
RayTone:
A Node-based Audiovisual Sequencing Environment

Eito Murakami
CCRMA, Stanford University
Stanford, CA, United States
eitom@ccrma.stanford.edu

John Burnett
UC San Diego

La Jolla, CA, United States
john.burnett.c@gmail.com

Ge Wang
CCRMA, Stanford University
Stanford, CA, United States

ge@ccrma.stanford.edu

Figure 1: An example RayTone patch.

ABSTRACT
RayTone is a node-based software environment for creating
audiovisual compositions. The software emphasizes the aes-
thetics and joy of patching procedures, aiming to promote a
playful workflow for transforming creative ideas into artistic
content. RayTone allows for native access to ChucK mu-
sic programming language and OpenGL Shading Language
(GLSL), affording programmability of arbitrary complexity
inside each node on canvas. The ability to sequentially con-
nect nodes as well as to live script functionalities therein
makes RayTone suitable for users with widely varying skill
levels and as an entry point to digital signal processing and
shader programming. In this paper, we discuss RayTone’s
patching and scripting workflow and how it is designed to
facilitate the integration of audio and graphics. RayTone
was used as a primary educational tool for a five-day sum-
mer workshop, introducing participants to building origi-
nal live multimedia performances. We present selected stu-
dent compositions from the workshop as example projects,
and evaluate the expressiveness of RayTone as a digital art-
making platform.

Author Keywords
RayTone, multimedia, DSP, ChucK, OpenGL

CCS Concepts
•Human-centered computing → Systems and tools for in-
teraction design; •Applied computing → Sound and music
computing; Media arts;

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’24, 4–6 September, Utrecht, The Netherlands.

1. INTRODUCTION
In this paper, we present RayTone, a node-based software
environment for creating audiovisual compositions. The
software is freely available, open-source, and currently sup-
ported on Windows and macOS. RayTone is designed to
be a digital canvas for sequencing audio and graphics ma-
terials simultaneously for live performances, installations,
and fixed media. Users can patch nodes (called Units in
RayTone) in the style of modular synthesis to manipulate
control-rate or audio-rate signals and construct chains of
synthesizers and audio effects. RayTone values the aesthet-
ics and joy of patching procedures alongside technical func-
tionalities, and seeks to reinforce users’ creativity through
experimentation on the canvas. The sound engine of Ray-
Tone is provided by ChucK—a strongly-timed music pro-
gramming language [16]. With ChucK embedded in Ray-
Tone, users can script and modify behaviors of audio nodes
that perform DSP at run time. Additionally, RayTone al-
lows users to load OpenGL Shading Language (GLSL) [4]
scripts for programming audio-reactive graphics on canvas.

2. RELATED WORK
RayTone draws from a lineage of node-based programming
environments such as Pure Data [13], Max/MSP [12], and
TouchDesigner [6]. RayTone is also influenced by recently
introduced audiovisual software environments, such as Ex-
tempore [14], Fragment [1], Hydra [2], and ChuGL [9], which
give equal precedence to audio and visual material. Each
of these systems offers its unique own way of thinking and
doing (and therein lies their respective value propositions).
Furthermore, each environment strikes its own balance be-
tween programming paradigms (e.g., graphical-patching and
text-based coding), and between support for audio and vi-
sual programming. For example, while Max/MSP/Jitter
and TouchDesigner are both node-based programming en-
vironments that support audio and visuals, the nuanced dif-
ferences in ethos, tool sets, and user communities result in
their respective workflows.



Similarly, while RayTone is influenced by all the above
systems, it offers its unique workflow and a playful approach
to working with audiovisual programming. RayTone em-
bodies an ethos of giving equal emphasis to audio and visu-
als; the graphics elements co-exist with audio units on the
same canvas rather than a separate window. The immedi-
acy of seeing the visual output as one edits audio parameters
invites them to regard the two domains as interdependent
media. Node-based patching in RayTone is designed to be
quick and fun, while the integrated ChucK and shader code
affords programmability of arbitrary complexity. This ap-
proach is similar to programs such as OpenMusic [11], where
each node is simply an abstraction of underlying LISP code.
This design makes RayTone suitable for users with widely
varying skill levels and can serve as an entry point to raw
DSP and shader programming.

3. DESIGN
In this section, we introduce the main components and fea-
tures of RayTone as well as a typical workflow for creating
a patch with different unit types.

3.1 Control + Voice + Graphics Units
There are three categories of units that comprise a Ray-
Tone patch: Voice, Graphics, and Control. Voice units pro-
cess audio signals and can be scripted using ChucK code.
RayTone natively includes more than 30 ready-to-use Voice
units, so that there is no need for users to be familiar with
the ChucK language or DSP programming to start mak-
ing music. Graphics units process existing media (images,
videos, camera input, etc.) as textures, which users can
load in the fragment shader to be displayed on canvas.
The Control units manipulate parameters made available
by Voice and Graphics units. An example of a Control unit
is a circular sequencer, which is quantized to the global
clock and outputs a value at the corresponding step. Fig-
ure 2 illustrates the interface for editing sequencer values
and properties. Control units are also used for math oper-
ations and communication with external systems through
protocols such as MIDI and Open Sound Control (OSC)
[17].

Figure 2: A sequencer unit in edit mode.
A sequence of values is represented by their height in a
circular buffer. Users can edit individual step values in the
specified range and increment.

3.2 Canvas Workflow
The RayTone canvas is intended to be a playful environment
that promotes a non-deterministic approach to composition
through experimentation. Art-making in the digital domain
is influenced by tools that one chooses to work with, and the
interface design should be more than simply functional to
support creative exploration. [15] RayTone does not enforce
traditional musical scales or dynamics, and does not feature
a piano roll as seen in many digital audio workstations. One
of the unique features of RayTone is the use of canvas to
pan Voice units relative to the camera position. Voice units
can start making sound as soon as they are placed on can-
vas, and invite users to experiment with placement of units
and create associations between the visual patch and spatial
musical output. This canvas workflow encourages users to
treat musical phrases as dynamically transforming agents;
a smooth transition between sections in a composition is
possible by shifting the camera position to center different
Voice units rather than clicking on a button or moving a
slider. Figure 3 shows a patch that demonstrates the use
of Voice units and Control units with graphical user inter-
face (GUI) features, such as slider, toggle button, and value
monitor. A green dot with a ring represents an inlet to
the unit, and the red dot represents an outlet.1 Voice unit
sockets that carry audio-rate signals are marked by a blue
ring. Two units are connected by dragging a cable from an
outlet to an inlet either using a computer mouse or a finger
when using a touch-screen display. (The patch cable gently
swings, as if inviting the user to playfully experiment.)

Figure 3: A patch with GUI units and chained Voice units.

4. AUDIOVISUAL INTEGRATIONS
One of the powerful features of RayTone is the ability to cus-
tomize Voice and Graphics units using ChucK and GLSL.
In order to facilitate communication between these script-
ing languages and a RayTone patch, users have access to
preprocessor macros to read input values and define unit
properties from code. As Figure 4 shows, syntax errors
made by users in either language are displayed on the con-
sole integrated as part of RayTone canvas. This is useful
for debugging code while live-scripting, and also as an edu-
cational tool for learning the two programming languages.
The following sections introduce an example of writing an
original Voice unit and a VFX (visual effects) unit.

1The sockets are designed with hover text to make the in-
terface inclusive for color blindness.



Figure 4: The console that displays syntax errors in ChucK
and GLSL. It can also be used to print log messages from
ChucK scripts.

4.1 Scripting DSP with a Voice Unit
A ChucK script inside a Voice unit allows users to read
and process each audio sample, which opens up possibili-
ties to create various types of signal processors, including
multi-pole filters, granular synthesizers, physical models,
and Fourier analyzers. A Voice unit can receive an arbi-
trary number of audio-rate inputs and up to 10 control-rate
values. The following ChucK script is an example of us-
ing RayTone-specific preprocessor macros to define inlets
and implement a playback sampler. This Voice unit loads
a WAV file from a file browser, triggers the clip with inlet

1, and controls the playback rate with inlet 2.

//-------------------------------------------------
//Define RayTone inputs & inlets & file requirement
RAYTONE_DEFINE_INPUTS();
RAYTONE_DEFINE_INLETS("trigger", "rate");
RAYTONE_DEFINE_OUTLET(false);
RAYTONE_LOADFILE(true);
//-------------------------------------------------

// Create a signal chain using the SndBuf class
// to play an audio clip
SndBuf buf => RAYTONE_OUTPUT => dac;

// Load a .wav file to SndBuf
RAYTONE_FILEPATH => buf.read;
0 => buf.gain;

// infinite loop
while(true)
{

// Advance time until the global clock
RAYTONE_TICK => now;

// Check if inlet1 received a trigger
if(RAYTONE_TRIG(0) == 1)
{

// Reset SndBuf gain and playback position
RAYTONE_LOCAL_GAIN => buf.gain;
0 => buf.pos;

// Read playback rate from inlet2.
// If inlet2 is 0, set playback rate to 1.
if(RAYTONE_INLET(1) == 0)
{

1 => buf.rate;
}
else
{

RAYTONE_INLET(1) => buf.rate;
}

}
}

4.2 Shader Programming with
Graphics Units

RayTone’s GLSL implementation allows for shader inter-
action via a single fragment shader and supports 2D ap-
proaches to shader programming. This paradigm is com-
parable to the style of shader programming seen on the
website Shadertoy [5] or in programs such as KodeLife [3].
This approach allows for techniques such as procedural 2D
graphics and for processing of input textures supplied by
the node graph. RayTone includes a simple raymarching
and signed-distance field (SDF) library written in GLSL.
Users have access to a number of SDF functions represent-
ing primitive shapes in addition to functions for basic linear
transforms, constructive geometry operations, and SDF ma-
nipulations. The preprocessor macro used to retrieve inlet
values is identical to that of a Voice unit, facilitating the
transition between audio and graphics domains. The visual
output on canvas is updated in real-time as users edit the
code. The following demonstrates a basic GLSL script that
sets RGB values from three inlets, and samples a texture
passed to the first inlet of the Textures unit:

#version 410

//---------------------------------------------------------
//RAYTONE HEADER
uniform vec3 iResolution;
uniform float iTime;
uniform float inlets[8];
uniform sampler2D textures[8];
uniform vec3 textureResolutions[8];

#define RAYTONE_RESOLUTION iResolution
#define RAYTONE_TIME iTime
#define RAYTONE_INLET(i) inlets[i]
#define RAYTONE_TEXTURE(i) textures[i]
#define RAYTONE_TEXTURE_RESOLUTION(i) textureResolutions[i]
//---------------------------------------------------------

out vec4 fragColor;
void main()
{

// Define uv coordinates based on canvas resolution
vec2 uv = gl_FragCoord.xy / RAYTONE_RESOLUTION.xy;

// Read and interpret inlet values as RGB
float r = RAYTONE_INLET(0);
float g = RAYTONE_INLET(1);
float b = RAYTONE_INLET(2);

// Define texture coordinates based on its resolution
vec2 tex1_uv =

gl_FragCoord.xy / RAYTONE_TEXTURE_RESOLUTION(0).xy;

// Sample texture
vec4 tex1 = texture(RAYTONE_TEXTURE(0), tex1_uv);

// Output is RGB + texture
fragColor = vec4(r, g, b, 1.0) + tex1;

}

5. IMPLEMENTATION
RayTone for Windows and macOS is developed with Unity
[8] mainly due to its cross platform compatibility, including
the possibility to support iOS devices in the future. ChucK
is embedded in RayTone through Chunity [10], which in-
ternally maintains a precise audio clock independent of the
graphics frame rate. The shader rendering is handled by a
custom plugin written in C++. The plugin takes advan-
tage of Unity’s multithreaded rendering scheme, allowing
the output to be rendered on the main RayTone canvas
where a patch exists, rather than in a separate window.



Figure 5: Screenshots of student compositions.

6. EXAMPLES AND FEEDBACK
One of the intended uses of RayTone is rapid prototyping
and performing multimedia content in real-time. In order
to support live patching and scripting as a form of per-
formance, RayTone has a dual-display feature that allows
users to interact with the patch on their computer screen
and display the raw visual output (without units) on a sep-
arate screen for the audience. RayTone’s functionalities
can be further extended with the use of tactile interfaces,
such as MIDI controllers and portable tablet devices. Users
can take advantage of third-party OSC-compatible software,
such as TouchOSC [7], to wirelessly interface with a Ray-
Tone patch on iOS and Android devices. These forms of
interaction introduce tactile feedback and allow RayTone
to act as a hub of communication for existing hardware and
software.

6.1 Workshop Student Examples
In the summer of 2023, the authors hosted a five-day work-
shop at CCRMA, Stanford University titled“Real-Time Au-
dioVisual Composition With RayTone”. The background of
the participants ranged from little to no experience with ei-
ther computer music or computer graphics to a high degree
of familiarity with these subjects. Additionally, the prior
experience with text-based programming was generally low.
The participants were introduced to digital signal process-
ing and shader programming, and crafted live multimedia
performances of their design. The materials taught in the
workshop were split between node-based patching and text-
based programming such that every participant learned to
write DSP code with ChucK. The majority of participants
chose to solely use the RayTone node-based interface for
their final presentations, and one participant chose to cus-
tomize a Voice unit with ChucK for advanced audio anal-
ysis. The following is a list of compositions by students
who agreed to share their works publicly, accompanied by a
shortened form of descriptions that they wrote without fur-
ther alteration. Some of these compositions were created
with an earlier version of RayTone that utilized High-Level
Shader Language (HLSL) instead of GLSL.

• beep-v3 (Figure 5A)
[...] Randomized values used to control the sound are
also used as inputs for the shader, alongside some ex-
tra sequencers that serve as constant beats, in order to
draw lines and rectangles paired to the music.

• Flipbook (Figure 5B)
In this project, [...] I had 3 sections: A, B, and C.
A was more focused on tonal harmonies and chord
changes through the use of ratio based modulation while
B and C implemented 1 voice each, serving as contrast

for when the master sequencer moved to the next sec-
tion. [...]

• Swara’s Shenanigans (Figure 5C)
This patch incorporates several sitar note passages that
can be presented in an order or at random. [...] Each
of the note passages are associated with a color scheme
and when triggered, results in the respective color scheme
appearing in the background.

• Wakey-wakey Dreamy-dreamy (Figure 5D)
Using the mic as input, participant blows across it to
move the clouds to the left. Percussive sound causes
the clouds to reveal their shape as twisted cubes. The
RMS of the mic signal is accumulated to a value that
translates the replicated cubes in the negative x direc-
tion. [...]

The showcase video that includes all of the compositions
above is on the project website.

6.2 Workshop Feedback
The feature in RayTone that was most valued by the work-
shop participants was the ability to customize DSP and
graphics code. A student stated that they found the boiler-
plate code provided with RayTone to be helpful. Another
student commented that they enjoyed the process of shar-
ing RayTone projects with other students. Once saved as a
project file with an assets folder, a RayTone project can be
opened on another computer to further modify or study the
patch. Students have also indicated existing limitations of
the software as a tool for live performance. First, RayTone
currently uses the default audio device on the operating sys-
tem, and lacks control over input and output latency (this
is due to limitations in the Unity audio system). Second,
a student remarked that RayTone was too computation-
ally expensive for their performance practice. Third, na-
tive support for the Linux operating system was strongly
requested. These constraints affect the usability and ac-
cessibility of the software, and will be addressed in future
versions of RayTone. Overall, the current strengths of Ray-
Tone can be summarized as a wide range of customization
options through the two scripting languages to create origi-
nal audiovisual content. Nevertheless, it is evident from the
feedback that RayTone requires further development for en-
hanced stability, efficiency, and inclusion of additional op-
erating systems.

7. CONCLUSION AND FUTURE WORK
RayTone offers a unique digital environment for learning,
prototyping, and performing audiovisual content. The soft-
ware is guided by the principle that creativity can be re-
inforced through a playful interaction with the interface,



and aims to promote experimentation as an approach to
composing. Live scripting DSP and graphics is an integral
component of RayTone, which offers customization options
and educational value. The student compositions from the
workshop exemplify that RayTone can help artists create
a diversity of sound-driven multimedia compositions. Ray-
Tone is designed to complement rather than replace existing
audiovisual frameworks, and can act as a hub of communi-
cation through its sequencing and interconnectivity capabil-
ities. In future versions of RayTone, we intend to address
limitations indicated in the previous section, and expand a
library of tutorial and example patches. We will also work
towards supporting multi-channel audio output for building
installations with spatial audio, as well as Linux compati-
bility. Finally, we foresee deploying RayTone to iOS devices
as a long-term project goal.

8. PROJECT WEBSITE
A documentation of all the features as well as a showcase
video from the workshop can be found on the following
project website: https://www.raytone.app.

9. ACKNOWLEDGMENTS
The authors would like to thank CCRMA for providing
equipment and resources towards the development of Ray-
Tone over the past two years. We also thank participants
of the summer workshop and those who voluntarily beta-
tested RayTone for their valuable feedback.

10. ETHICAL STANDARDS
RayTone is distributed for free as an educational tool and
the authors seek no interest in commercializing the software.
The summer workshop 2023 was offered solely for the pur-
pose of inspiring audiovisual programming/compositions,
and the feedback provided by the participants was optional.
The composers of example projects listed on this paper or
on the project website have given prior consent to share
their creations.

11. REFERENCES
[1] Fragment - Web-based audio-visual live coding

environment. https://www.fsynth.com/. Accessed:
May 7, 2024.

[2] Hydra - Live Coding Video Synth.
https://hydra.ojack.xyz/. Accessed: May 7, 2024.

[3] KodeLife. https://hexler.net/kodelife. Accessed:
May 7, 2024.

[4] OpenGL - The Industry’s Foundation for High
Performance Graphics. https://www.opengl.org/.
Accessed: May 7, 2024.

[5] Shadertoy. https://www.shadertoy.com/. Accessed:
May 7, 2024.

[6] Touchdesigner. https://derivative.ca/. Accessed:
May 7, 2024.

[7] TouchOSC. https://hexler.net/touchosc.
Accessed: May 7, 2024.

[8] Unity. https://unity.com/. Accessed: May 7, 2024.

[9] A. Z. Aday and G. Wang. ChuGL: Unified
Audiovisual Programming in ChucK. In Proceedings
of the International Conference on New Interfaces for
Musical Expression, September 2024.

[10] J. Atherton and G. Wang. Chunity: Integrated
Audiovisual Programming in Unity. In Proceedings of

the International Conference on New Interfaces for
Musical Expression, pages 102–107. Virginia Tech,
June 2018.

[11] J. Bresson, C. Agon, and G. Assayag. OpenMusic:
visual programming environment for music
composition, analysis and research. In Proceedings of
the 19th ACM International Conference on
Multimedia, MM ’11, page 743–746, New York, NY,
USA, 2011. Association for Computing Machinery.

[12] M. S. Puckette. Combining Event and Signal
Processing in the MAX Graphical Programming
Environment. Computer Music Journal, 15(3):68–77,
1991.

[13] M. S. Puckette. Pure Data. In Proceedings:
International Computer Music Conference 1997,
pages 224–227. The International Computer Music
Association, 1997.

[14] A. C. Sorensen. Extempore: The design,
implementation and application of a cyber-physical
programming language. PhD thesis, College of
Engineering and Computer Science, The Australian
National University, 2018.

[15] G. Wang. Artful Design: Technology in Search of the
Sublime, a Musicomic Manifesto. Stanford University
Press, 2018.

[16] G. Wang, P. R. Cook, and S. Salazar. ChucK: A
Strongly-timed Computer Music Language. Computer
Music Journal, 39(4):10–29, December 2015.

[17] M. Wright. Open Sound Control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, December 2005.


