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ABSTRACT

We introduce a software system for real-time classification of
violin bow strokes (articulations). The system uses an
electromagnetic motion tracking system to capture raw gesture
data. The data is analyzed to extract stroke features. These
features are provided to a decision tree for training and
classification. Feedback from feature and classification data is
presented visually in an immersive graphic environment.

1. INTRODUCTION

The CyberViolin project seeks to capture aspects of violin
playing in order to better understand how expert violinists
achieve the effects they are heard to achieve. Ultimately, this
information will be used to facilitate human-computer
interaction.

There have been several initiatives involving the use of
sensor data to describe musical performance. In [8], a model is
described for the mapping between gestural primitives and
performer processes. A partial survey of instruments created
which allow sensor data to manipulate the sound
characteristics produced is given in [6]. Virtual musical
instruments provide a gestural interface for the mapping of
movement to sound [7]. In the eviolin project, a synthetic
instrument is created, efficiently mapping gestural data to the
production of particular sounds [9]. In [4], resonance model
filter parameters are changed based on motion sensor data,
allowing an instrument to be played through the resonance
model of another sound. An instrument model allowing
alternate input devices is described in [10]. In contrast to
systems using sensor input to map gestures to sound, the
cyberviolin project records gesture data for analysis in order
to provide objective feedback to the user. The user may then
interactively adjust his/her performance.

Bow movement is one significant part of violin playing.
Characteristics of this gesture include bow pressure, velocity,
and position. Used together, these parameters result in
different articulations; controlling these characteristics is
essential to the production of good violin tone.

In order to analyze these properties a module allows the
computer to identify and measure different articulations of
bow strokes. Additionally, this technology is designed to be
adapted to a pedagogical mode. Ideally, a violinist in an
immersed virtual environment would be able to interact with a
virtual world that responds to the articulations of the player.
As a pedagogical tool, a violinist in the practice room could be
monitored by a virtual teacher who could identify incorrect
articulations in real-time.

2. DESCRIPTION OF THE SYSTEM

The software system for the classification of violin bow
strokes (articulations) uses an electromagnetic motion
tracking system with two sensors. One sensor is attached to
the back of an acoustical violin and the other is attached to the

frog of the bow. There are a variety of articulations that have
developed historically as aspects of violin performance. These

include the following: détaché, martelé, staccato, spiccato,
and legato. The difference between these various strokes is the
result of subtle variations in gestures, which are discrete and
measurable.

Détaché is the most common bow stroke in string playing.
It is usually played in the middle part of the bow, with one
note per stroke. Although the spelling of the term suggests a
detached articulation, the bow never stops between strokes.
Legato is defined by the slurring of two or more notes on one
bow stroke. Contrary to the continuous bow motion of the
legato and détaché, martelé and staccato require decisive
attacks and releases.

Martelé is characterized by a percussive stroke produced by
pinching the string with the bow before drawing the bow. The
pinching or martelé-accent results from the weight of the bow
completely resting on the string with additional weight
applied by the relaxed, hanging arm. In each stroke, almost all
of this weight is suddenly released from the string, but only
for a moment while the bow is in motion. Upon completion of
a quick stroke (bow speed), the weight of the bow and arm is
again pressed against the string resulting in discontinuity
between strokes.

The spiccato is performed by a natural bouncing of the bow
from the string in the middle portion of the bow. The exact
location varies from bow to bow dependent on the location of
the “bouncing point” on the stick. Performing an accelerating
détaché in the middle-third of the bow will result in spiccato.
Note that both détaché and spiccato are performed with a
continuous bow motion (i.e., no stoppages).

The term staccato denotes two or more short strokes on the
same bow; performing two martelé strokes on the same bow
results in a staccato.

The CyberViolin system for analysis of bowing techniques
consists of the following components: bow stroke
characterization, decision tree induction, and bow stroke
classification. Decision tree induction allows classification
rules to be easily generated and compared with expectations
from domain experts.

Bow stroke identification involves a representation of each
stroke in terms of a dataset that translates physical activity
into various classes to facilitate computer recognition. The
next step is the creation of a tree structure that enables the
computer to recognize the various streams of data that
constitute the successful performance of each stroke. The final
step is the sifting of the data through the tree, a process that
results in the real-time identification by the computer of
performance gestures.

The system can be used in two modes: training and
classification. The two modes of operation are illustrated in
the following figures:
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The training mode is used to construct the decision tree,
which the computer will use in the real-time classification. In
order to facilitate the computer’s ability to classify different
articulations, a series of datasets that characterize each stroke
must be provided. This is an example of supervised learning in
that the programmer must provide the definitions for each
aspect of a given stroke. This is the necessary prerequisite to
enabling the computer to assess any given input. The more
training data we provide, the greater the accuracy of the
classification. In addition, there are algorithms designed to
improve the structure of the tree. For example by combining
branches we can create a more compact structure, and by
removing unwanted branches created as a result of noise in the
dataset, we can decrease the depth of the overall tree. In the
classification mode, we traverse the tree to identify a class
label.

Decision trees provide a natural mapping from feature data
to classification rules. Unlike other real time classification
methods, such as neural networks, these rules can be compared
with expectations from domain experts. Since the decision
trees generated in our system are relatively small, they can be
easily modified to further simplify the tree and improve the
classification accuracy. One of the major disadvantages of the
decision tree approach is that tree induction algorithms have a
poor scalability in terms of both the size of the training set
and the number of attributes. While additional data would be
beneficial, the relatively small number of attributes under
consideration reduces the requirement for large data sets. In
addition we have the option of manually editing and adjusting
the tree as we see fit.

3. IMPLEMENTATION OF THE SYSTEM

3.1 Bow Stroke Characterization

For the purposes of our classification system we define a
bow stroke as the path the sensor on the bow travels between
consecutive changes in bow direction. The most fundamental
classification of bow stroke is “up-bow” or “down-bow”. Since
the violin sensor is mounted along the axis of the strings,
when the bow-sensor, mounted near the performer’s hand,
approaches the strings the distance between the two sensors is
small. Therefore, an up-bow is defined by a decrease in the
distance between the bow and violin sensors, while the down-
bow is the reverse. Whenever movement is detected in the

direction opposite of the current stroke in magnitude greater
than a threshold of 0.4in a bow change is detected.

Initially the parameters used to characterize the bow strokes
were: the distances between the two sensors at the beginning
(D1) and at the end (D2) of the stroke, the length of the path of
the bow sensor (L) computed from D1 and D2, and the average
speed of the sensor (V). The most accurate measurement
possible, given this sparse set of parameters, was
approximately 73%.

Adding additional characteristics of bow movement has
increased the accuracy of this evaluation: frequency of bow
change, acceleration or deceleration within a stroke, continuity
of motion between strokes, bow position (middle, upper,
lower), number of changes in a single coordinate (stroke
similarity), lack of movement within a stroke (stoppage). The
system’s design allows for the easy addition and removal of
characterization parameters.

In order to add additional features, code specific to that
characteristic must be written. Several articulations must then
be performed in order to record how this characteristic varies
among articulations. Once this is done, numerical or nominal
data can be presented to the decision tree program. The ability
of the additional parameter to distinguish among articulations
under consideration can be determined and can then be
evaluated. An increase in accuracy indicates the addition was
successful.

Other parameters were considered but did not lead to an
increase in accuracy during our experiments. These
characteristics included the change in azimuth, elevation, and
roll relative to the violin.

The bow stroke characterization module is implemented in
an ANSI-C++ program using the FreeVR library [2]. The library
provides a programming interface to more easily obtain
calibrated sensor data and render three-dimensional objects.
The data is gathered from position sensors on the bow and
violin in the NCSA CAVE™ Autonomous Virtual Environment
[11].

The CAVE™ consists of a 10'x10' area with images
projected in front, to both sides, and below the user. Shutter
glasses allow images to appear in three dimensions. The
special tracked glasses and CAVE™ wand are both attached to
electromagnetic sensors that allow the computer system to
know where within the CAVE™ each is located and what its
orientation is. It supports the use of pulsed DC magnetic
sensors which report position as well as azimuth, elevation,
and roll. The environment is free of metal objects that would
reduce sensor accuracy.

The raw position data can be written to a text file for later
analysis. The feature data is also sent to a file (training mode)
or sent to the classification object (classification mode). Each
row in the file created as part of the training mode is a comma-
separated list of decimal numbers that characterize a single
bow stroke. The user must identify (supervised learning) each
type of bow stroke manually at the beginning of each file of
the training set.

3.2 Decision Tree Induction

The decision tree induction module is a stand alone C++
program, which, given a text file containing the training
dataset, builds a decision tree and stores it in a separate text
file. The bow stroke classification object accepts the file as
input and uses the decision tree to classify the bow strokes.
The decision tree induction algorithm is a version of the
classic ID3 algorithm, which works only with discrete values
and creates very shallow trees (the original ID3 creates binary
trees and works with continuous values). The shallow decision
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trees have very high classification performance and are easier
for manual modifications. The algorithm is described in detail
on page 56 in [1] and page 285 in [2]. “Information gain” is
used as the attribute selection measure. Because this algorithm
only works with discrete values, the range of values for any
given stroke must be precisely defined before running the
algorithm. Entropy-based discretization [1] [2], is used
because it works best with the decision tree induction
algorithm being employed.

With each iteration, the samples are split across value of the
attribute which results in the least randomness among the
resulting partitions. The process is repeated until the attribute
list is exhausted or until a partition has only members of a
single class. The nodes are labeled with the most common
class present in that partition.

The attributes are selected from among the extracted features

(such as velocity), and the classes correspond to the different

articulations.

The command line parameters of the decision tree induction
program are:
dtree input_file [output file ] [delta]

e input file is the file containing the training set.

e output_file is the resultant decision tree exported by the
function.

e delta represents a decimal number between 0 and 1 which
is used in the stopping condition of the entropy-based
discretization. The smaller the value, the smaller the
ranges created.

The program evaluates the classification accuracy. 2/3 of the
training set is used for decision tree induction and 1/3 is used
to test the classification accuracy of the constructed tree.

3.3 Bow Stroke Classification Object

The bow stroke classification object (figure 3) acquires the
extracted feature data and processes it through the decision
tree. The classification object then returns the corresponding
articulation. Upon instantiation, the classification object is
initialized with a text file containing the decision tree. Each
row in the file represents one node (figure 3). This module is
implemented in C++ and is integrated with the bow stroke
characterization code.

Attribute: 2

11...15: Attribute 1
1: Class: 1
0: Class: 2

16...25: Class 1

Figure 3: Textual representation

4. FEATURE DETECTION PROCESS

In order to gather the required data, two sensors are used in a
CAVE™ Autonomous Virtual Environment. Each sensor
provides information on its location in 3 dimensional space as
well as the azimuth, roll and elevation to which it is oriented.
In the CAVE™, this information is reported approximately 30
times per second, with an accuracy of approximately 1/4in.

Once the information has been captured from the sensors it
is translated from the absolute coordinate system into a
system relative to the location and orientation of the violin.
This allows the bow movement to be correctly recorded and
compared even as the user moves the violin about the area. If
the bow is not within range of the violin, data is not recorded.

Raw data is recorded in a temporary data structure until an
entire bow stroke can be analyzed. Since a stroke may stop in
the middle, as in the case of a staccato, a stroke is not
delineated until the next stroke is begun. This is determined
from movement in the opposite direction beyond a
predetermined threshold sufficient to account for any
unintentional movement and sensor jitter.

Most basic feature information is determined at the stroke
level. This information includes the bow direction (up or down
bow) velocity, minimum and maximum position in each
dimension, the time in the stroke when respective minima and
maxima are achieved, the number of times the bow is stopped
during the stroke, continuity, and acceleration. Acceleration is
recorded for several discrete segments of bow used in any
particular stroke. A violin simulator that reads in raw position
data from a file aids in feature development.

The features of several bow strokes are also recorded in a
temporary structure. Additional features can be reported based
on the similarity of stroke properties over a sequence of
several strokes. Strokes are also paired together before being
sent to the decision tree for classification.

As there are limitations on the sensor and characterization
system, the attribute characteristics may differ to some degree
from expectations of characteristics provided by experts in the
domain. Experiments were conducted to determine the benefit
of various attributes by examining the performance of the
decision tree when these attributes are considered.

Once information for all features is gathered, those features
or derivations, which provide the most information, are
selected for the decision tree. Those features typically include,
the velocity, change in distance between the frog of the bow
and plane of the violin strings, number of stoppages,
continuity, acceleration for first and middle segments, and
similarity of bow usage. A conversion program takes the
features and arranges the output as a list of comma-separated
values.

The decision tree generator takes a set of sample data and
produces a hierarchical system for classifying a stroke into an
articulation based on the values of provided attributes. The
accuracy of classification (based on withheld data) on data sets
containing several different articulations is shown in Figure 1.
While some of the data sets have modest accuracy, there is an
explanation for the results. When only détaché and martelé
articulations are considered, 100% accuracy is obtained. The
attributes considered by the decision tree help to discriminate
between these articulations. The essence of détaché is that the
bow never stops between strokes (continuity) whereas martelé
contains discontinuity.

All articulations have characteristics that are derived from
either the détaché or martelé stroke. For example the legato
and spiccato are both continuous in the manner of détaché
whereas the staccato, as mentioned earlier, is essentially
multiple martelé stokes contained within a single bow.

There are two problems that result from such similarity of
articulations. First, the decision tree can misclassify similar
articulations when devoid of distinguishing attributes; it also
requires a greater amount of data to differentiate articulations
that share common attributes. Second, since a stroke is defined
as a change in bow direction, it is difficult to take advantage of
distinguishing attributes within a single stroke. It is also
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difficult to consider attributes aggregated over several strokes
such as the number of bow changes over time. This results in
an insufficient amount of data available to the decision tree.

Staccato should be identifiable in a single stroke; the
number of stoppages uniquely distinguishes this articulation.
However, when several elements of a staccato articulation are
aggregated to the point of a bow change, it appears similar to a
martelé. Likewise détaché and Legato overlap with the
exception that there will be fewer Legato strokes over time,
which is only reflected to some degree in the velocity.
Multiple stroke attributes such as examination of the
similarity of bow usage among strokes increases accuracy,
however the amount of data required by the decision tree is
also increased. Given these constraints and the ability of the
system to identify the two most general articulations the
results are reasonable.

Table 1: Articulation classification accuracy

Articulation Accuracy
martelé, détaché 100%
martelé, détaché, legato 85%
martelé, détaché, spiccato 81%
martelé, détaché, staccato 76%
staccato, spiccato 75%
martelé, détaché, spiccato, 71%
legato, staccato

Once a decision tree is generated, it can be supplied to the
violin program. Given the same set of attributes supplied to
the decision tree generator, the classification routine will
provide the classification reported by the tree. If desired, the
tree could be modified by hand. The reported classification can
be used by visualization code (see section 5) or logged into a
file. In order to reduce false reports of articulation changes, the
reported classification is an average over the five most recent
individual stroke classifications preformed by the decision
tree.

The feature extraction process only requires simple
arithmetic operations be performed whenever new sensor data
is received. An advantage of decision trees is their high
performance after the training process is complete. Each bow
stroke only requires a number of comparisons at most equal to
the depth of the tree, which is in turn at most the equal to the
number of distinct features extracted. For these reasons, all
computation can be done without observable performance
latency. In the CAVE™ new data was received thirty times per
second, and strokes would be completed after several seconds
depending on the articulation.

5. CYBERVIOLIN APPLICATION

The cyberviolin application provides a player an
environment for the visualization of performance data. The
program reports feature data in real time. With a sufficient
number of strokes, real-time classification data is also
available. All data is archived for later presentation or
analysis.

Currently the application offers two modes of operation:
record and playback. In either of these modes, graphical
feedback is available. For each attribute the respective graph
illustrates the value with its corresponding bow stroke. This
allows the user to observe how the attributes, interrelated, form
articulations.

Static graphs representing pre-recorded data, while
informative, are of no real benefit to the player during the
actual performance. The aim of this application is to provide

the user with real-time feedback. Providing this feedback in
the CAVE™ environment creates a virtual interactive mirror
allowing the performer to see him/herself objectively. The
additional insight afforded in such a system allows the user to
adjust and improve their performance in real time.

As an example, consider a user intending to perform a
passage with a spiccato articulation. If the player mistakenly
performs a détaché we would like the system to provide
feedback to communicate this error and the means to correct it.
The report of the detected articulation indicates an error but is
devoid of the details necessary to influence a change.
Presentation of the distinguishing attribute values to the user
can alert the user to the requisite corrections.

The application is currently under development and we
hope to report on later versions supporting greater interaction.

6. LIMITATIONS AND FUTURE WORK

There are several sources that limit the accuracy of this
system. One weakness is the limited amount of information
that is available from a single pair of position sensors. If
sound analysis data or pressure sensors on the bow were
available, they may provide valuable information for feature
extraction and subsequent classification.

The precision of the hardware sensors as well as their refresh
frequency also has a limitation on the ability to detect
features. In testing the CAVE™ environment the precision was
clearly superior to other environments with less sensor
precision. Sensor error in such environments made feature
detection substantially less accurate and difficult to develop.
Further improvements could allow for more precise detection
of stoppages, discontinuity, and shorter strokes, as they are
most dependent on sensor precision. The size, weight, and
positioning of the bow sensor challenge the player’s ability to
perform articulations. A smaller, lighter, wireless sensor would
result in a more natural performance, and perhaps more distinct
articulations.

Feature detection could be improved with additional
identifying features. Features that compare several strokes are
one area of development that may lead to improved accuracy.
By computing information over an aggregate of strokes, the
time period for information provided to the decision tree is
increased. This allows for increased accuracy, as an articulation
may not be evident for several strokes. Reliance on these
features would require articulations long enough to provide
data on groups of strokes.

In our current implementation, some feature information is
not entirely accurate. Whenever there is a discontinuity or
stoppage, there is some period of time when the system is
uncertain if playing has resumed due to the time lag used to
determine motion. This appears to lead to observable error in
some instances correlated with stoppages. One such
articulation is the martelé stroke, which is generally defined as
a percussive bow stroke produced by “pinching” the string
with the bow before starting the stroke. When detecting bow
changes where the bow is stopped at the end of the stroke, the
velocity values were not consistent on the up and down-bow,
even when the bow speeds of both strokes were performed
similarly. The exact effect of this error on the classification is
unknown. It may be possible to reduce this error with more
accurate sensors in the future.

The availability of more data would aid in the construction
of the decision tree. Since the tree must speculate on unknown
information, the more performances the tree is exposed to
during training, the more accurate it will be. Spurious or
unusual data would also be factored out. While a decision tree
is capable of very accurate classification, other AI based
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classification methods, such as neural networks could also
potentially be used.

The user interacts with the program by using the bow in
place of the traditional wand pointing device. A graphical
interface is projected within the CAVE™ allowing the user to
select desired options by directing the bow at the respective
location.

Even with future improvements, there will be a level of
classification beyond which additional accuracy is difficult to
obtain. This is due to the fundamental properties of the
underlying music, and limitations in the performer’s ability.
However, even with these limitations, the cyberviolin project
is able to perform classification with a useful level of success.
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