidgets: easy
development of physical interfaces through physical
widgets. Proceedings of the 14th annual ACM
symposium on User Interface Software and Technology
(UIST’01), pages 209-218, 2001.

[10] L. Gruenbaum. Samchillian Tip Tip Tip Cheeepeeeee.
http://samchillian.com.

[11] L. Kessous. Bi-manual mapping experimentation, with
angular fundamental frequency control and sound
color navigation. In Proceedings of the 2002 conference
on New Interfaces for Musical Expression (NIME’02),
Dublin, Ireland, 2002.

[12] krejler. Increase usb mouse polling interval.
http://wuw.linux-gamers.net/modules/wiwimod/
index.php?page=HOWT0+USBPolling.

[13] O. Matthes. hidin object.
http://akustische-kunst.org/maxmsp/dev/.

[14] D. Overholt. Musical interaction design with the
create usb interface: Teaching hci with cuis instead of
guis. In the proceedings of the International Computer
Music Conference, 2006.

[15] H.-C. Steiner. [hid] toolkit: a unified framework for
instrument design. In Proceedings of the 2005
conference on New Interfaces for Musical Expression
(NIME’05), Vancouver, BC, Canada, 2005.

[16] B. Verplank, C. Sapp, and M. Mathews. A course on
controllers. Proceedings of the 2001 conference on New
Interfaces for Musical Expression (NIME’01), 2001.

