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ABSTRACT

In this paper, we explore the interactive construction and
exploration of mappings between visual sketches and mu-
sical controls. Interactive Machine Learning (IML) allows
creators to construct mappings with personalised training
examples. However, when it comes to high-dimensional
data such as sketches, dimensionality reduction techniques
are required to extract features for the IML model. We pro-
pose using unsupervised machine learning to encode sketches
into lower-dimensional latent representations, which are then
used as the source for the IML model to construct sketch-
to-sound mappings. We build a proof-of-concept prototype
and demonstrate it using two compositions. We reflect on
the composing processes to discuss the controllability and
explorability in mappings built by this approach and how
they contribute to the musical expression.

Author Keywords

Cross-modal mapping, unsupervised learning, variational
autoencoder, sound synthesis control

CCS Concepts

•Applied computing→ Sound and music computing; •Human-
centered computing → Graphics input devices; •Computing
methodologies → Neural networks;

1. INTRODUCTION
Sketching is an intuitive and natural form of communica-
tion, and there has been extensive research on using sketches
as sound control interfaces within the NIME community.
These works have been used for a variety of applications,
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including cross-modal control of sound synthesis [17], com-
position [1, 5], annotation [28], melody generation [13, 22],
and graphic sonification [3, 23, 31]. Cross-modal studies
have shown that meaningful perceptual associations exist
between shapes and sounds [15], but these associations in
most sketch-to-sound applications are pre-determined by in-
strument makers, and fixed for all musicians who use them
[25]. However, a musician may seek to personalise these
shape-sound mappings for specific creative goals [12, 20].
Therefore, in this paper we aim to explore the potential of
using interactive machine learning to help musicians build
personalised sketch-to-sound mappings.

Interactive Machine Learning (IML) [7] is commonly used
to create small-scale tailored mapping models. In the do-
main of music, it is often used to build mapping between
sensor inputs and sound controls [8]. However, when it
comes to complex high-dimensional inputs, such as sketches,
feature extraction techniques are required to encode these
inputs into lower-dimensional representations to be used as
the source of the IML model.

Previous works [2, 30] tackling image information retrieval
have shown unsupervised feature learning’s good capability
in extracting representative features from a corpus of unla-
beled data. However, with a few exceptions [21, 26], there
have not been many works on using this technique to cre-
ate expressive musical mappings. Therefore, we focus on
exploring unsupervised feature learning to build mappings
between visual sketches and sound controls. The work pre-
sented in this paper is driven by two research questions:

1. How can we leverage unsupervised feature learning for
IML-based sketch-to-sound mapping?

2. What are the unique interaction experience of sketch-
to-sound mapping built with this approach?

We present the process of integrating unsupervised fea-
ture extraction for IML to build our sketch-to-sound con-
troller, and explain our system design considerations during
the development process. Then, we demonstrate the con-
troller with two performance sets composed by the first au-
thor. We reflect on their experience during the composition
process to discuss findings about our controller’s controlla-
bility and explorability.

2. RELATED WORK
Various strategies have been proposed to tackle feature ex-
traction for sketch-to-sound mappings. Low-level features



such as the position [23, 31] and trajectory of sketches [13,
22] are useful sources that can be mapped to sound con-
trols. Further, supervised machine learning allows the fea-
ture extraction model to recognise a set of shapes [5] or
higher-level characteristics in a sketch such as noisy and
calm [14]. Works using supervised machine learning, such
as SketchSynth[17], have been shown to yield sketch-sound
associations that are close to those provided by humans.
However, a major challenge of these approaches is to de�ne
meaningful features that are useful for constructing map-
ping between sketches and sounds [15].

2.1 Unsupervised Feature Learning
In contrast, unsupervised feature learning allows the fea-
ture extraction model to learn representative features from
a large corpus of unlabelled data [2]. The trained model en-
codes high-dimensional inputs into lower-dimensional latent
representations. These latent representations can be seen as
a compressed format of the original input. In the domain of
music, unsupervised feature learning is often used to create
open-ended mappings that allow creators to start without a
speci�c vision of what the inputs or outputs should be, and
discover useful mappings through exploration [21]. For ex-
ample, applying unsupervised dimensionality reduction on
sound collections to create interactive sound spaces [26], or
using unsupervised feature extraction as a mapping between
sensor inputs and lower-dimensional latent representations,
which are then used to control a synthesiser's parameters
[21]. Open-ended mappings o�er a new perspective that al-
lows performers to embrace unplanned outputs in a musical
instrument [4]. Following this direction, our work explores
how this level of openness provided by unsupervised meth-
ods can be applied between sketch-to-sound mappings.

2.2 Interactive Machine Learning
Interactive Machine Learning (IML) [7] allows creators to
construct mappings between human control space and sound
synthesis parameters using a few personalised training ex-
amples [6]. These training examples are iteratively recorded
by the creator, enabling them to construct relationships be-
tween the two spaces incrementally and experiment with
new approaches to sound synthesis [20, 29]. Tools encapsu-
lating IML, such as Wekinator [9] and Learner.js [19] have
been widely used to facilitate the model training process, al-
lowing creators to record paired inputs and desired outputs
without coding. Our work uses IML to connect extracted
sketch features and synthesis parameters.

3. DEVELOPMENT
This section aims to address the �rst research question by
explaining the design and development process of our sketch-
to-sound music controller. A high-level system diagram is
shown in Figure 1. We use an unsupervised feature extrac-
tion model to encode sketches into latent representations,
then use it as the source for the interactive machine learning
model to build the sketch-to-sound mapping. The following
sections describe these two parts in detail.

Figure 1: A high-level sketch-to-sound system diagram

3.1 Unsupervised Feature Learning with VAE
A common approach for unsupervised feature learning is us-
ing Variational Autoencoders (VAE) [30], an unsupervised
learning model that comprises an encoder and a decoder.
After being trained on a corpus of unlabelled data, the en-
coder maps new incoming data to a point in a Gaussian
distribution. This data point is a low-dimensional latent
representation, which is then used by the decoder to re-
construct the original input. VAE relies on deep neural
networks for visual data. However, integrating such mod-
els in a real-time performing system can be complex and
problematic.

3.1.1 Optimising the VAE Model
Firstly, the system's functionality would be largely deter-
mined by the accuracy and diversity of the deep learning
model. Speci�cally, it needs to generate a latent space that
can accurately reconstruct the input sketches, and it also
needs to respond to a diverse input set without diverging
and over�tting. With regard to this issue, we used the
Deep Feature Consistent Variational Autoencoder (DFC-
VAE) [11], which is a variation of VAE that replaces the
pixel-by-pixel loss by perceptual loss computed by a pre-
trained VGG19 network [27]. This ensures the sketch fea-
ture extraction model provides a latent space with better
perceptual quality.

Secondly, a deep learning model usually requires heavier
computational power to ensure real-time functionality [10].
We attempted to limit the number of parameters in our
model to keep it as lightweight as possible. By scaling the
input resolution to 64 � 64, we reduced the model's size
while ensuring the image can capture enough details in a
sketch. We reduced the number of hidden layers and the
latent representation's dimension to 5 and 32 respectively,
which are the lowest numbers we can get while keeping the
model with comparable quality.

After training the model for 10k steps, we used only the
encoder to compress sketches to latent representations. The
encoder was calibrated by setting the latent representation
of empty frames to zeros, and using the di�erences between
new inputs and the empty frame as calibrated outputs.
Therefore, the latent representation of an empty frame is
initialised to zeros. The trained model is deployed on a sep-
arate device with an RTX 4060 laptop GPU and can run at
a maximum of 20 frames per second.

3.1.2 Data Augmentation
In addition, we attempted to increase the data diversity of
our feature extraction model by implementing a data aug-
mentation process with random rotations and shifts. The
Sketching Soundsdataset created by L•obbers et al. [16] is
used to train the VAE. It contains sketch data in image for-
mat with their descriptors. However, our training only uses
sketch data because it is an unsupervised approach that
does not require labelled descriptors.

3.2 Steering Latent Representations with IML
We connected the feature extraction model trained in the
previous section to an Interactive Machine Learning (IML)
model. We used the Wekinator, a commonly used tool for
IML that allows creators to record training examples for
the training [9]. Our Wekinator model is a composition of
8 regressive neural network models, taking the latent repre-
sentations from the feature extraction model as their input.
In order to map the Wekinator model's output to sound con-



Figure 2: A screenshot of the Max4Live receiver device (the one on the leftmost) and the sender device (the other eight).

Figure 3: A detailed owchart of system components in the sketch-to-sound pipeline.

Figure 4: The web interface that visualise the sketch and its
latent representations

trol parameters, they are hard clamped into the range of [0,
1], and then sent as OSC messages. We built a Max4Live
patch shown in Figure 2 (left) with 8 sliders to connect
the Wekinator model with Ableton Live. They are used as
macro controls, which are a set of parameters that can be
mapped to other sound synthesis programs using the sender
devices shown in Figure 2 (right).

3.3 Implementation
Our detailed implementation is illustrated in Figure 3. We
built a web application shown in Figure 4 to visualise the
sketch and its latent representations. For a compact and
tangible experience, we built a physical controller shown in
Figure 5 with a knob, a button, and a touchpad which is
a Bela Trill Square 1 sensor. The knob controls how long a
sketch will stay on the canvas. The button facilitates the
recording of training examples for the Wekinator model.
When pressed, the current sketch and macro controls are
marked as training data and sent to the Wekinator.

The physical controller runs on an Arduino hardware,
sending sensor data to the web application through serial
port. The web application processes sensor data into an
image format sketch. It is deployed from a Flack 2 backend
program running in a Python environment, which is also
where the DFCVAE encoder is running. The encoded latent
representation are sent as OSC messages via the WebSocket
protocol.

The source code for our Arduino program, training code
for the DFCVAE model, Python backend scripts, web ap-

1https://github.com/BelaPlatform/Trill-Arduino
2https://flask.palletsprojects.com/en/3.0.x/

Figure 5: The physical controller with a touchpad, a button,
and a knob.

Figure 6: Two performances using our sketch-to-sound
controller. Two video recordings can be viewed at
https://bit.ly/sketch-to-sound-1 and https://bit.
ly/sketch-to-sound-2 .

plication, and the Max4Live devices can be accessed at our
GitHub repository 3 .

4. COMPOSITIONS
We present two compositions built and performed by the
�rst author using our sketch-to-sound controller. In order
to address our second research question, we use these two

3https://bit.ly/sketch-to-sound-code
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