
Embedded Comparo: Small DSP Systems Side-by-Side
Francesco Di Maggio

Eindhoven University of Technology
Eindhoven, Netherlands

f.di.maggio@tue.nl

Bart Hengeveld
Eindhoven University of Technology

Eindhoven, Netherlands
b.j.hengeveld@tue.nl

Atau Tanaka
Goldsmiths University of London

London, United Kingdom
Bristol Interaction Group
Bristol, United Kingdom
a.tanaka@gold.ac.uk

Abstract
This paper presents a comparative analysis of four embedded
platforms designed for real-time audio processing: Bela, Daisy,
OWL, and Raspberry Pi. These platforms have become integral
tools in the field of digital musical instrument design, offering a
variety of workflows, programming environments, and deploy-
ment methods. Although each system carries its own distinct
strengths and constraints, the current workflow to embed DSP
code across multiple devices lacks standardized approaches. To
address this challenge, we develop a methodology that focuses
on deploying Pure Data patches across all four platforms. Our
study is structured around four test patches. Our findings high-
light the trade-offs in latency, processing power, and memory
constraints across the selected platforms. As a result, we propose
a streamlined workflow to deploy Pd patches on each board using
Plugdata, the Heavy Compiler, and their respective Web IDEs. As
an ongoing contribution to the NIME community, we document
our methodologies, workflows, and best practices in an open
source repository, which serves as a continuously evolving re-
source for future research in the hands of musicians, researchers,
and developers working with embedded musical systems.

Keywords
Embedded Platforms, Single-Board Computer, Microcontroller,
DSP, Plugdata, Bela, Daisy, OWL, Raspberry Pi

1 INTRODUCTION
The increasing computational power of single-board computers
(SBCs) and microcontroller units (MCUs) has enabled musicians,
developers, and researchers to build custom embedded musical
instruments with low latency and high-quality sound. Typically,
working with embedded systems required an in-depth under-
standing of low-level programming languages such as C/C++,
making them largely inaccessible to those without specialized ex-
pertise. However, modern computer music programming environ-
ments such as Pure Data (Pd), Max gen~ and RNBO, FAUST, and
SuperCollider have significantly reduced this barrier, allowing a
broader range of users to create and deploy DSP code directly on
embedded hardware. Furthermore, the active community-driven
effort to share open source resources, works, and best practices
has further reduced these barriers, empowering musicians with-
out specialized programming expertise to deploy their projects
on embedded systems.

Despite these advancements, embedded platforms present spe-
cific constraints in workflow, computational capacity, debugging,

This work is licensed under a Creative Commons Attribution 4.0 International
License.
NIME ’25, June 24–27, 2025, Canberra, Australia
© 2025 Copyright held by the owner/author(s).

and hardware integration. The proposition seems straightfor-
ward: musicians can continue to develop their systems using
familiar high-level software tools and run them on the embedded
system. While the lingua franca of Max or Pure Data is appeal-
ing to musicians, the SBC and MCU versions of these languages
are not full implementations and have a limited subset of the
patchable objects found in the desktop computer version. Patches
may require extensive modification to accommodate the different
architectures, toolchains, and DSP optimizations. This can pose
challenges for those looking to develop entangled, versatile, and
reusable instruments across platforms.

In this study, we compare four popular systems: two single-
board computers – the Raspberry Pi and BeagleBone; and two
microcontroller systems – the Daisy and OWL. We use comple-
mentary products (some offered by the manufacturers): audio
interfaces, expansion boards, and supplementary hardware that
make these embedded processors interface to music systems via
analog audio input/output and control input/output via MIDI
and 0-5V control voltage (CV). We developed a standard set of
patches across the four systems to assess their workflows and
performance. We have created a common workflow that abstracts
the platform-specific elements, allowing the user to create a core
synthesis patch that can then be adapted to each of the different
targets. In addition to the insights published here, we have made
our patches and tutorial documents publicly available on GitHub.

The paper is organized as follows. We first present prior work
by others that report on running audio on embedded systems. We
then present the four hardware platforms that we studied, includ-
ing the auxiliary interfacing systems. We present the common
computer music languages that can be used, make our choice for
this study, and then present the deployment workflow for each
system. We then describe the four patches we tested on the sys-
tem of increasing complexity. We discuss implementation issues
and performance comparing the systems, before concluding with
perspectives for continuing work.

2 RELATEDWORK
The integration of embedded platforms into the design of digital
musical instruments has been a recurring theme within the NIME
community. Researchers have explored the possibilities and im-
plications of using MCUs and SBCs for real-time audio process-
ing, interactive sound synthesis, and modular instrument design.
Over the past decade, several studies have demonstrated how
embedded systems can be adapted for use in musical contexts,
from standalone synthesizers to intelligent musical instruments.

Webster et al. [25] developed the OWL programmable effects
pedal, one of the first microcontroller-based systems for audio.
They offer a C++ programming environment for audio signal
processing and point to the future possibility of compiling code
written in SuperCollider or patches from Pure Data. More re-
cently, Wakefield [24] presented a gen~ to the Daisy workflow to
deploy Max patches on the Daisy microcontroller.

https://orcid.org/0009-0006-9730-6840
https://orcid.org/0009-0009-3270-4110
https://orcid.org/0000-0003-2521-1296
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


NIME '25, June 24�27, 2025, Canberra, Australia Di Maggio et al.

Embedded implementations of OSC and audio networking are
described in [3, 20]. MacConnell et al. [6] describe the running
of Pure Data on the BeagleBone SBC. McPherson and Zappi [9]
describe a hardware audio interface for the BeagleBone to enable
low-latency audio, and Moro et al. [13] describes the use of Pure
Data on the platform. Drinkwater [5] describes the running of
Pure Data patches on the Raspberry Pi and provides a step-by-
step tutorial to users.

Beyond Pure Data, Michon et al. [11] presented a framework
for embedding FAUST code into microcontrollers and SBCs,
demonstrating the e�ciency of FAUST for high-performance
and low-latency audio processing. Yee-King [26] describes run-
ning SuperCollider on SBCs. In the commercial sphere, Cycling
`74 has recently provided a dedicated export section for Raspberry
Pi using Max/RNBO.

In embedded DMI design, Momeni et al. [12] present a plat-
form for rapid embedded prototyping. Marasco [7] explored the
potential of the Norns Shield, a Raspberry Pi-based device, as an
accessible tool for ensemble-based music applications. Sullivan
et al. [21] present a series of embedded performance instruments.

More recently, the possibility of an embedded DSP has led
to the concept of the Internet of Musical Things (IOMT) [22]
and the exploration of embedded AI for NIME in a workshop
[15, 16]. Comparisons of di�erent architectures and platforms for
embedded DMIs have been carried out by Meneses [10] for Linux
implementations and Vignati et al. [23] in the case of IOMT.

Building on this existing body of research, our study aims to
contribute to the ongoing NIME discourse on embedded musical
systems by proposing a common methodology that streamlines
the deployment of Pd patches across multiple embedded plat-
forms.

3 EMBEDDED HARDWARE
As seen in Table 1, single-board computers are fully functional
systems that integrate a processor, RAM, storage, and I/O inter-
faces on a single board. They typically run operating systems
such as Linux, providing support for high-level programming
languages and real-time audio environments. SBCs are ideal for
complex audio applications that require greater computational
power, multithreading, or extended memory management. Rasp-
berry Pi and BeagleBone fall into this category [13]. They support
running audio applications natively, meaning that code can be
modi�ed, loaded, and executed directly on the board. However,
since SBCs are based on general-purpose operating systems, they
often experience higher latency unless special-purpose software
[2] or accompanying hardware [8] are used.

In contrast, microcontroller units are lightweight embedded
platforms designed speci�cally for task-speci�c real-time pro-
cessing. Although the decreasing size of SBCs and the increasing
power of MCUs begin to blur their distinctions, MCUs have tra-
ditionally been di�erentiated from general-purpose computer
systems by not running an operating system, not handling hier-
archical �le systems, and not having an onboard memory man-
agement unit (MMU). Today, the reality is that MCUs are often
able to access data on external storage devices such as SD cards,
and run low overhead operating system-like kernels such as a
Real-Time Operating System (RTOS) or Application Program-
ming Interfaces (API) such as the Portable Operating System
Interface (POSIX). For an early review of RTOS for MCUs, see [1].
For our purposes here, the MCU does not separately run the sig-
nal processing application environment (like Pd) and open �les

(patches). Instead, MCUs require the patch and the application to
be compiled into low-level executable code to be deployed on the
�rmware. This improves low-latency DSP execution, but limits
run-time modi�cation and interactive debugging.

In this study, we chose to examine the deployment work�ows
and constraints of the following four platforms: Raspberry Pi
and BeagleBone (SBC); Daisy and OWL (MCU). Each requires a
subsystem for audio and control input/output. We chose readily
available kits and products that have been developed around
each of the platforms, allowing musicians to integrate the results
into performance setups using MIDI or Eurorack standards. We
selected Eurorack modular adapters for the most part, providing
line-level audio I/O and 0-5V CV control.

We also wanted to �nd systems that o�ered high-level soft-
ware deployment tools, either in the form of an easy-to-use in-
teractive development environment (IDE) or integration into au-
thoring environments like Pure Data. While all this hardware can
be programmed using software compilers and low-level �rmware
�ashing tools, we wanted to �nd environments that o�ered high-
level work�ows for musicians not comfortable with working
using a shell and command line interface.

We used the Lich1 module from Befaco in their collaboration
with Rebel Technologies, creators of the OWL system. For Daisy,
we used two variants of the Daisy Seed microcontroller board
inside a Pod evaluation board; and the Daisy Patch Submodule
inside the Patch.init Eurorack adapter2. For BeagleBone, we used
the Bela low-latency audio�cape� [8] inside a Pepper Eurorack
adapter3. Selecting a system for the Raspberry Pi opened up more
options, as discussed below. We settled on the Organelle4.

3.1 OWL
OWL (currently mk3) from Rebel Technology is an ARM Cortex
M7 microcontroller unit that supports a variety of programming
languages, including C++, Pure Data, Max gen~, and FAUST.

� 8-96kHz sampling rate
� 48kHz 24-bit stereo audio codec
� 480MHz ARM Cortex M7 microcontroller
� 3500 operations per sample at 48kHz
� 8+1 MB RAM / 8+1 MB �ash memory
� 32-bit �oating point audio processing

Figure 1: The OWL board.

3.1.1 Lich.The Befaco Lich is a programmable Eurorack module
based on the OWL platform, featuring CV integration and DC-
coupled stereo I/O.

1https://www.befaco.org/lich
2https://electro-smith.com/collections/daisy
3https://learn.bela.io/products/modular/pepper
4https://www.critterandguitari.com/organelle

https://www.befaco.org/lich
https://electro-smith.com/collections/daisy
https://learn.bela.io/products/modular/pepper
https://www.critterandguitari.com/organelle


Embedded Comparo: Small DSP Systems Side-by-Side NIME '25, June 24�27, 2025, Canberra, Australia

Table 1: Single-Board Computer (SBC) vs. Microcontroller Unit (MCU)

.

Single-Board Computer (SBC) Microcontroller Unit (MCU)

OS Support OS (e.g., Linux), RAM, storage No operating system, no �le system
Programming Runs high-level software Requires compilation
Power High (multi-threading, large bu�ers) Low (optimized for e�ciency)
Memory High (RAM, external storage) Limited (�ash memory, SRAM)
Live Patching Yes (real-time editing, e.g., in Pd) No (requires �rmware �ashing)

Figure 2: The Befaco Lich module.

3.2 Daisy
Daisy is an ARM Cortex M7 microcontroller platform for embed-
ded audio development, with several variants, including Daisy
Seed and Daisy Patch. Provides stereo audio I/O that supports
programming in C++, Max/MSP gen~, and Pure Data. The Daisy
Seed development board is available in two versions: one with
1MB and another with 64MB of SDRAM. Both include 8MB of
�ash memory onboard. The Daisy Submodule is a variant de-
signed for Eurorack module design and development.

� Stereo audio I/O
� 96kHz 24-bit audio hardware (AC-Coupled)
� x31 GPIO
� x12 ADC inputs (16-bit),
� x2 DAC outputs (12-bit, DC-Coupled)
� ARM Cortex-M7 MCU, running at 480MHz
� 1MB or 64MB of SDRAM
� 8MB external �ash memory
� SD card interface and PWM outputs
� SPI, UART, SAI/I2S, I2C
� Dedicated VIN pin for external power

Figure 3: The Daisy Seed development board.

3.2.1 Pod.Daisy Pod is a compact and programmable audio
development board for the Seed and provides stereo audio I/O

and GPIO pins for control. The Daisy patch.Init() is a Eurorack
adapter for the Submodule and provides line-level audio I/O and
CV integration. We ran our tests on both the Pod and patch.Init().

Figure 4: The Daisy Pod development board.

3.3 Bela
The Bela system consists of a BeagleBone Black single-board com-
puter paired with a custom audio interface expansion board, or
�cape�, which delivers low-latency audio and control processing
[8]. The Bela software stack includes a custom Linux distribu-
tion optimized for real-time audio, including a real-time kernel,
compilers for C++ and FAUST, and support for creative coding
environments like Max gen~ and Pure Data. In particular, Pd can
operate in two distinct modes on Bela: either as an application
running directly on the BeagleBone or by compiling patches
into e�cient C++ code using the Heavy Compiler5 for optimized
performance.

� Stereo audio I/O with ultra-low latency
� BeagleBone Black 1GHz AM3358 ARM Cortex-A8
� 16 digital I/O
� 8 x 16-bit analog inputs
� 8 x 16-bit analog outputs
� 2 speaker ampli�ers
� 4GB of internal memory

Figure 5: The Bela board.

5https://github.com/enzienaudio/hvcc



NIME '25, June 24�27, 2025, Canberra, Australia Di Maggio et al.

3.3.1 Pepper.The Pepper is an expansion board designed as an
extension to the Bela system. Provides audio input and output
connectivity and control voltage (CV) interaction in a Eurorack
format. Although we used the Pepper in this study, all results
and tests can also be run on the Bela system alone without the
Pepper.

Figure 6: The Bela Pepper Eurorack module.

3.4 Raspberry Pi
Raspberry Pi6 is a family of low-cost single-board computers
popular in the DIY electronics scene. The di�erent models include
- a full comparison can be found here7:

� 3, 4+ and 5: Quad-core ARM Cortex-A72 processor, 8GB
of RAM, dual HDMI outputs, and USB 3.0 ports. Requires
an external audio interface.

� Zero 2 W: Quad-core 64-bit ARM Cortex-A53 processor
clocked at 1GHz and 512MB of SDRAM. Built-in WiFi
(2.4GHz) and Bluetooth 4.2. MicroSD slot. No audio I/O.

Figure 7: The Raspberry Pi 4 board.

Figure 8: The Raspberry Pi Zero 2 W board.

To transform the Raspberry Pi into a music platform, dedicated
audio add-ons are necessary, such as Pisound8, Raspberry Pi
DAC+9, and Patchbox OS10. The latter is a specialized operating
system that includes pre-installed software such as Pure Data,
SuperCollider, and MODEP (a virtual pedalboard), streamlining
audio-focused work�ows.
6https://www.raspberrypi.com/
7https://en.wikipedia.org/wiki/Raspberry_Pi
8https://blokas.io/pisound
9https://www.raspberrypi.com/products/dac-plus
10https://blokas.io/patchbox-os

3.4.1 Organelle.Although there are di�erent Eurorack adapters
for di�erent versions of Raspberry Pi hardware1112, none o�er a
high-level software deployment environment. We therefore chose
to use the Organelle, a standalone synth built on the Raspberry
Pi, with line-level audio I/O, MIDI, and a graphical user interface
(GUI)-based patch manager. The Organelle is built on a Raspberry
Pi Compute Module 3+.

Figure 9: The Critter & Guitari Organelle M.

4 SOFTWARE ENVIRONMENTS
Embedded platforms o�er a variety of programming environ-
ments to develop and deploy real-time audio applications. These
environments accommodate a wide range of skill levels, from
musicians and artists to software developers, providing the �exi-
bility to design and implement custom instruments, e�ects, and
audio processes. A key challenge when working with multiple
embedded platforms is adapting code and deployment work�ows
across di�erent hardware architectures, toolchains, and names-
pace conventions.

Table 2 summarizes the di�erent programming environments
that run on these platforms. As shown in Table 2, Pure Data is the
programming environment supported by all platforms. The ac-
tual Pd implementation may di�er (whether by cross-compilation
or by the platform running Pd itself), and we discuss this. Im-
portantly, for the end user, this provides a familiar development
environment and provides us, for the purposes of this study, a
way to deploy the same patch across the di�erent platforms to
assess computational power, as well as work�ow.

4.1 Pure Data
The Pure Data (Pd)13 audio programming environment, in addi-
tion to its default end-user software package, can be deployed
across multiple platforms using di�erent compilation and opti-
mization methods:

� libpd 14: A lightweight library version of Pure Data that
allows Pd patches to be embedded in C/C++ projects. It
is used on platforms such as iOS, Android, Unity, and
OpenFrameworks.

� Heavy Compiler 15: This tool compiles Pd patches into
optimized C++ code for deployment on embedded plat-
forms.

� Plugdata16: A GUI front-end for Pd written in JUCE, of-
fering the compilation of Pd patches to VST plug-ins, the
preparation for deployment on mobile operating systems,
the compilation to C++ (using hvcc), and the direct export
of patches to Daisy.

11https://github.com/Deftaudio/Midi-boards/tree/master/Eurorack_RPi
12https://github.com/Allen-Synthesis/EuroPi
13https://puredata.info
14https://github.com/libpd/libpd
15https://github.com/Wasted-Audio/hvcc
16https://plugdata.org



Embedded Comparo: Small DSP Systems Side-by-Side NIME '25, June 24�27, 2025, Canberra, Australia

Table 2: Embedded Hardware and Their Relative Software Environments.

Bela Daisy OWL Raspberry Pi Organelle

Web IDE Yes Yes Yes No No
Pure Data Yes Yes Yes Yes Yes
Plugdata No Yes No No No
Max/gen~ Yes Yes Yes Yes No
Max/RNBO Yes No No Yes No
C++ Yes Yes Yes Yes Yes
FAUST Yes No Yes Yes No
Arduino Yes Yes No Yes No
Supercollider Yes No No Yes Yes

Each platform examined in this study o�ers di�erent methods
for deploying and running Pure Data patches, re�ecting varia-
tions in hardware architecture, processing power, and memory
constraints. While some platforms support direct uploading of
Pd patches, others require cross-compilation into optimized C++
code. The process of adapting a single patch to run on di�erent
platforms involves adjusting audio/control mappings, hardware
integration, and bu�er management to ensure compatibility.

4.2 Deployment Methods
The deployment process varies depending on the platform. Bela,
for example, allows Pd patches to be compiled using its own
browser-based interactive development environment (IDE)17 or
by compiling them into optimized C++ code using the Heavy
Compiler. Daisy and OWL require conversion of Pd patches into
�rmware through the Heavy Compiler. This can be done on the
Daisy via Plugdata or pd2dsy, a Pd-to-Daisy conversion tool.
OWL runs Heavy in the cloud and makes it accessible via its
cloud-based Web IDE18. The Organelle runs Pure Data natively
and connects to the local network over WiFi to make its �le
system available to the user. In order to compile our Pd patches
onto Daisy and OWL, we used the Heavy Compiler (hvcc). Heavy
operates by analyzing Pd patches and translating their signal pro-
cessing components into optimized C++ code, reducing CPU load
and memory overhead. Heavy compiles the entire Pd patch into
a standalone, pre-optimized DSP code, signi�cantly improving
CPU e�ciency, latency, and resource management.

4.2.1 OWL Lich.OWL utilizes its Web IDE to compile Pd patches
via hvcc. Programming is done via a cloud-based online IDE
where the HTTP server and compilers run on the web, and rec-
ognize over USB-MIDI the connected device.

The steps to load a Pd patch into Befaco Lich are the following:

(1) Prepare the patch : Modify the patch according to the
OWL namespace, where CV inputs and outputs are ac-
cessed using prede�ned mappings. For example,�r But-
ton_1 @owl B1� is used to map to the left button.

(2) Upload via OWL IDE 19: Use the OWL Patch Library or
Lich IDE on-line to upload the patch. The IDE automati-
cally compiles the Pd patch for the OWL platform.

(3) Create an account: Go to https://www.rebeltech.org/my-
account, and sign in.

(4) Upload the patch :
(a) Go toPatches! My Patches! Create new patch.

17http://bela.local
18https://www.rebeltech.org/patch-library/
19https://www.rebeltech.org/patch-library/patches/latest

(b) Upload or download a Pd patch to use as a starting point
(e.g., Pure Data template20).

(c) Fill in the details and upload your Pd patch or link it to
a GitHub URL.

(5) Save and Compile: ! Device! Connect to Device.
(6) Load it up to the OWL : Use OwlControl to load the patch

or store it directly on the board.

4.2.2 Daisy Pod.The Daisy software ecosystem includes tools
like pd2dsy21 for Pure Data, Plugdata direct export support, and
oopsy22for Max, which streamlines the deployment of developers
working in these environments. Daisy requires that Pd patches
be converted into low-level code before execution. We used the
Export feature of Plugdata, which calls the Heavy compiler to
generate C++ code with which it �ashes the pod. The steps to
load a Pd patch into Daisy Pod are the following:

(1) Install the Daisy Toolchain and con�gure the environ-
ment following the main guidelines23.

(2) Prepare the patch : Daisy's namespace for physical con-
trols (e.g. knobs, buttons) must be de�ned before proceed-
ing to the next process. Ensure that they are mapped to
the correct hardware controls. For example, the Heavy
Compiler uses �r Knob1 @hv_param� to map to the left
knob. Use Daisy Pod's documentation and template Pd
patch for guidance.

(3) Upload and Compile : To compile while Daisy is in DFU
mode, use one of the following two methods:

(a) Direct export from Plugdata : Open the patch in Plug-
data. Use the direct export function to convert the Pd
patch into a �rmware �le for Daisy Pod.

(b) Deploy via Daisy Web Programmer : Upload the Pd
patch to Daisy using the Daisy Web Programmer.

4.2.3 Bela Pepper.Bela supports two modes of Pd deployment:

� libpd mode : Runs Pd patches using its browser IDE, where
a C wrapper is compiled before execution to run the patch
via lidpd.

� Heavy mode24: Compiles Pd patches into C++ using hvcc
to run the low-level code.

The Bela Linux distribution runs an HTTP server, allowing a
development work�ow based on a browser IDE, accessed over
the local network using a standard browser, allowing users to
upload, edit, and manage programs on the Bela hardware.

20http://hoxtonowl.com/patch-library/patch/Pure_Data_Template
21https://github.com/electro-smith/pd2dsy
22https://github.com/electro-smith/oopsy
23https://github.com/electro-smith/DaisyWiki/wiki
24https://learn.bela.io/tutorials/pure-data/advanced/using-the-heavy-compiler



NIME '25, June 24�27, 2025, Canberra, Australia Di Maggio et al.

Table 3: Heavy vs. Non-Heavy Compiler Mode.

Heavy Compiler (Bela, Daisy, OWL) Native Pd (Bela, Organelle)

Deployment Compiles Pd to C++ Interprets Pd patches at runtime
Latency Low latency Latency based on bu�er size
E�ciency Reduced load Higher CPU usage
Flexibility Less �exible, requires recompilation More �exible, allows live editing
Memory Usage Optimized for low-memory Higher memory

The steps to load a Pd patch to Bela Pepper in native mode:

(1) Prepare the patch : Ensure that ADC/DAC are mapped
to the appropriate hardware controls. For example, CV
inputs are routed through Bela's ADCs (3-10), and out-
puts through DACs (3-10). Use Bela's documentation and
template Pd patch for guidance.

(2) Upload to browser IDE : Access Bela's Web IDE at http:
//bela.local. Create a new project and choose Pure Data.
Upload (or drag-and-drop) the Pd patch as the _main.pd
�le.

(3) Compile : Click theRun button. The browser IDE invokes
libpd, compiles, and deploys the patch to the board. Adjust
hardware connections to ensure compatibility.

4.2.4 Organelle.The Organelle runs Pd patches natively on its
Raspberry Pi 3. The device has a 21 character x 6 line monochrome
OLED screen and a rotary encoder knob for navigating the �le
system. Pd patches can be loaded from a USB storage device or
over WiFi. While a keyboard and mouse can be connected to the
USB port, and an external monitor to the HDMI port, allowing
use as a computer, the Organelle has also been designed to allow
access to its patch manager without standard computer input
peripherals.

Raspberry Pi can run Pd patches natively on its Linux-based
operating system, without additional compilation.

The steps to load a Pd patch into Organelle are the following:

(1) Prepare the patch : Ensure that the patch conforms to
Organelle's patch namespace and control structure. Assign
knobs and buttons within the Pd patch to Organelle's
hardware inputs (e.g.,knob1, button1 ).

(2) Transfer to Organelle : Organelle's WiFi implementation
works in two modes, as an access point (AP) and as a
client. Starting in AP mode allows the user to connect
their computer to the Organelle's WiFi. Here, the user can
con�gure the Organelle to join an existing WiFi network
by storing the SSID and WPA code. From that point on, the
Organelle can be used in client mode, joining known WiFi
networks using the encoder knob and the built-in OLED
screen. The Organelle runs an HTTP server that provides
access to its �le system via the URL http://organellem.local.
Users can upload Pd patches using the browser interface.

5 TEST PATCHES
To establish a baseline for deployment and performance eval-
uation, we developed four (4) Pure Data test patches covering
basic synthesis, sampling, and live processing: 1) Hello World,
2) Simple FM synthesizer, 3) Granular synthesizer, and 4) Live
cloud generator.

5.1 Hello World
The Hello World patch has minimal audio (sine wave) and serves
as a proof-of-concept to deploy the �same� patch on our four
target platforms. This patch serves as a test bed to understand
the deployment work�ows, platform-speci�c adaptations, and
hardware integration for each board, as well as to ensure that
each platform can process real-time audio and control input
consistently.

Figure 10: The Hello World Pd patch.

The Hello World patch also serves as a template, showing the
abstraction of control input and showing how, through a simple
messaging system, a core patch can be adapted to the target in
question by replacing one object in the patch.

5.2 FM Synthesizer
The FM synthesizer patch generates a basic FM tone, where
the user can control the carrier frequency, modulator frequency,
and modulation index. The patch is designed to interact with the
hardware's ADC, DAC, and physical controls (e.g., knobs, buttons,
CV inputs) across platforms. In the following, we outline the
deployment work�ows for each board, highlighting the necessary
adaptations for namespace di�erences and the use of physical
inputs and outputs.

The Pd patch contains:

� Carrier Oscillator : A sine wave whose frequency is con-
trolled by a knob or CV input.

� Modulator Oscillator : Another sine wave modulating
the carrier frequency.

� Modulation Index : Controlled by a knob or CV input
that de�nes the depth of modulation.

� Audio Output : Routed to the board's DAC.
� Control Inputs : Mapped to hardware controls (knobs,

buttons, or CV inputs) for live interaction.



Embedded Comparo: Small DSP Systems Side-by-Side NIME '25, June 24�27, 2025, Canberra, Australia

Figure 11: The FM synthesizer Pd patch.

Figure 12: The FM Synthesizer DSP.

5.3 Granular Synthesizer
The granular synthesizer demonstrates the feasibility of reading
audio samples from a bu�er, windowed granular manipulation,
and real-time control mapping. The granular synthesizer is a
Pure Data readaptation of Sakonda's �MSP Granular Synthesis
v2.5� (2000) [19]. This patch serves as an excellent benchmark,
as it was originally developed as a Max patch running on some
of the �rst laptops capable of running MSP. It has then been
ported to Pd and has been run on early mobile platforms [14].
Each grain voice uses a ramp wave (phasor) to read a sample
stored in a bu�er, at a speed determined by the sampling rate,
transposition, and time-stretch parameters. It uses a sample and
hold so that the phasor frequency is updated at grain boundaries.
Multiple instances of the grain voice are o�set by an o�set phase
depending on the number of voices, to be multiplied by a triangle
window (from another bu�er), and overlap summed to produce
continuous output. Our implementation here was a four-grain
version of the patch.

Figure 13: The Granular Synthesizer Pd patch.

The patch introduces the following:

Figure 14: The Granular Synthesizer DSP.

� Real-Time Sample Playback/Freeze: Allows for loading
audio samples for manipulation.

� Adjustable Playback Position : Enables control over
where the sample is read in real-time.

� Duration/Speed Controls : Users can modify how long
each grain lasts and playback speed.

� Grain Size/Density : Adjusts the distribution of grains
over time.

� Transposition/Pitch Shift : Enables live tuning of grains,
useful for creative sound design.

We adapted the Granular synthesis patch following the same
work�ow as in the FM synth:

(1) Ensure proper audio/control mapping to accommo-
date platform-speci�c namespaces.

(2) Modify sample handling : Some platforms require exter-
nal storage or bu�er optimization.

(3) Optimize controls : Mapped to CV, MIDI, or physical
knobs depending on the board.

(4) Deploy and Test : The DSP is loaded on each platform,
ensuring e�cient DSP performance.

This test ultimately demonstrates the scalability of our deploy-
ment work�ow, providing a structured method for embedding
more advanced audio synthesis techniques into hardware.

5.4 Live Cloud Generator
The live cloud generator synthesizer demonstrates live audio in-
put using a double bu�ering mechanism and object-oriented dy-
namic instantiation of grains. It is based on Cipriani and Giri's Mi-
crosound Asynchronous Granular Synthesis example published
in their Max lesson book [4] that demonstrates Curtis Road's
principles of granular synthesis [18], [17]. A set of generative
parameters creates a �cloud� of grains: grain density, time stretch,
grain duration, transposition, pitch quantization. All parameters
have a programmable aleatoric variance. The Cipriani and Giri
patch is written in Max and instantiates an arbitrary number of
granular voices written in gen~. A new grain is invoked when a
prior grain is `busy' and over�ows.

For this study, we made two ports of the Cipriani/Giri patch:
Max RNBO and Pd. Our RNBO version allowed us to test the
deployment across our platforms to consider it for this study.
The Pd version allowed us to use more commonly available free
software to implement the same principle. We used the clone
object in Pd to instantiate grain voices.




	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 EMBEDDED HARDWARE
	3.1 OWL
	3.2 Daisy
	3.3 Bela
	3.4 Raspberry Pi

	4 SOFTWARE ENVIRONMENTS
	4.1 Pure Data
	4.2 Deployment Methods

	5 TEST PATCHES
	5.1 Hello World
	5.2 FM Synthesizer
	5.3 Granular Synthesizer
	5.4 Live Cloud Generator

	6 RESULTS AND DISCUSSION
	6.1 Deployment Considerations
	6.2 Performance Considerations
	6.3 Compatibility Issues

	7 CONCLUSION AND FUTURE WORK
	8 ACKNOWLEDGEMENTS
	9 ETHICAL STANDARDS
	References

