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ABSTRACT

The application of neural audio synthesis methods for sound
generation has grown significantly in recent years. Among
such systems, streaming autoencoders such as RAVE are
particularly suitable for instrument design, as they map au-
dio to and from control signals in an abstract latent space
with acceptable latency. Despite the uptake of autoencoders
in NIME design, little research has been done to character-
ize the latent spaces of audio models, and to investigate
their affordances in practical musical scenarios. In this pa-
per we present Stacco, an instrument specifically designed
for the intuitive control of neural audio synthesis latent pa-
rameters through the displacement of magnetic objects on
a wooden board with four magnetic attractors. We then ex-
amine models trained on the same data with different seeds,
we explore strategies for more consistent mappings from au-
dio to latent space, and propose a method for stitching the
latent space of one model to another. Finally, in a user
study, we investigate whether and how these techniques are
perceived through embodied practice with Stacco.
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In recent years, neural audio synthesis (NAS) has emerged
as a novel approach to sound synthesis, considerably ex-
panding the creative possibilities of technologists, musicians
and sound artists [8]. NAS models consist of artificial neu-
ral networks trained to predict or reconstruct corpora of
raw sounds, learning in the process to represent them in the
network’s hidden layers. The activation values of neurons
encoding a sound can be thought of as a point in a multi-
dimensional latent space, whose manipulation is among the
most compelling features of NAS.

Historically, neural models powerful enough to handle raw
audio with any degree of realism were difficult to run in real
time, but the recent introduction of RAVE [8], a model ca-
pable of real-time performances and easy to integrate into
existing workflows, has led to a plethora of use cases en-
compassing instrument design [30, 26], sound engineering1

and music composition [23].
This diverse corpus of contributions demonstrates the rife

interest in this novel approach to sound synthesis among
artists and designers. But incorporating black-box neu-
ral synthesis models in compositional and design practices
raises challenges for explainable artificial intelligence (XAI),
as these do not expose the processes leading to the gen-
eration of their outputs and tend to distribute the sound
features of the dataset in unpredictable ways [7].

Among the first applications of XAI in the artistic do-
main, Bryan-Kinns et al. proposes to map specific latent
dimensions with meaningful musical parameters in a Mea-
sureVAE model, providing feedback on the distribution in
the latent space through a visual interface [6]. Complement-
ing this approach, the diverse contributions from the 2023
workshop on XAI for the Arts [7] reframe the explainability
problem from a broader perspective, encompassing the na-
ture of explanation, how AI models, features, and training
sets affect explanation, user-centred software and hardware
design, and interaction design for explainability [5].

In line with this, Privato and Armitage [24] extend the
Explanatory Pragmatist framework to XAI in music per-
formance, arguing that there is no universal approach to
explainability and that context (encompassing instrument,
performer and audience), is crucial for effective XAI strate-
gies.

This paper aims to address XAIxArts from this latter
angle. How do algorithmic strategies for understanding la-
tent space manifest in a NIME specifically designed for neu-
ral synthesis? What can the DMI designer expect when
training neural synthesis models and mapping their latent

1https://semilla.ai



spaces? And what novel compositional and performative
strategies emerge around latent spaces’ peculiar affordances?
In the following sections, we overview RAVE’s features

and frame our contribution within diverse XAI approaches.
We then introduce Stacco, a Digital Musical Instrument
(DMI) specifically designed for the intuitive and playful nav-
igation of latent spaces, and explore strategies for adapting
latent distributions from one model to another. We finally
use Stacco to explore how users perceive and understand
the adapted latent spaces through embodied interaction.

2. BACKGROUND

2.1 RAVE
The Real-time Audio Variational Encoder (RAVE) is a neu-
ral audio synthesis method introduced in 2021 by Caillon
and Esling [8]. Its relatively high-fidelity sound and low la-
tency have drastically facilitated the applications of neural
synthesis in interactive contexts.
RAVE learns by a two-phase procedure, consisting of a

representation learning phase as a variational autoencoder
(VAE) [15] followed by an adversarial fine-tuning phase which
improves sound quality. Training requires many hours of
GPU computation, but once trained, models can run in
real time on laptop CPUs, through Pure Data, Max/MSP
[1] and SuperCollider [11] plugins, or direct implementation
in Python or C++ programs.
As an autoencoder, RAVE consists of two main functions

that the user can call separately: an encoding phase com-
presses a 48 KHz stream of audio to a stream of latent
vectors, typically with a sampling rate of about 23Hz and 4
to 32 channels, and a decoding phase that synthesizes audio
from latent vectors.
A trained RAVE model is typically used by feeding a

sound through both encoder and decoder to reinterpret it
through the model’s training data, or by using control-rate
signals to manipulate directly the latent space before de-
coding. These methods may also be creatively combined in
various ways, for instance by directly controlling one latent
variable while taking the others from a sound fed into the
encoder.
RAVE has appeared in diverse contributions to recent

NIME conferences and beyond: it is part of the synthesis
engine in the Living Looper [30], in Thales [26] and Semilla
[31]. Pelinsky includes RAVE in a pipeline for embedded
synthesis [22], and others have explored its embodied navi-
gation through spatial metaphors [29, 3].
Yet, incorporating RAVE and other audio autoencoders

in compositional and design practices raises unique XAI
challenges. Among these are the model’s arbitrary distribu-
tion of the sound features in the latent space and entangle-
ment of the latent dimensions, with one latent responding
differently as the state of the other is changed, making the
navigation less predictable [25].

2.2 Understanding Latent Spaces
One approach to making latent spaces more understandable
is to align them with known features of the audio, either
by pulling out certain aspects (e.g. pitch) to be controlled
explicitly, or attempting to factor the latent space into inde-
pendent parts dealing with distinct aspects of sound. Devis
at al. [10] show how to use explicit audio descriptors to-
gether with a learned latent space while preventing redun-
dancy between explicit descriptors and learned latents, so
that descriptors can later be modified to control the sound.
Relatedly, Nercessian [21] separates pitch and a phonetic

encoding out of the RAVE latent space, targeting singing
voice synthesis.

A different line of research focuses on post-hoc explana-
tions of how sound is represented in learned latent spaces.
Hawley and Steinmetz [13] visualize the latent space of au-
dio autoencoders, finding that as audio effects are applied,
the movement of sounds in latent space is visible but not
easy to describe.

A third approach is to understand latent spaces in terms
of one another, “stitching” neural networks together so that
e.g. the encoder of one model and the decoder of another
can communicate. This was first studied for computer vi-
sion models [16][9][4]. In these methods, a linear transfor-
mation is fit such that it maps a hidden layer of one model
to the same layer of another, and the resulting hybrid model
is found to retain most of the performance of the originals.

Moschella et al. [20] introduce a related method, using
similarity to anchor points rather than a linear transforma-
tion. Though this allows them to stitch two models without
an extra training step, it assumes that the decoder model
has already been trained using their method. The modified
latent space is also semantically different from either origi-
nal model, which poses difficulties in a context where latent
space is meant to be manipulated directly. For these rea-
sons, we eschew relative representations and return to the
technique of model stitching in Section 4.2.

Finally, we identify a fourth approach in the embodied
understanding of latent spaces. Scurto and Postel’s la-
tent soundwalks [29] explore a literal equivalence between
RAVE latent space and 3D space as mediated by a virtual
avatar, Valenzuela’s Semilla [31] maps the positions of seeds
cast across a table by hand, and Armitage and Privato in-
vestigate the three-dimensional projection of latent spaces
through sound spatialisation [3]. This line of investigation
is particularly relevant for a community focused on instru-
ment design and music creativity such as NIME, in that it
recognizes the role played by our instruments and compo-
sitional practices in interpreting the algorithm’s workings,
and explores how the principles of XAI apply to such con-
texts.

3. STACCO

Figure 1: Stacco.

In line with this approach, we developed Stacco, an in-
terface that facilitates the interaction and composition with
RAVE whilst providing a rich and playful musical experi-
ence. We used Stacco to investigate the application of XAI



strategies in a NIME, focusing on how these affect the per-
formative and compositional experience.
Stacco is a DMI embedding magnetic sensors underneath

an engraved surface. It builds on the notion of instrument-
score [27] to underlay the fact that “computer systems used
in musical performance carry as much the notion of an in-
strument as that of a score” [28], and inherits the design
features of other instruments based on permanent magnets,
such as the Chowndolo [19], a magnetic pendulum whose
trajectories are affected by permanent magnets placed over
a metal board, and Thales [26], a pair of handheld, disc-
shaped controllers that interact with ferromagnetic objects
through permanent magnets. Similarly to these instruments,
Stacco exploits the liveness of ferromagnetic objects to ma-
nipulate sound, engaging the performer with the entangle-
ments of its magnetic forces.

3.1 Design
Stacco consists of an oval laser-cut case containing a Bela
[18] and four attractors, each combining one magnetometer
with a stack of magnets in a 3D-printed enclosure. The
attractors are placed in four symmetrical points below an
engraved board placed on the top of the case, which features
a raised edge and is enclosed via a living hinge structure.
Each magnetometer performs two-dimensional readings of
nearby magnetic fields, providing 8 continuous streams of
data reflecting the position of nearby ferromagnetic objects.

Figure 2: Stacco’s attractors.

The sensors are connected to Bela for embedded synthesis
and/or OSC data forwarding to a connected laptop, and are
coupled with permanent magnets to interact with nearby
magnetic and ferromagnetic objects actively. Circular en-
gravings on the upper face of the board hint at the position
of the four attractors.
The performer interacts with Stacco by throwing and dis-

placing on the board a series of magnetic spheres of variable
dimensions (Figure 1), engaging in a playful dance of agen-
cies with the four attractors, whose intertwined magnetic
fields metaphorically reflect the entanglements in the latent
space. Indeed, with RAVE it is often impossible to univo-
cally map one input with one particular sonic feature, and
the manipulation of one latent dimension drastically affects
the navigation of the others (Section 4.1). This is mirrored
in Stacco’s magnetic materiality, through the overlapping
of the attractors’ sensing fields, and the complex interac-
tions of the magnetic spheres with each other and with the
instrument itself.

To help with charting and recalling gestures in the la-
tent space, we designed tailored oval sheets to be placed on
Stacco’s top, which the performer can customise with dif-
ferent inscriptions (Figure 3). As we discuss in 6, this fea-
ture proved useful in designing our study, as we could easily
compare the different performances with one another, and
was particularly appreciated by the participants in that it
allowed them to notate and reproduce their compositional
ideas while exploring the latent space.

Figure 3: Embodied Sketching with Stacco. P4 Score.

As it reads the changes in the magnetic fields around its
attractors, Stacco forwards 8 continuous values. These may
be individually mapped to each of the first 8 parameters
of a RAVE decoder, which, as described in Section 4.1, are
usually the most significant and clearly perceivable when
manipulating the latent space.

However, as we discuss in the next section, in mapping
Stacco to RAVE we slightly deviated from this strategy.

3.2 Mapping
Because in many RAVE models the first latent dimension
mostly determines loudness (Section 4.1), tailoring a map-
ping for the first latent is often a first, effective“macro-scale”
[2] step. Once this is addressed, the distribution of sound
features in the remaining latent dimensions may be drawn
out through embodied exploration.

For our user study (Section 5), we devised a mapping
for the first latent accommodating both drone-oriented and
percussive models, combining the total rate of change of
sensor readings with their total distance from a neutral po-
sition (no spheres present). This allowed us to keep the
instrument silent at rest, to activate it through the sus-
tained tension of magnets against the field, and to trigger
transient sounds with quick motions of the spheres.

Individual readings from the sensors were then scaled and
applied to latents 2 through 9.

4. INVESTIGATING RAVE LATENTS
As we performed with Stacco, RAVE’s arbitrary distribu-
tion of the sound features in the latent space became strik-
ingly apparent, with similar gestures often producing very
different sonic outcomes when performed on different mod-
els.

In the following sections, we investigate how the model
distributes sound features in latent space, whether it is pos-
sible to map one latent to another, and how this adaptation
is perceived and understood as we perform with a DMI.



We began by studying the simple case of what happens
when two RAVE models are trained on the same data under
similar conditions. We immediately found that the latent
spaces of such models could very different, even opposite to
one another; to understand why requires some elaboration
of how RAVE reduces dimensionality of the latent space.

4.1 Sign Normalization
A VAE such as RAVE balances reconstruction error with
precision in the latent representation. The training pro-
cess includes an incentive to add noise2 to the latent rep-
resentation, leaving only as much precision as needed to
reconstruct the input. Typically, some latent dimensions
become pure noise, carrying no information about the in-
put;others retain varying amounts of information, limited
by some amount of noise. To make the latent space eas-
ier to work with directly, RAVE applies a principal compo-
nents analysis (PCA) transformation to identify meaningful
dimensions buried in the haystack.
Essentially, this takes the many raw latent dimensions of

a trained RAVE model, discards pure noise dimensions, and
arranges the remaining significant dimensions in order of de-
scending importance3. This transformation gets baked into
the RAVE encoder, and the inverse transformation into the
RAVE decoder, where the discarded dimensions are filled
back in with noise.
For example, in RAVE models trained on audio datasets

with any significant dynamics, the first and most important
latent tends to encode loudness. The second might encode
something like pitch or brightness. Another one might rep-
resent the presence of transients or a particular spectral
band. However, more often each dimension corresponds to
some entangled combination of such features.
There is one difficulty with the PCA method used by

RAVE: it is agnostic to the sign of each latent dimension,
due to a symmetry in the definition of PCA. For example,
positive values of the first latent might correspond to greater
loudness, but it could just as well be that negative values
correspond to greater loudness. The only difference would
be a negation of the first column of the PCA projection,
and such an alternate PCA projection is equally valid.
So, if there are N significant latent dimensions, there are

2N equivalent latent spaces where some subset of dimen-
sions are flipped; the training process chooses the signs ar-
bitrarily. With Stacco, the effects of this became obvious
when switching between models; when the first latent di-
mension changed direction, gestures which had produced
loud sound became silent and vice versa.
To make any more nuanced comparisons between differ-

ent RAVE models, we first needed to normalize the signs
of the PCA transformation. To achieve this, we randomly
sampled sequences of latents from the prior distribution,
mapped them to audio via the RAVE decoder, and then
extracted an audio descriptor, so that each latent time-step
had an associated descriptor value. We then measured the
correlation of the audio descriptor with each latent dimen-
sion and took the sign (±1). Finally, we modified the PCA

2Here ‘noise’ refers to randomness, not specifically to noisy
sounds.
3In the VAE terminology, if a latent dimension has collapsed
to the (standard normal) prior, a sample from the posterior
contains no information about the input, while its mean
is always zero. Note that RAVE’s PCA step is fit to the
means of the posterior, not to samples, so noise dimensions
appear to PCA with low variance across the dataset, while
significant dimensions have varying means. Thus PCA finds
that the low-variance noise dimensions can be truncated
without loss of information.

transform to incorporate those signs. In other words, the
polarity of each latent was now flipped so it correlated pos-
itively with an audio descriptor.

Notably, this method does not cause the latents to be-
come more strongly correlated with each other; indeed the
purpose of a VAE is that they be uncorrelated. The only
effect is that for any latents which do correlate with the
descriptor, the direction of correlation is positive.

The most significant dimensions of RAVE models often
relate to loudness and brightness, qualities conventionally
associated with an increasing parameter. We chose a de-
scriptor representing louder and brighter sounds, so that
RAVE latents would tend to respect the convention. Specif-
ically, the RMS amplitude of the discrete time difference
(i.e., envelope of high-pass filtered audio) was used.

This sign normalization is implemented as an option when
exporting models in our fork of RAVE4. We use sign nor-
malization as a baseline modification to all models described
below.

4.2 RAVE Model Stitching
At this point, we could be confident that the most superfi-
cial differences between RAVE models were mitigated, and
investigate how similar the latent spaces actually are. Do
two models trained in the same way on the same dataset
discover the same latent factors of variation, or not?

As it turns out, mostly not. Depending on the dataset,
only the first (albeit most important) 1-3 dimensions are
similar, with the remaining dimensions apparently quite dif-
ferent. For example, consider the pairwise correlations be-
tween latent dimensions in different RAVE models (Figure
4). Here, we trained trios of models with the same data
and hyperparameters but different random seeds affecting
model initialization, noise, and sampling order of data. We
can see that where the correlation between latents is strong
in the upper left corner of each plot (between the first few
latents) it is also positive, reflecting the sign normalization.
However, the remaining correlations are only vaguely clus-
tered around the diagonal, implying that the two models
don’t use similar latent dimensions in a similar order, but
rather have learned different representations of the sound.
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Figure 4: Pearson correlation between latent dimensions in
pairs of RAVE models trained on the same dataset with dif-
ferent random seeds. Top: electric guitar models with 22
latents. Bottom: soprano sax models with 12 latents. Red is
positive, blue negative.

4https://github.com/victor-shepardson/RAVE



But just how different are these latent spaces? Might the
apparent differences be superficial and the latent space of
one model be linearly related to another?
To find out, we fit a linear adapter between parallel la-

tents obtained by encoding the original training data with
a pair of RAVE models. This adapter is simply the least-
squares solution to an equation relating the encodings:5

min
W

∥ZAW − ZB∥

Where ZA and ZB are T ×N and T ×M matrices of latent
encodings of the same audio data by two different RAVE
models A and B. Here, T is the number of time steps and
N the number of significant latent dimensions after PCA.
W is the resulting N × M adapter matrix, allowing the
encoder of A to communicate with the decoder of B.

Csiszárik et al. call this the “direct matching” method
of model stitching [9]. It doesn’t require backpropagation
through the model, and can be fit quickly on a CPU6. We
did not fit a bias parameter, since RAVE latents already
have zero mean.
Figure 5 shows correlations between latents with adapters

(compare to Figure 4).
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Figure 5: Left: Pearson correlation between latent dimen-
sions in one of the guitar models. Center: between latents
encoded by model 1 and latents encoded by model 0 but
adapted to model 1. Right: likewise for models 2 and 0.

As expected, the leftmost plot in Figure 5 was nearly
the identity matrix, with the latents of model 0 perfectly
correlated with themselves along the diagonal and nearly
uncorrelated with each other. With adapters, this struc-
ture was closely recovered in the cross-correlations between
models.
It appears that RAVE models do learn similar latent

spaces under similar conditions, but only up to an arbitrary
linear transformation. This is in line with the observation
of Locatello et al. that VAEs with a factorized prior cannot
learn disentangled representations in a purely unsupervised
setting [17].
Even though neither the RAVE method of applying PCA

nor our supervised sign normalization circumvent this, us-
ing a linear adapter as described above we can encode au-
dio through one RAVE model and decode through another,
obtaining a reconstruction close in fidelity to either of the
individual RAVE models.
We found that this method of latent adaptation can also

stitch RAVE models trained on different datasets to some
degree. In this case, at least one of the models is being
fed out-of-domain data, i.e. being used for timbre transfer,
when we collect the dataset of parallel latents. This can

5As in RAVE’s PCA step, we use the latent mean µz(x)
rather than posterior samples z ∼ Q(z|x).
6While prior work reported that direct matching was less ef-
fective than end-to-end optimization, the efficiency of direct
matching makes it more useful to DMI designers, allowing
existing RAVE models to be stitched quickly without spe-
cial hardware.

lead to extreme values of latents which then show up in
the adapter matrix. To mitigate this, we clipped latents
to five standard deviations before fitting the adapter and
when adapting new latents. In this setting, the latents are
not zero-mean, so we do fit a bias parameter.

Latent adaptation is implemented as an additional script
in our RAVE fork, exporting an nn~ compatible adapter
which stitches the encoder of one RAVE model to the de-
coder of another given a reference audio dataset.

5. USER STUDY
At this point, we wanted to know how the latent adaptation
developed in Section 4.2 was perceived in practice as part of
a DMI. We designed a task-centric user study with Stacco
to facilitate direct comparisons between RAVE models by
performers, and collect qualitative observations from these.

With Stacco, only RAVE decoders were used, to audi-
bilize the state of the magnetic sensors, which is mapped
to latent space. Rather than using adapters to stitch one
RAVE encoder to a different decoder, we studied them as a
way of maintaining a stable mapping from sensor to sound
when swapping RAVE models.

5.1 Methodology
We recruited five participants, P1-P5, from the artistic com-
munity of the area. Four of them are trained musicians, each
with a different musical expertise: P1 is a trained classical
pianist; P2 is a bass player; P3 and P5 are electronic musi-
cians. Of the five, only one (P4) is not a trained musician,
being instead a practising installation artist.

We planned five individual sessions, preparing Stacco with
a blank oval cardboard for embodied sketching (Figure 3), a
pencil and an eraser on the side, and four magnetic spheres
placed each at the centre of one attractor.

We began each session by introducing Stacco as a new
musical interface of our design, that we are experimenting
with to investigate a novel synthesis technique called“neural
synthesis” and invited the participant to explore and play
the instrument. In this phase, the participants were free to
ask questions on the instrument’s workings.

At the end of this exploratory phase, we invited each
participant to work for 10 minutes on one or more small
pieces, indicating a total length of 5 to 30 seconds. We also
clarified that the pieces should be repeatable and that to
help memorisation it was optionally possible to write notes
on the cardboard.

At the end of the ten minutes, the participant was invited
to perform the composition three times, first on setting A,
that is, the same model used to compose, then on two dif-
ferent settings (B and C).

After each performance, we asked the participant to freely
comment, and after playing with B and C we asked what,
if anything, from the original composition was preserved in
playing on the new settings.

Finally, we asked two more questions:

1. Which of the two settings (B and C) preserved most
of the original character of the performance?

2. Which setting did the participant enjoy most, and
why?

The whole process was repeated once more in a second
round for each participant, with a different series of settings
A, B and C. We write P3-2, for example, to denote ‘P3,
round 2’.



5.2 Settings
In each of the ten total rounds, setting A consisted of one
RAVE model, while settings B and C both used a second
RAVE model, with either B or C including an adapter (see
4.2) to make the latent space more similar to that of A. The
order in which the adapted model was presented (as B or
C) was randomized to reduce the influence of order effects.
Each participant encountered settings derived from RAVE

models trained on the same data in one round, and different
data (between A and B/C) in the other round. The order
of these same/different rounds was also varied between par-
ticipants.
Setting A always used a RAVE model trained on guitar or

saxophone sounds. When B and C used models trained on
different data, it was the organ music. By using the three
random seeded versions 4 of each guitar and sax model, we
were able to use a unique configuration of A, B and C in
every round, to make our observations less dependent on
the particularities of any pair of RAVE models.

Figure 6: Study Settings. P1 to P5 round A and B, with
guitar (G), saxophone (S), organ (OR) trained on random
seeds 0 to 2 and latent adaptation.

5.3 Results
In a few cases, the effect of adapters was striking, seem-
ingly working as expected. This was the case with P3-2,
where the adapted setting (B) was perceived as fun and
“more trustworthy” than the unadapted one, even respond-
ing with a “neater” feeling than setting A in navigating the
latent space. Similarly, P5-2 described the unadapted set-
ting (B) as very different from A, and the adapted one as a
“blend between A and B.” In both cases, when asked which
setting they enjoyed the most, the performers described the
adapted model as more fun than the unadapted one.
In other cases, participants perceived no particular simi-

larity between setting A and the adapted setting. In both
rounds, P1 dismissed any tonal or expressive similarity of
settings B and C with setting A, arguing that what had re-
mained consistent was the dynamic response of the spheres
to the gestures, which was mapped to the first latent. This
was also the case with P5-1, where settings B and C were
perceived as similar to each other and quite different from
setting A. P3-1 perceived the unadapted setting (C) as more

similar to setting A in that it provided higher responsiveness
to their gestures, thus making the experience more enjoy-
able. At the same time, the adapted setting (B) was de-
scribed as disappointing in that it compelled P3 to change
the gestures.

P2 and P4 developed the most idiosyncratic approaches
to playing with Stacco, reporting the unadapted setting to
better preserve their composition at least once.

5.3.1 P2
P2 developed a unique method of playing, holding the spheres
in the air and rotating them against the tug of Stacco’s
magnets. P2 approached the composition task by devel-
oping a vocabulary of gestures, and performed in a semi-
improvisational manner, continuing to experiment long past
the suggested two minutes. P2 was also the only participant
who did not notate the instrument with the pencil.

P2’s first round was particularly noteworthy, because the
similarity in the sound between A and B (which had been
adapted) was striking to the researchers and also commented
on by P2. However, P2 identified the unadapted C as“para-
doxically” better at preserving their original composition.

In the adapted setting (B), the transients were preserved
together with the overall character of the composition, but
the unadapted setting (C) provided a darker,“sombre change
of mood.” Despite the tonal similarity of the adapted model
and the precision it endowed in reproducing the composi-
tion, with the unadapted one P2 felt more capable of going
“where [the] inner ear was leading to.”

P2’s experience appears to illustrate both what was pre-
served by adapting the latent space, but also what was lost.
Similarly to the first round, in P2-2 the participant strug-
gled to reproduce the original compositional idea with the
adapted model but enjoyed distancing from it and exploring
the uncharted territory offered by the unadapted one.

5.3.2 P4
In contrast to P2, P4 made immediate and extensive use of
the pencils (Figure 3), drawing an articulated and fine score
while systematically exploring the attractors in sequence.

In both rounds, P4 chose the unadapted model and gave
specific reasons why it was more similar to setting A, de-
scribing specific gestures and how the sound they produced
had been preserved. P4 described the unadapted setting as
more sensitive and therefore fun in round 1, and as more
similar in character to A, in that the sounds it produced
were longer than A. Interestingly, P4 added that they im-
provised more on B and had more fun because the sounds
“were more out of control.”

P4’s experience seems to illustrate how, as we interact
with the model through a DMI, the frictions from gesture
to latent space could be more relevant and interesting to the
user than the similarities in the mappings between different
sound engines.

6. CONCLUSION
From this user study, we draw the conclusion that once it
enters embodied experience through a DMI such as Stacco,
the algorithmic adaptation of latent spaces becomes less
easy to perceive. Furthermore, an adapted latent space is
not always valuable to the performer, who might feel more
attuned to a different yet more sensitive setting, to a richer
sound, or value surprise and instability over control and
predictability.

These results confirm the importance of adopting prag-



matic approaches to XAI in music and instrument design,
where explanations depend on the interests of the stake-
holders within the musical ecosystem rather than on the
a-priori choices of the designer.
Nevertheless, it is likely, and we intend to investigate this

in future works, that more experienced users of Stacco (as
well as of other DMIs) might still benefit from a consistent
mapping of the latent space, which would allow them to
transfer the embodied knowledge of a model’s latent distri-
bution, matured in many hours of practice, to a new model.
From this study, a series of secondary yet meaningful find-

ings emerged regarding Stacco. First, all of the participants
enjoyed the experience of playing with the instrument, they
intuitively understood its workings without the need for fur-
ther clarifications, and developed diverse and original per-
formative techniques; most participants provided valuable
insights on how to further enrich Stacco’s ergodynamics, for
instance, by marking the polarities of the spheres, by adding
pressure sensitivity on the board and by raising the board’s
edge to bounce the spheres around. Second, it confirmed
the utility of embodied sketching as a practice for notating
gestures with neural synthesis. This method allowed the
participants to easily memorise and repeat the trajectories
on the instrument’s board, and facilitated our analysis of
their compositional strategies.
Through sustained practice with Stacco, we also intend

to explore whether embodied sketching might facilitate the
customization of the instrument, and investigate the novel
compositional strategies that artists might develop as the
score and the instrument become whole.
Beyond our user study, this research adds to the XAI

literature in two ways: first, by reporting on how RAVE
and, more generally, audio autoencoders tend to organise
sound features extracted from the dataset into the latent
space; second, by offering a practical method for a consistent
mapping of RAVE’s latent spaces between different models,
that users can access on our RAVE fork.7

Importantly, by embracing a wider, pragmatic scope as
advocated by recent XAI contributions within and beyond
the arts, our work underlines how the affordances of the
interface, the performer’s practice, the artistic intent and
other, often unpredictable context-dependent factors rede-
fine the understanding and perception of the model as it
enters embodied experience.
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