
Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-170

Block Jam: A Tangible Interface for Interactive Music
Henry Newton-Dunn

Interaction Laboratory,Sony
Computer Science Laboratories, Inc.

3-14-13 Higashigotanda
Shinagawa-ku, Tokyo 141-0022,

JAPAN
henry@csl.sony.co.jp

Hiroaki Nakano
Creative Development Group,Sony

Design Center
6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141-0001,
JAPAN

nakano@dc.sony.co.jp

James Gibson
Human Interface Design Group,Sony

Design Center Europe
The Heights, Brooklands

Weybridge , Surrey KT13 0XW,
UK

gibson@dc.sony.co.jp

ABSTRACT
In this paper, we introduce Block Jam, a Tangible User
Interface that controls a dynamic polyrhythmic sequencer
using 26 physical artifacts. These physical artifacts, that we
call blocks, are a new type of input device for manipulating
an interactive music system. The blocks’ functional and
topological statuses are tightly coupled to an ad hoc
sequencer, interpreting the user’s arrangement of the blocks
as meaningful musical phrases and structures.

We demonstrate that we have created both a tangible and
visual language that enables both the novice and musically
trained users by taking advantage of both their explorative
and intuitive abilities. The tangible nature of the blocks and
the intuitive interface promotes face-to-face collaboration
and social interaction within a single system. The principle
of collaboration is further extended by linking two Block
Jam systems together to create a network.

We discuss our project vision, design rational, related
works, and the implementation of Block Jam prototypes.

Figure 1. A cluster of blocks, note the mother block on the
bottom right

Keywords
Tangible interface, modular system, polyrhythmic sequencer.

1. VISION
We believe in a future where music will no longer be

considered a linear composition, but a dynamic structure,
and musical composition will extend to interaction. We also
believe that through the introduction of such media the
divisions of composer, performer, and audience will be
blurred.

Our second aim is to put the group experience back into
music. We understand that the musical experience changes
with technology. Musical technology provides greater
control, more possibilities and greater access to the beginner
or novice.

The way we receive and listen to music is also changing,
not just in terms of Low-Fi to Hi-Fi or Phono to Tape to CD
to MD to MP3, but also in terms of experience, music is
moving from a social experience to a personal experience,
from campfire to orchestra to living room to Walkman.
Degrees of separation have occurred between the composer
and the performer, the performer and the audience. This trend
continues. Inversely, technology is moving towards
community, towards the group, towards the network.

Block Jam is the first in a number of projects aimed at
addressing this disparity within the technologically
mediated musical experience.

2. DESIGNING BLOCK JAM
This project was initially created in December 2001 as an

exploration into both new types of musical experience and
novel tangible interaction techniques. The project was a
collaboration between designers from Sony CSL Interaction
Laboratory and designers from the Sony Design Center.
Decisions were weighted towards functional relevance, with
a view towards an aesthetic outcome. Designing the project
fell into two distinct areas, designing the musical experience
and designing the tangible interface. Though separately
described below – these processes were actually designed
concurrently, decisions made in one area often affecting the
other.

2.1 Designing the Musical Experience
Through a musician’s physical gesture, his vocal or

instrumental performance, we are able to unlock sensations,
emotions and thoughts. Musicians develop these skills
through formal study and practical application. Music is not
difficult to appreciate or enjoy, but difficult and often
frustrating to create or play, especially for the untrained.

Interactive music has the potential (and the promise) to
help release us from this difficulty and frustration. In 1970,
Mathews and Moore created the first interactive music
program called Groove that proved to be experientially
“almost irresistible”[[3]]. Since Groove, there have been
many attempts to design and implement new
computationally mediated musical systems and interfaces. It
should be noted that this paper is not concerned with
computer music systems, but rather systems for interacting
with music.

These systems and interfaces fall into many categories;
from improvisational or continuator systems [[4]],
Hyperinstruments [[5]], to simpler systems that are usable
by the novice. There are a host of commercial available

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-171

experiences like those created by new media companies such
as Hi-Res[17], or software titles such as Rez [15] or Parapa
the Rappa [16] for the PlayStation 2 platform.

Our goal for this project was to create an interactive music
system that would both engage the novice user and the
musically trained, and promote collaboration and
communication among the participants.

We can think of music as a communicative conduit, as a
performance, and as a mono-directional expression. We
prefer to consider music as bi-directional (or even omni
directional) since music is about teamwork and group
interaction. It is a promoter of communication, excitation,
and mediation, and most importantly to us, creative
interplay. This notion can be identified in the compositions
of artists such as Arnold Schoenberg, Karlheinz Stockhausen
and notably John Cage. Umberto Eco speaks of the Poetics
of the Open Work [2], in which each layer of interpretation
adds to the completeness. Therefore, he suggests that a piece
of music remains incomplete (or open) until interpreted from
the score by a musician, then in turn by the audience.

Bearing this in mind, we decided on two key points to be
used as anchors for our design of a musical experience:

1. The collaborators have a common musical frame of
reference (much like Schoenberg’s twelve tone
system) within which they can each assume a
different role.

2. The musical frame of reference should be compos-
able, and must remain open (interpretable).

These translated into an asymmetric network of interactive
music applications, emulating the structure of a band (e.g. a
drummer app, guitarist app, bassist app, etc).

This suggested a need for a collaborative interactive music
framework. Such a framework would allow composers a new
creative space for themselves and their audience – the
participants - to explore.

Block Jam is the physical realization of an application
that could be used for such an interactive music framework.
As a starting point, we divided the potential applications
into two categories – sequencer type applications and
gestural type applications.

Sequencer type applications are comprised of modular
musical elements that are arrange-able and interchangeable
within a sequential context to create a novel musical
outcome such as Toshio Iwai’s Composition on the Table
[[9]].

Gestural applications by contrast are based on the
modulation of tone, pitch or timbre to create an expressive
output. An example is Ivan Poupyrev’s Augmented Groove
[[8]], where a user modulates and mixes techno
compositions by manipulating real LP records tracked by a
PC using visual markers. Effects, filters, and samples are
triggered according to a record’s movements (up-down,
rotation, tilting, and shaking).

We considered that a necessary limitation to our design
was that it must be stylistically neutral. Unlike Augmented
Groove, we did not want to tie the applications or interface
to be organized around a particular genre, particularly if our
longer-term goal is to build a compose-able interactive
music framework.

For our first application, Block Jam, we chose the
sequencer type. We felt that it would be less problematic to
create functional mappings and far easier for it to remain
neutral and open.

2.2 Designing the Tangible Interface
When it came to designing the interface for Block Jam we

started by looking at interactive toys and sound devices
currently available for children, good examples being
SoundBlocks , Musini and Phonics Tiles available from
Neurosmith[[6]] (who produce children’s products based on
research into linguistics and cognitive science).

Children’s toys tend to be physically organized and
actuated, have meaningful use of shape and color, are iconic
and often include sound. Children’s toys also have
immediacy. These were all characteristics we hoped to
include and emulate in our design, the major difference
being that our target users were adults, who require a much
greater sophistication than children in order to be
experientially engaged.

Other toys of particular note were Friedrich Froebel's Gifts
(#2 to #6), which are sets of wooden blocks that vary in
complexity, shape and color. The sets were designed to help
children learn, explore, and create. The shapes, being
primitives, hold no direct meaning, but when combined they
can create endless iconic forms such as houses, castles,
towers and bridges. The forms act as a mechanism for
eliciting experience. This suggested the possibility of a
programmatic equivalent - a modular tangible interface
whose rules are simple enough to be easily understood, but
whose outcome is potentially complex enough to be
continually engaging. Perhaps we could use blocks to
program sound.

The idea of using modular tangible blocks for building
programmatic structures is not new. We formed two
approximate categories for our assessment of tangible
interfaces, functionally heterogeneous and functionally
homogeneous. Functionally heterogeneous tangible
interfaces are where different physical artifacts are used to
represent different functions. Functionally homogeneous
tangible interfaces consist of a single type of physical
artifact with a single function – typically, many of these
artifacts could be interlocked to produce programmatic
outcomes.

2.2.1 Examples of Functionally Heterogeneous
Modular Tangible Interfaces

FitzMaurice identified the possibility of using tangible
objects (Graspable User Interface) in Bricks [1] to extend the
Graphical User Interface (GUI). Different tangible artifacts (as
metaphoric transducers) could be used to represent
functional elements of a GUI. This promoted the notion of a
space -mu l t i p l exed interface, as opposed to a time-
multiplexed interface (such as the mouse).

Brygg Ullmer’s MediaBlocks [10] further extended this
work by using tangible objects for the containment,
transport and manipulation of a digital media system.
Wooden blocks known as phicons (physical icons) were
used “as a seamless gateway” to control the GUI.

Jun Rekimoto’s DataTiles [[12]] integrated both the
graphical and the physical user interface. It promoted the use
of tagged transparent objects as interaction modules, which
mixed visual feedback with physical interactions and
created a physical language for combining multiple tiles to
create a “sentence”. This system relied on screen used as a
base on which the transparent tiles were placed.

Mitchel Resnick’s Behavior Construction Kit [7], which
allowed children to build behavioral machines using sensor
bricks (e.g. IR) and output bricks (a motor) connected to a
programmable brick. Interestingly the project was
envisioned as a means of making ubiquitous computing

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-172

accessible to children, but was later realized as Lego
Mindstorms, which is sold as a “Robotics Invention
System”[[11]].

2.2.2 Examples of Functionally Homogeneous
Modular Tangible Interfaces

Frazer, J.H. et al identified the first modular tangible
systems in 1982 [[13]] with two systems, Tree Searcher and
notably Intelligent Beer Mats. The Intelligent Beer Mats
were used to describe 2D topological configurations of flat
square physical units to a host PC. The system was intended
as a prospective application for the architectural building
process.

Mathew Gorbet’s Triangles [[14]], similar to the
Intelligent Beer Mats consisted of a set of identical flat,
plastic equilateral triangles, each with a microprocessor and
unique ID, again, allowing a host PC to rebuild a given
topology. The triangular shape was chosen because it held
no meaning, thus the Triangles were applied to varying
media oriented applications. Unfortunately, the Triangles
were limited by a lack of an integrated output and input
interface

2.3 Interface Requirements for Block Jam
Many of the tangible interfaces that we looked at were:

1. Reliant on a separate GUI [1, 9,12]

2. Had stateless interface artifacts, (they just acted as
passive handles) [1, 9, 13, 14]

3 . Had no, or limited means of direct digital
interaction with an artifact itself [1, 9, 13, 14]

A clear advantage of a digital artifact is that it can be
functionally dynamic. Our primary requirement for the
Block Jam interface was that each tangible artifact would
have a dynamically change-able state. This in turn suggested
a need for a means of displaying the state, and a means of
changing it.

Early sketches included a large variety of possible
functions/states [Figure 2]. These were grouped and then
mapped to a variety of shapes, to create a visual/shape
interaction language. The language included different types
of input mechanisms and function groups.

The input mechanisms included a variety of state and
stateless dials, wheels, buttons, and sliders. The functions
were grouped into effect (DSP) modulators, route functions –
including route splitters and route mergers, sound
triggering functions, and more compositionally algorithmic
functions, such as automatic key changing.

Figure 2. Early sketch (describing a more complex
interaction language)

However, it soon became apparent that the potential
complexity of assigning separate functions to separate
objects could become overwhelming for the user within the

context of our design. We found that designing an interface
that makes music easily controllable at a higher level did
not necessarily mean adding new functionality (as i s
normally the case with interface design), but rather it meant
refining and rationalizing existing functionality.

Figure 3. Later sketch (exploring the ramifications of
stacking blocks in 3D)

We started a continuous process of removing
functionality, attempting to boil it down to the absolute
bare minimum. During this process, we realized that the
tangible artifacts’ different functional states, did not have to
be mapped to different shapes. We had so few functions left
that the original shape groupings became meaningless. Each
artifact’s state or function could be represented by its
display mechanism alone. One primitive shape with a
common set of input and output mechanisms could be used.

Figure 4. Sketch of a non-tessellating structure

We explored tessellating and non-tessellating structures
and different stacking, and layering solutions. Tessellating
shapes were attractive because they’re easy to assemble,
input mechanisms are accessible, and connected shapes
could be easily read. However, they’re best suited to 2
dimensional arrangements – 3 dimensional arrangements
(though exciting) had problems of visual and input
mechanism occlusion [Figure 3]. Conversely, non-
tessellating structures [Figure 4] were equally suited to 2D
and 3D, especially when self organizing [Figure 5], but
suffered from bad input mechanism accessibility and poor
shape readability.

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-173

Figure 5. Mock-up of a self organizing structure using
plastic rods to hold the nodes in tension

Finally, we chose a form factor based on a square shape
rather than a triangular, or a circular shape because it implied
directionality. A message arriving at one side could easily
be imagined passing through to the opposite side. A 3-color
LED matrix (16*16) was chosen as the display mechanism
for its simplicity, and two input mechanism were added, a
button for toggling the state/function, and a dialing gesture
for choosing sound [Figure 6].

Figure 6. The final block design, note the milled groove in
the surface and the connectors on the side

2.3.1 The Anatomy of a Block
Externally, a block consists of a white ABS resin box, with

a black acrylic top [Figure 6]. It has connectors on the side,
which connect power and pass serial data. The black acrylic
top has a circular milled groove in it’s surface, and an LED
matrix below its surface that is visible through the acrylic
when illuminated. The LED can light up red, green, or orange.
Incidentally, the black acrylic was chosen because it helps
with the LED visibility.

The blocks can sense two types of input, a click, and a
dialing gesture. The click is measured via a simple sprung
button placed on the under side of the circuit/LED matrix,
so, when the acrylic top is pressed so the button is pushed.
The dialing gesture is sensed via an array of eight infrared
optical reflectors arranged two to a side along the path of the
milled groove. As the user dials, his/her finger is guided by
the groove.

Figure 7. Inside a block, note the button for detecting the
click

The blocks physically connect to each other by means of
two hidden magnets on each side of the box. Each block has
a unique ID, allowing the blocks to communicate over a
common bus. Data is sent from a block when it is connected,
when a neighbor has been disconnected and when a block
has sensed a user’s interactions. Information received
updates a block’s status and tells it which icon to display on
the LED matrix.

The data passing between the blocks and the PC is handled
by a PIC microcontroller [Figure 9] in each block
communicating over a common bus. The LED matrix, the
click input and the array of optical reflectors used to detect
the dialing gesture were all handled by second PIC
microcontroller. The only calculation performed by the
blocks was the dialing to keep the data flow on the common
bus to a minimum (otherwise risking too much noise). All
other functions were handled by the controlling PC, which
told the blocks what to display and when to display it.

Figure 8. Schematic showing a blocks I/O system

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-174

Figure 9. Schematic showing the input system (click and
dial) and the LED matrix control

3. INTERACTING WITH THE BLOCKS
We created two types of block, play blocks and path

blocks. Play blocks start, stop and control the speed of a
sequential instance or marker known as a cue ball. Path
blocks control the route that a cue ball travels. A play block
can only be connected on one side (towards which the play
icon is pointing), where as a path block can be connected on
four sides.

As the blocks are added together, they form a cluster
[figure 1]. A cluster is connected to a PC (for computation
only) by a tethered play block (known as the mother block).
The tether (wire) provides common power and a common
serial connection to the cluster.

A cue ball bounces from one block to another within a
cluster according to rules determined by the state of each
path block. Every block metaphorically contains a sound, so
as a cue ball (or cue balls) bounce from block to block i t
determines a sequential composition, creating music.

3.1 Starting and Stopping a Cue Ball
Clicking a play block toggles a cue ball instance on or off.

Therefore one click starts a cue ball and another stops it (in
addition to toggling, a timer is measuring the length of the
clicking action). This measurement allows for different
speeds of the cue ball to be started. A quick click starts a
quick cue ball, a medium length click starts a medium speed
cue ball, and a slow click starts a slow cue ball (the amount
of time a click is held down while stopping a sequence has
no functional relevance – the cue ball just stops).

Since events in our system are quantized to a fixed
beat/grid, this translated as a click of less than one second
starting a cue ball that bounced every beat. A click that
lasted from 1 to 2 seconds launched a cue ball that bounced
every two beats. A click longer than 2 seconds launched a
cue ball that bounced every four beats.

Multiple play blocks can be added to a cluster at the same
time, and so multiple cue balls can run concurrently.
Experientially, concurrent cue balls, especially when they
are of different speeds (e.g. two slow and one fast cue ball),
create musical layering and complexity. A play block only
controls the cue ball that it has launched.

Figure 10. Play Icons displayed on the 16*16 LED matrix

Figure 11. The straight and corner function icons

Figure 12. The four rotated states of the gate icon

3.2 Controlling the Path of a Sequence
Clicking a path block toggles between various path

changing functions. The path changing functions determine
which side of the block a cue ball will exit from relative to
the side through which it entered. The path changing
functions are:

1. The straight function, which bounces the cue ball
straight along the given axis

2. The corner function, which bounces the cue ball at
90° relative to the given axis

3. The gate function, which jumps the cue ball in the
direction indicated by a changing icon displayed
on the LED surface, the graphic rotates 90° every
time it is triggered

When a cue ball comes to the end of a route, i.e. it has
nowhere to jump next, the cue ball loops back to the play
block from which it originated. If a cue ball bounces onto a
play block, its route is reflected 180°, returning in the
opposite direction.

The corner function was often used to build large loops,
but they could also be used as a means of isolating one area
from another. For example in Figure 13, a cue ball launched
from the top red play block would never reach the bottom
two green blocks.

The gate function was designed to act as a type of counter,
sending a cue ball in a given direction every fourth count.
More often, it was used as a randomizer adding variation to a
cue ball’s route. When a large number of play blocks were
gathered together and all set to the gate function, with
several play blocks initiating several cue balls, the system
constantly varied, never sequentially looping, much like the
behavior of cellular automata. Although fascinating to watch
and consider, this did not produce interesting sound. The
output, though quantized, felt structure-less, and without
flow or variation. It generally produced an un-engaging din
when used with harmonic sounds (surprisingly), but was
more palatable when we used rhythmic sounds.

3.3 Choosing a Sound
Milled into the top surface of a block’s display is a

circular groove. If a user places their forefinger into the
groove and follows it rotationally, the block senses a
dialing activity [Figure 13].

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-175

Figure 13. Dialing a new sound

Dialing changes the block’s sound ID. As the user dials, a
number representing the sound ID on the display counts up
or down from 0 to 15. Dialing clockwise counts up, and
dialing anticlockwise counts down. The numbers were
grouped into three colors, so sound IDs 0-5 are displayed
red, 6-10 are displayed orange, and 11-15 are displayed
green. (More colors were possible, but we limited the
number to three for easy readability)

After the user has finished dialing the chosen sound ID the
block’s display reverts back from the shown number to the
functional icon. The icon retains the color of the sound ID.

For example, if we take a play block that has a sound ID of
1, the play icon shown on the block’s display will be red. If a
user then dials in a sound ID of 12, after the user has
finished dialing the display reverts to the play icon, except
that this time the icon is green.

The different color groups allow the user to approximately
know visually which block has which sound ID. In our
prototype, we mapped all the guitar and organ type sounds
to the red group, vocal sounds to the orange group and
percussive sounds to the green group (sound ID 0 is never
mapped to a sound, it can be used as a musical pause by a
user). The iconic use of color greatly assisted a users ability
to keep track of the structures they had created, and which
sound they had put where. This was not something that we
had originally considered - our initial prototype only had
red LEDs, which led to user confusion and frustration. The
addition of the color groups allowed the users to play more
freely, they no longer had to remember which sound was
related to which ID, but instead could say “I want an orange
sound here, and a green sound there”.

The resulting sound that a block played was dependant on
two variables:

1. The block’s sound ID

2. The speed of the cue ball that triggered it.

This meant that a block doesn’t just contain one sound, i t
actually contains three; one sound for a slow cue ball, one
sound for a medium speed cue ball, and one sound for a fast
cue ball. Consequentially, a single block can play one of 45
possible sounds from 15 sound IDs.

Having the combination of different cue ball speeds and
sound IDs, in conjunction with the modular tangible
interface, though apparently simple, allowed the user an

enormous number of musical possibilities, in an intuitive,
easy to use interface without any prior musical knowledge.

4. OVERVIEW OF THE BLOCK JAM
SYSTEM

The blocks are connected to a mother box via the mother
block. The mother box mediates serial data from the blocks
to a PC. The PC is connected via MIDI to a sound module to
render the output.

The software architecture on the PC comprised:

1. The topological model

2. The functional model

3. The mapping

4. The sequencer

As a block is connected to the cluster, it is activated. It
sends a message to the PC telling the topological layer its
unique ID and a number identifying which side (0-3) and the
ID and connecting side of the adjoining block(s). From this
information, a topological model of the blocks is deduced.

Attached to the topological model is a functional model.
The functional model tracks all the users interactions and
changes each block’s state accordingly. A metronomic event
triggered by the sequencer tells the functional model to send
a list of output events to the mapping layer if there are one
or more active cue balls. The sequencer finally sends the
appropriate MIDI data to the sound module.

4.1 Mapping the Sound to the Sequencer
Every time a cue ball bounces from block to block, i t

triggers an event. The trigger event is then mapped to an
array of MIDI events called a part.

The part is then passed to an ad hoc sequencer, which
quantizes the MIDI events (according to a time stamp) and
passes them to a MIDI sound module, which renders the
resulting sound out put. A user experiences the sound
coming from a block metaphorically. We use a part instead
of playing a sample directly because it allows us a to do
much more compositionally – after all, MIDI can control
much more than a sampler.

If two or more cue balls trigger the same block at the same
time then all of the resulting parts will be passed to the MIDI
sequencer. If the cue balls are of different speeds, for
example one fast and one slow cue ball, then the cue ball will
render the two different parts (i.e. the block’s sound fast part
+ slow part). If, on the other hand the cue balls are the same
speed, there will be no additive effect.

4.2 Composing for Block Jam
Because we are using MIDI and a sequencer, music can be

easily composed for the Block Jam system. During the Block
Jam’s development, we worked closely with musicians, in an
effort to maintain parity between our system and how a
modern musician might want to compose their music. It
became apparent early in our prototype development that we
needed to create a simple authoring structure that the
musicians could use. The structure needed to cover two
areas, authoring the possible 45 parts (time stamped arrays
of MIDI messages), and determining the setup for the MIDI
sound module.

After assessing many different sound modules, we chose
the “Reason 2” virtual sound studio and software
synthesizer because of its high quality output and its
modular patching system. The modular patching system
allowed the musicians to rapidly plug together a number of

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-176

virtual instruments and create the rendering context they
required. We then created a grid that the musicians could
follow in the Reason sequencer, with a space allocated for
each of the 45 parts. A part being a time stamped MIDI array,
is essentially a small sequence – so to export the parts to the
Block Jam system a musician simply exported the entire
MIDI song. Because of the grid, we knew where each part was
located in the song and could easily parse the data. The same
rendering context (Reason file) was used to output the music
for Block Jam. This structure allowed the musicians to
rapidly compose music for us, which meant that we could try
a variety of mappings and types of sound.

Semantically the length of the sounds rendered from a part
should have some parity to the speed of the sequence. In the
case of our prototype, fast parts tended to last one beat,
medium parts two beats long and slow parts one bar (4 beats
in 4/4 time). This assists the user in connecting the resulting
sound to the activity of the cue ball.

Of course, what is mapped and how long its duration is, i s
entirely up to the composer who is authoring the music for
the system. It is also worth noting that a part does not even
have to contain sound triggering (note On) MIDI data, i t
could just contain sound altering data, such as control
change or pitch bend messages.

An obvious limitation to the Block Jam system (in terms
of composition only) is that any sound can be played with
any other sound at any give moment – which means that all
the sounds should work together. The easiest way to achieve
this is to keep the instruments distinct (timbre), and play all
the notes in the same key.

A way around this limitation would be to create an
algorithmic layer (as previously mentioned) that could
automatically handle global events such as key changing.
Realistically, this would have to be very carefully mapped to
Block Jam, giving greater compositional variety without the
user losing their sense of control.

5. USER RESPONSE
We were hoping to elicit an engaging or thought

provoking response from users using Block Jam; therefore,
we relied on anecdotal information and our own
observations of participatory demonstrations, to assess
usability and understanding of the system. Participatory
demonstrations were made to members of the Sony
community and outside visitors to our laboratory. Block
Jam was also demonstrated at SIGGRAPH2002 in the
Emerging Technologies Section [[15]]. Response from users
was overwhelmingly positive, satisfying our aim to design
an engaging system.

Users required a minimum of instruction, and would
usually spend 3 or 4 minutes “working it out”. Users tended
to have the greatest initial difficulty with the most popular
feature – dialing. A conflict can occur because the acrylic
surface is used for dialing and clicking, so when a user
pushes down while dialing (thus clicking) at the same time,
they’re also inadvertently toggling a blocks function. This
could be easily fixed by making the round area in the center
of the surface move independently of the surrounding
milled groove. Once a user understood the conflict, it no
longer interfered with their interaction.

Another observed confusion arose when users tried to
select different speeds of cue ball – the play icon (indicating
the speed) is displayed after the click interaction has been
displayed – so user feedback is after the fact. One user
suggested that we should animate the play block icon while
it is being clicked – so the change in the speed indicator can
be watched as it’s being held down.

Users often built similar structures, the abstract
complexity of the structure reflecting their understanding of
the how the Block Jam system functioned. The first structure
built was usually a single row of blocks. Then a user would
discover the corner function; this was usually followed by
the question “can I build a big loop?” From the “big loop”
structure users tended to build a series of 3 rows of different
lengths with a play block at each end creating a system for
easily observing the timing in relation to the different cue
ball speeds. After this point, it was very much up to the
individual – some wanting to build visual patterns, massive
structures, organized structures, and playful random
structures. Once a user started building, it was quite hard to
make them stop. We had initially been a little concerned
about how quickly a user might get bored of the system –
how wrong we were! Users loved to play. Some wanted to use
it as a tool for performance, others wanted to collaborate –
“It would be great for parties” was a typical response.
Everyone wanted to take them home.

Block Jam is not a musical instrument; it is an alternative
means of controlling a sequencer. It has no means of
continuous control or gesture, and all interactions have a
musical latency inherent to quantized sequencers.
Conveying expression on such a system might be construed
difficult if not impossible. However, users were able to
control the musical output expressively through structure
and timing, from gentle harmonies to complex beats and
rising crescendos.

6. WE JAM
In addition to promoting face-to-face collaboration by

using a tangible interface, we hoped to promote and explore
remote collaboration through a network. We extended the
Block Jam prototype by adding a second mother block and
PC, to create two nodes and named the new prototype We
Jam. The nodes were interconnected via MIDI as a means of
simulating a real-time network. Though pertinent, we
decided to avoid issues of latency normally associated with
networks and decided to focus on the issues pertaining to
the interaction alone.

A key element in our vision was the notion that different
users within a framework interact using different
applications – creating a functionally asymmetric dynamic.
We realized that we had an opportunity to emulate this
within We Jam, by allocating each node a different sound
set. The first node was allocated a rhythmic sound set
running at a speed of 120 beats per minute (bpm). The
second was allocated a more harmonic sound set running at a
speed of 60 bpm. So when interacted with individually, the
nodes provided the users with very contrasting musical
experiences, one fast and edgy, the other slow and melodic.

The sound sets were composed so that when the users
played together they would produce a pleasing result. We
found that inexperienced users, at first tended to play
erratically trying to discern which sound belonged to whom,
but after a few minutes would start to play cooperatively.
Exper ienced users would p l a y cooperatively,
improvisationally reacting to the other user’s actions.

7. CONCLUSION
In this paper, we have presented the design and

implementation Block Jam. We have demonstrated that the
Block Jam system succeeds as both a tangible interface and
musical application – eliciting a positive experience and
provoking a collaborative response in users.

By spatially-multiplexing a sequencer through the use of
a tangible interface have created novel interactive

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-177

possibilities. The notion of collaboration was further
extended by the addition of a network to create We Jam – our
latest prototype to date.

We hope to continue this work; exploring alternative
types of tangible interface, different types of application
(looking at gesture in particular), and further explore the use
of a network. In our next project we hope to create a
collaborative interactive music system for remote users
using hand held devices.

We are also interested in applications for the Block Jam
tangible interface other than music. After all, nearly all
media is sequential, so the system could easily be adapted
for visual applications, or creating dynamic narrative
structures.

8. ACKNOWLEDGEMENTS
We would like to thank the Sony CSL Interaction Lab

members, particularly Dr. Jun Rekimoto and Ivan Poupyrev
for their help and support. We would also like to thank
members of the Sony Design Center, particularly Kei
Tostuka and Yutaka Hasegawa. We are also indebted to
Ryota Kuwabuko - who designed the blocks’ integrated
circuit and display mechanisms, and to Kenjiro Mastuo who
composed the music used for testing the system and the
music for the SIGGRAH demo.

9. REFERENCES
[1] Fitzmaurice, GW. (1995) Bricks: Laying the

Foundations for Graspable User Interfaces. CHI95
Proceedings ACM Press.

[2] Umberto, E. Translated by Cancogni, A. (1989) The
Open Work. Harvard University Press.

[3] Mathews, M.V & Moore, F.R. (1970) Groove – A
Program to Compose, Store, and Edit Functions of
Time. Communications of the ACM, vol. 13, no.12,
December 1970.

[4] Pachet, F. (2002) Playing with Virtual Musicians: the
Continuator in Practice. IEEE Multimedia, 2002.

[5] http://www.media.mit.edu/hyperins/

[6] http://www.neurosmith.com/

[7] Resnick, M. (1993). Behavior Construction Kits.
Communications of the ACM, vol. 36, no. 7, pp. 64-71,
July 1993.

[8] Poupyrev, I. (2000) Augmented Groove: Collaborative
Jamming in Augmented Reality. SIGGRAPH 2000
Conference Abstracts and Applications, ACM Press.

[9] Iwai, T. (1999) Composition on the Table.
SIGGRAPH’99, Electronic art and animation catalog
July 1999.

[10] Ullmer, B et al. (1998) MediaBlocks: Physical
Containers, Transports, and Controls for Online
Media. SIGGRAPH’98, Conference Proceedings 1998.

[11] Lego Mindstorms, http://www.legomindstorms.com

[12] Rekimoto, J. et al (2001) Datatiles: A Modular
Platform for Mixed Physical and Graphical
Interactions. CHI2001, Conference Proceedings 2001.

[13] Frazer, J.H. (1982) Three Dimensional Input Devices,
Computer/Graphics in the Building Process, March
1982

[14] M.G. Gorbet, M. Orth, and Hiroshii Ishii. Triangles:
Tangible Interface for manipulation and exploration of
digital information topography. CHI’98 Proceedings,
pages 49-56.

[15] Newton-Dunn, Nakano, and Gibson. Block Jam.
SIGGRAPH2002, Conference Abstracts and
Applications, page 67. ACM Press

[16] http://www.u-ga.com/rez/

[17] http://www.us.playstation.com/games/SCUS-
97167/parappa1024_win.html

[18] http://www.hi-res.net/

http://www.media.mit.edu/hyperins/
http://www.neurosmith.com/
http://www.legomindstorms.com
http://www.u-ga.com/rez/
http://www.us.playstation.com/games/SCUS-
http://www.hi-res.net/

