
MuGeVI: A Multi-Functional Gesture-Controlled Virtual
Instrument

Yue Yang
Department of Music AI and

Information Technology
Central Conservatory of Music

Beijing, China
yewyang@mail.ccom.edu.cn

Zhaowen Wang
∗

Department of Music AI and
Information Technology

Central Conservatory of Music
Beijing, China

wzw@mail.ccom.edu.cn

Zijin Li
†

Department of Music AI and
Information Technology

Central Conservatory of Music
Beijing, China

lzijin@ccom.edu.cn

ABSTRACT

Currently, most of the digital musical instruments can-
not leave the use of dedicated hardware devices, mak-
ing them limited in terms of user popularity and resource
conservation. In this paper, we propose a new com-
puter vision-based interactive multi-functional musical in-
strument, called MuGeVI, which requires no additional
hardware circuits or sensors, and allows users to create or
play music through different hand gestures and positions. It
firstly uses deep neural network models for hand key point
detection to obtain gesture information, secondly maps it
to pitch, chord or other information based on the current
mode, then passes it to Max/MSP via the OSC protocol,
and finally implements the generation and processing of
MIDI or audio. MuGeVI is now available in four modes:
performance mode, accompaniment mode, control mode,
and audio effects mode, and can be conveniently used with
just a personal computer with a camera. Designed to be
human-centric, MuGeVI is feature-rich, simple to use, af-
fordable, scalable and programmable, and is certainly a fru-
gal musical innovation. All the material about this work can
be found in https://yewlife.github.io/MuGeVI/.

Author Keywords

Digital Virtual Instrument, Interactive Music, Gestural
Control, Deep Neural Networks

CCS Concepts

•Applied computing → Performing arts; Sound and music
computing; •Human-centered computing → Interactive sys-
tems and tools;

1. INTRODUCTION
New digital instrument designs can develop new forms of
composition and performance for artists, enrich sensory

∗The first two authors contributed equally to this work.
†Corresponding author.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

stimulation, and improve educational accessibility. Digi-
tal instruments generally require two modules, control sur-
face and sound synthesis, and a mapping strategy for both.
Especially, the current advanced human motion tracking
technology promotes the development of virtual musical in-
struments [11]. Gestural controller is widely used in virtual
instruments that drive sound synthesis in real time. Due
to the real-time requirements for sensitivity, accuracy, and
repeatability, most of today’s virtual instruments employ
sensors to capture gesture information. This requires dedi-
cated circuits and poses a challenge for the popularization
of new musical instruments. For example, users who want
to experience a new instrument will either have to buy or
replicate the same sensor. The inconvenience and extra cost
may discourage some users with little interest, thus affecting
the popularity of the instrument.

We propose a computer vision-based interactive multi-
functional digital virtual musical instrument without ded-
icated hardware, MuGeVI, which allows users to per-
form, compose or control music by various hand gestures.
MuGeVI is jointly programmed by Python and Max/MSP
(Max for short). The Python program processes video
frames, detects hand key points, maps the hand gesture
information to musical control information, and then sends
it to a Max patch through the Open Sound Control (OSC)
protocol. The Max patch finally edits the MIDI file or audio
and performs sound synthesis.

MuGeVI currently has four modes: 1) Performance mode,
which allows the user to play various notes by adjusting the
position of hands and completing special gestures; 2) Ac-
companiment mode, which allows the user to control the
scale degree and textures by gestures to accompany the
singer or player in real time; 3) Control mode, which al-
lows the user to control the transposition and volume of a
track being played through gestures; and 4) Audio effects
mode, which provides audio effects for instruments such as
electric guitars in real time through changes in finger posi-
tion. The main innovations of MuGeVI are: 1) No need to
use sensors, easy to popularize and apply; 2) Support for
both MIDI and audio; 3) Multiple modes switchable at any
time; 4) Scalability and programmability.

2. RELATED WORK
A number of works have explored the development of
gesture-controlled instruments. Gillian and Paradiso [4]
adopted the Kinect depth camera to recognize the tap ges-
tures, hand movements and contractions for instrument con-
trolling. Han, Gold [7], Granieri and Dooley [6] used the
Leap Motion sensor to perform new gesture-based instru-
ments or augment the traditional keyboard instruments.
Nishida et al. [12] conducted body tracking by the Kinect

https://yewlife.github.io/MuGeVI/


Video (Images)

Hand Key Points

User

OpenCV

MediaPipe
Gesture

and

Position

Mapping

Python Program

OSC

Max/MSP Patch

Visible Interface

MIDI Notes

MIDI Files

MIDI Files

Filters

Notes

Chords

Pitches 
Velocities

Parameters

Performance

Accompaniment

Control

Audio Effects

S
o

u
n

d
 S

o
u

rce Music
(Audio)

Original 
Instrument 

Timbre

MuGeVI

Camera

Modes

Figure 1: System Architecture. Users input image information through the camera, and MuGeVI outputs music according to
different modes. The Python program recognizes hand gestures, maps them to the control information according to the current
mode and transmits it to the Max patch, which completes the control of the music and then plays it.

sensor and generated MIDI notes when the hand is detected
to move to the corresponding position. [14], [1] and [3]
adopted the Myo armband to capture the gestures. Tanaka
et al. [14] allowed users to design their own gestures and
sounds, and record examples for the training of machine
learning models. Brizolara et al. [1] performed meteoro-
logical sounds via gesture control. Pozas [3] realized the
automated mapping of sensor inputs to MIDI messages.
Leonard and Giomi [9] collected data with sensors and arm-
bands, obtained motion features, mapped to physical sound-
action features, and synthesize sounds. Lee [8] required the
user to hold the smartphone to complete the gesture and
thus affected the sound. The trained VGG network per-
forms recognition based on the accelerometer and gyroscope
data. Graf and Barthet [5] designed a virtual instrument us-
ing mixed reality technology. The left hand pose indicates
whether to play a single note or a certain kind of chord,
while the right hand plays on the 12 virtual keys. These
works use different gesture recognition methods and map-
ping strategies, but most require hardware devices other
than personal computers and regular cameras, and some
of these works are relatively single-functional and not very
scalable. There are also previous solutions use cameras and
computer vision methods to implement camera-based in-
terfaces such as the Very Nervous System [13] created by
Rokeby and the EyesWeb project [2] developed by Camurri
et al. These works can track body movements and gestures
to control or create sound and music, but they are not de-
signed to precisely identify hand key points and complex
hand gestures.

3. ARCHITECTURE
This section introduces the overall architecture of MuGeVI
and the methods we propose, including image capture, hand
key point detection, data transmission, reception and pro-
cessing.

3.1 System Architecture
Our instrument system, namely MuGeVI, first acquires im-
ages of the player continuously through the camera based
on the OpenCV library and displays them in real-time,
then detects the images using the neural network models
and solutions provided by the MediaPipe library to obtain
the locations of 21 hand key points. Next MuGeVI will

obtain the hand position and gesture based on these key
points, map them to the corresponding music information
based on the current instrument mode, package the data us-
ing the Open Sound Control (OSC) protocol and transmit
them to the Max/MSP program using the User Datagram
Protocol (UDP). Finally MuGeVI uses the corresponding
modules in Max/MSP to implement various functions. All
programs except those covered by Max/MSP are written in
the Python language. The architecture of MuGeVI is shown
in Figure 1.

The camera we use has a resolution of 1080p. The frame
rate ranges from 30 to 60 fps in practice with an 11th Gen
Intel Core i9-11900 CPU and an NVIDIA GeForce RTX
3060 GPU.

3.2 Real-Time Image Acquisition
Obtaining a real-time view of the player through the camera
is the first step of our instrument system. We adopt the
OpenCV1 library which is an open source computer vision
and machine learning software library to capture the live
images. We create a VideoCapture object and get video
frames with the read function in a loop. Every frame is
fed into the neural network models to be processed. The
acquired images and the positions of hand key points are
displayed in real time by the imshow function.

Figure 2: The 21 key points

1https://opencv.org



3.3 Hand Key Point Detection
Detecting the position of key points on the hands through
computer vision technology is an important function of
MuGeVI. Gesture recognition also relies on the location of
hand key points. We adopt the solution provided by the
MediaPipe2 which is a TensorFlow-based machine learning
library for live and streaming media[10]. It can obtain the
positions of 21 key points of the hand, including their hori-
zontal coordinates, vertical coordinates and depths relative
to the wrist. The 21 key points are shown in Figure 2.
We instantiate the hands class in MediaPipe to realize

the detection. It uses two deep convolutional neural net-
work models trained on annotated images, one for the palm
detection and the other for key point detection[16]. Both
models are lightweight and suitable for use in mobile real-
time scenarios. Besides, a strategy that uses the hand key
points detected in the previous frame to infer the position
of the palm in the current frame is employed, avoiding run-
ning the palm detector on each frame and reducing the
amount of computation. After obtaining the position of
the key points, MuGeVI will infer the gesture according to
pre-defined rules, described in detail in section 4.

3.4 Data Transmission
The OSC[15] is a communication protocol designed for use
in realtime musical performance. It is a highly accurate,
low latency, lightweight and flexible method of communi-
cation and is therefore suitable for our new instrument.
We package the data obtained from the hand positions and
gestures into OSC packets, and transmit them via UDP
sockets. The OSC messages contain OSC addresses that
follow a URL or directory tree structure, data types such
as int32, float32, string, etc. and data arguments.
We use the python-osc library to complete the sending
of data. In particular, we set up a UDP client via the
SimpleUDPClient method and send the OSC message
through the send_message method.

User

MuGeVI

Performance Mode

Playing Gesture

Figure 3: Interface and gesture of performance mode

3.5 Data Processing
Max/MSP is a visual and interactive development environ-
ment dedicated to audio and media production. It encapsu-
lates the functions into different objects, which can be used
by connecting the modules and setting a few parameters.
We use Max to make it easier to modify music meta infor-
mation, process audio and MIDI and change sound sources.
The OSC is a UDP-based protocol, and Max can receive
messages through the udpreceive module according to
the set IP address and port. The message sent by the
Python program includes address information and data in-
formation, and the Max patch uses the route module to
determine the mode based on the address and then pro-
cesses the signal accordingly.

2https://google.github.io/mediapipe/

4. FEATURES
This section describes in detail the functions, implementa-
tion methods and features of the four modes of MuGeVI,
namely performance mode, accompaniment mode, control
mode, and audio effects mode. Press 2 to switch to accom-
paniment mode, 3 to switch to control mode, 4 to switch
to audio effects mode, and 1 to switch back to performance
mode.

4.1 Performance Mode
Performance mode, also known as air piano mode, is shown
in Figure 3. In this mode, the whole picture captured by the
camera is divided into several parts according to the spatial
position, and each part represents a note. The pitch and
duration can be customized. The set gesture for playing
the note is for the thumb tip (key point 4) to make contact
with the index finger tip (key point 8) then separate, for
both hands.

After obtaining the hand keypoints, if the distance be-
tween keypoint 4 and keypoint 8 after normalization is less
than 0.03 and the time interval between the last transmis-
sion is more than 0.3 seconds, MuGeVI will send another
note signal to the Max patch. The Max patch generates
MIDI note-on and note-off messages with the makenote
module based on the pitch, duration, and velocity in-
formation, then converts them to MIDI format with the
midifomat module, and finally sends the MIDI signal to
the sound source using the midiout module. MuGeVI uses
the Windows wavetable piano sound source by default, and
by changing the sound source, users can play more instru-
ments. Since MuGeVI is highly scalable, the performance
can be enriched by modifying parameters such as sending
time interval, fingering.

63

User

MuGeVI

Accompaniment Mode

Figure 4: An example of accompaniment mode which indi-
cates the third texture of the submediant chord.

4.2 Accompaniment Mode
In this mode, the user can control the chords with gestures,
allowing real-time accompaniment without having to master
the chord-playing skills. Besides using the existing chords,
users can also edit or upload their own MIDI files for accom-
paniment. The left hand gesture in Figure 4 is the number
3, indicating the third texture, and the right hand gesture
is the number 6, indicating the submediant chord. MuGeVI
presets recognizable numbers from 1 to 8, as shown in Fig-
ure 5.

MuGeVI determines whether the finger is extended by
comparing the distance from the fingertip (key points 8,
12, 16, 20) and the finger root (key points 6, 10, 14, 18)
to the palm (key point 0). In practice, the position of the



1 2 3 4

5 6 7 8

Figure 5: Hand gestures for the numbers 1 to 8

thumb interferes a lot with the identification of 1 and 7, 2
and 8, so MuGeVI connects key point 13 and point 0 in a
line and compares the distance from point 2 and point 4 to
the straight line to determine if the thumb is extended, as
shown in Figure 6.
After recognizing the number represented by the gesture,

the python program transmits it as a control signal to the
Max patch, which selects the corresponding MIDI file and
plays it according to the control signal. To improve the
sense of use, the accompaniment mode solves three key
problems: 1) Real-time file reading. MIDI files are regu-
larly named by texture and scale degree, allowing precise
file selection while supporting multiple texture types. 2)
Snap to the right rhythm. The BPM of all MIDI files is
set to 120 and the time signature to 4/4. To avoid distur-
bance of the accompaniment process by the control signals
constantly sent by the Python program, MuGeVI sets the
chords to switch once in half or a bar in Max. 3) Immediate
response to gestures. The ideal situation for the accompa-
niment is to start the accompaniment as soon as the gesture
is recognized and to play it completely as the first chord for
half or a bar. Therefore MuGeVI sets an additional boolean
variable that is set to 0 every 3 seconds, and the timing in
2) starts only when the variable value is 1.

Figure 6: Diagram for determining whether the thumb is
extended

4.3 Control Mode
The control mode only uses the position information of the
index fingertip (key point 8), and the visualization inter-
face is divided into several areas vertically, as shown in Fig-
ure 7. The middlemost part indicates the original key, and
the upward and downward parts indicate the ascending and
descending keys respectively, changing one semitone at a
time.To the left means volume down, to the right means
volume up. The control mode provides great convenience

for transposition and volume adjustment of songs, for ex-
ample, when singing songs that do not fit the singer’s range.

The Python program detects the coordinates of key point
8, determines which area it belongs to vertically and its rel-
ative position horizontally, and then quantifies it into pitch
and velocity information and transmits it to the Max patch
via the OSC protocol. The three key parts of the control
mode are: 1) Controllable playback. MuGeVI sets the key
p to play and o to stop. The python program determines
whether a key is pressed and sends a switch control variable
to the Max patch to control the playback and stopping of
the music. 2) Real-time transposition. the python program
determines where key point 8 is located and transmits the
number of semitones to be transposed to the Max patch,
where the value is added to the MIDI pitch. 3) Real-time
volume control. The horizontal slide of the index fingertip
is similar to the volume control bar, and the Max patch
receives the transmitted velocity information and controls
the volume level via MIDI controller No. 7.

User

MuGeVI

Control Mode

Control 
Point

Figure 7: Interface and gesture of control mode

4.4 Audio Effects Mode
This mode provides audio effects to the instrument in real
time through finger position changes, and we take wah-wah
effect as an example. Different from common foot-pedal
wah-wah effects and preset plug-ins, MuGeVI uses gestures
for flexible control and easy parameter adjustment (fewer
parameters and visual adjustments). Unlike the other three
modes that operate on MIDI, this mode processes audio.
Note that this mode is an auxiliary mode for instrument
playing, so it is used when the player already has an in-
strument and an audio interface (which converts the in-
strument’s analog signal into a digital signal for computer
processing), and no additional hardware is needed for the
effects themselves. This mode maps the change in the posi-

Audio Effects Mode

User

Audio Effects Mode

MuGeVI Mu

Figure 8: Interface and gesture of audio effects mode

tion of the index finger tip (key point 8) to the change in the
center frequency of the filter to achieve the wah-wah effect,
as shown in Figure 8. After the Max patch receives the cur-
rent location change information from the Python program,



it converts it into an audio signal using the sig∼ module in
order to monitor its spectrum, and uses the ramsmooth∼
module to smooth the discrete, small-range signal to achieve
a better result. It is then converted back to numbers by the
snapshot module and mapped to a appropriate range by
the zmap module before fed into the filtergraph∼ mod-
ule. In this way the changes of finger position can change the
center frequency of the filter. The output of the filter is then
applied to the input instrument sound and played back, pro-
viding a wah-wah effect for the instrument in real time. Ad-
ditional effects can be implemented by adding or changing
filter parameters such as filter type, resonance peak value.

5. CONCLUSION
The MuGeVI proposed in this paper is a gesture-controlled
multi-functional digital virtual instrument with four differ-
ent functions without the need for dedicated hardware de-
vices. MuGeVI combines artificial intelligence technology
with electronic music, completing computer aspects such
as gesture recognition and data transmission and music as-
pects such as MIDI file design and editing, sound synthesis,
and audio effect creation, and has been tested in all four
modes. MuGeVI has certain advantages in usability, fru-
gality, richness, and scalability.

5.1 Evaluation
By inviting participants, we got some user feedback, sum-
marized as follows:
1) Delay and jitter. Users indicated that they basically

did not feel any delay between the gesture change and hear-
ing the sound, and there was no jittering situation where one
gesture caused two notes to be played repeatedly, which in-
dicates that our system is stable.
2) Functionality. Users indicated that MuGeVI has a va-

riety of functions, which are very practical and interesting.
Users would like to support more free rhythm and style
types in accompaniment mode, and faster and smoother
changes in effects mode.
3) Novelty and convenience. Most users said they had

not used a similar instrument and also found MuGeVI to
be fun to work with and more convenient and cost-saving
than most instruments. In addition, users wanted to be able
to use MuGeVI on mobile devices such as cell phones.
Detailed evaluation results can be found here3. In the

future we are considering evaluations in real performance
and music education scenarios.

5.2 Future Work
In the future, MuGeVI is expected to expand in the follow-
ing areas:
1) Adding facial expression recognition and control;
2) Adding control of drums, bass and other tracks;
3) Adding multiplayer gesture control;
4) Implementing more audio effects.

6. ACKNOWLEDGEMENT
We would like to express our gratitude to:
1) Hao Liu from Central Conservatory of Music (CCOM)

for his instruction on this work;
2) Ziao Mu from CCOM for providing the equipment and

participating in the video recording;
3) Yuqin Liu and Yubo Gao from CCOM for participating

in the video recording.

3https://yewlife.github.io/MuGeVI/

This work was supported by 22VJXG012, National Phi-
losophy and Social Science and 2022DMKLB003, Key Lab-
oratory of Intelligent Processing Technology for Digital Mu-
sic, Ministry of Culture and Tourism.

7. ETHICS STATEMENT
All participants agreed to use MuGeVI and committed to
give honest feedback. There was no material waste in this
work.

8. REFERENCES
[1] T. Brizolara, S. Gibet, and C. Larboulette. Elemental:

a gesturally controlled system to perform
meteorological sounds. In R. Michon and
F. Schroeder, editors, Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 470–476, Birmingham, UK, July 2020.
Birmingham City University.

[2] A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci,
K. Suzuki, R. Trocca, and G. Volpe. Eyesweb:
Toward gesture and affect recognition in interactive
dance and music systems. Computer Music Journal,
24(1):57–69, 2000.

[3] V. de las Pozas. Semi-automated mappings for
object-manipulating gestural control of electronic
music. In R. Michon and F. Schroeder, editors,
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 631–634,
Birmingham, UK, July 2020. Birmingham City
University.

[4] N. Gillian and J. A. Paradiso. Digito: A fine-grain
gesturally controlled virtual musical instrument. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, Ann Arbor,
Michigan, 2012. University of Michigan.

[5] M. Graf and M. Barthet. Mixed reality musical
interface: Exploring ergonomics and adaptive hand
pose recognition for gestural control. In Proceedings of
the International Conference on New Interfaces for
Musical Expression, The University of Auckland, New
Zealand, June 2022.

[6] N. Granieri and J. Dooley. Reach: a keyboard-based
gesture recognition system for live piano sound
modulation. In M. Queiroz and A. X. Sedó, editors,
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 375–376,
Porto Alegre, Brazil, June 2019. UFRGS.

[7] J. Han and N. Gold. Lessons learned in exploring the
leap motion(tm) sensor for gesture-based instrument
design. In Proceedings of the International Conference
on New Interfaces for Musical Expression, pages
371–374, London, United Kingdom, June 2014.
Goldsmiths, University of London.

[8] M. Lee. Entangled: A multi-modal, multi-user
interactive instrument in virtual 3d space using the
smartphone for gesture control. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, Shanghai, China, June 2021.

[9] J. Leonard and A. Giomi. Towards an interactive
model-based sonification of hand gesture for dance
performance. In R. Michon and F. Schroeder, editors,
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 369–374,
Birmingham, UK, July 2020. Birmingham City
University.



[10] C. Lugaresi, J. Tang, H. Nash, C. McClanahan,
E. Uboweja, M. Hays, F. Zhang, C. Chang, M. G.
Yong, J. Lee, W. Chang, W. Hua, M. Georg, and
M. Grundmann. Mediapipe: A framework for building
perception pipelines. CoRR, abs/1906.08172, 2019.

[11] A. Mulder. Virtual musical instruments: Accessing
the sound synthesis universe as a performer. In
Proceedings of the First Brazilian Symposium on
Computer Music, pages 243–250, 1994.

[12] K. Nishida, A. Yuguchi, kazuhiro jo, P. Modler, and
M. Noisternig. Border: A live performance based on
web AR and a gesture-controlled virtual instrument.
In M. Queiroz and A. X. Sedó, editors, Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 43–46, Porto Alegre,
Brazil, June 2019. UFRGS.

[13] D. Rokeby. Very nervous system.
http://www.davidrokeby.com/vns.html, 1986.

[14] A. Tanaka, B. Di Donato, M. Zbyszynski, and
G. Roks. Designing gestures for continuous sonic
interaction. In M. Queiroz and A. X. Sedó, editors,
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 180–185,
Porto Alegre, Brazil, June 2019. UFRGS.

[15] M. Wright and A. Freed. Open soundcontrol: A new
protocol for communicating with sound synthesizers.
In Proceedings of the 1997 International Computer
Music Conference, ICMC 1997, Thessaloniki, Greece,
September 25-30, 1997. Michigan Publishing, 1997.

[16] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka,
G. Sung, C. Chang, and M. Grundmann. Mediapipe
hands: On-device real-time hand tracking. CoRR,
abs/2006.10214, 2020.

http://www.davidrokeby.com/vns.html

	Introduction
	Related Work
	Architecture
	System Architecture
	Real-Time Image Acquisition
	Hand Key Point Detection
	Data Transmission
	Data Processing

	Features
	Performance Mode
	Accompaniment Mode
	Control Mode
	Audio Effects Mode

	Conclusion
	Evaluation
	Future Work

	Acknowledgement
	Ethics Statement
	References

