
Mapper4Live: Using Control Structures to Embed Complex
Mapping Tools into Ableton Live

Brady Boettcher
Input Devices and

Musical Interaction Laboratory
CIRMMT

McGill University
Montreal, QC, Canada

brady.boettcher@mail.mcgill.ca

Joseph Malloch
Graphics and Experiential Media Laboratory

Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada

Johnty Wang
Input Devices and

Musical Interaction Laboratory
CIRMMT

McGill University
Montreal, QC, Canada

johnty.wang@mail.mcgill.ca

Marcelo M. Wanderley
Input Devices and

Musical Interaction Laboratory
CIRMMT

McGill University
Montreal, QC, Canada

marcelo.wanderley@mcgill.ca

ABSTRACT

This paper presents Mapper4Live, a software plugin
made for the popular digital audio workstation software
Ableton Live. Mapper4Live exposes Ableton’s synthesis
and effect parameters on the distributed libmapper sig-
nal mapping network, providing new opportunities for
interaction between software and hardware synths, audio
effects, and controllers. The plugin’s uses and relevance
in research, music production and musical performance
settings are explored, detailing the development journey
and ideas for future work on the project.

Author Keywords

mapping, gesture, controller, Ableton Live, Max for Live

Licensed under a Creative Commons
Attribution 4.0 International License
(CC BY 4.0). Copyright remains with
the author(s). NIME’22. June 28 -

July 1, 2022, Waipapa Taumata Rau, Tāmaki Makaurau,
Aotearoa (University of Auckland, Auckland, New Zealand).
https://doi.org/10.21428/92fbeb44.625fbdbf

CCS Concepts

•Applied computing → Sound and music computing;
•Software and its engineering → Software libraries
and repositories;

1. Introduction

Modern software music production environments, also
known as digital audio workstations (DAWs), contain
built-in processing, sequencing, and synthesis tools that
are made available to the user. These systems can be
used to build complex signal chains incorporating a wide
variety of control parameters to generate output audio as
part of sequenced compositions, digital musical instru-
ments, or some combination thereof. In addition to the
manipulation of internal structures within the DAW, it is
possible to incorporate external hardware and software
devices such as input controllers and synthesizers to ex-
tend the functionality of the system. While adoption of
standard protocols such as MIDI and OSC allow connec-
tivity between these components for the purposes of data
exchange, it is often necessary to define additional layers
of processing and translation, commonly referred to as
mapping [7], as it has a strong impact on the behavior

1

https://doi.org/10.21428/92fbeb44.625fbdbf


of the system.

This paper presents Mapper4Live1, a mapping plugin
that bridges control parameters between Ableton Live
and libmapper, a cross platform distributed mapping
framework. This connection combines the existing se-
quencing and synthesis features of Ableton Live with
the dynamic mapping capabilities of libmapper. First,
the motivation for additional mapping capabilities in this
context is presented, followed by the implementation of
Mapper4Live. Several scenarios afforded by this new
interface are presented to explore its potential for sup-
porting artistic creation. Finally, future development
plans are explored, including the integration of similar
tools into other production environments.

2. Background and Motivation

2.1 The importance of mapping
The simplest type of mapping between musical signals is
a one-to-one connection, where an input signal directly
drives an output. More complex relationships between
signals such as convergent mappings (many-to-one) can
result in a parameter depending on multiple inputs to
compute its value. Divergent mappings (one-to-many)
result in one signal controlling multiple audio param-
eters at once. Figure 1, presented in [12], visualizes
the relationship between the gestural controller and the
sound producer. Mapping can also be explored through
a functional lens by defining mathematical expressions
(functions) relating one or more input signal(s) to an out-
put [2]. To relate gestural signals to audio signals using
more meaningful representations, intermediate mapping
layers can also be created [6].

Connecting gestural controllers to sound sources with
complex mappings can provide noticeable performance
benefits when compared to one-to-one mappings [7].
Currently, support for user-designed convergent and
functional mappings is not implemented in most com-
mercial production environments, often restricting users
to linearly scaled one-to-one connections.

2.2 The state of mapping tools
2.2.1 Mapping frameworks

Several standards and libraries have emerged for sending
musical signals between gestural controllers and sound

1https://github.com/bboettcher3/Mapper4Live

Figure 1: Relationship between gestural controllers and
sound sources, adapted from [2].

processors. The MIDI standard is perhaps the most pop-
ular protocol for sending simple musical signals between
devices. Though it’s adoption is widespread, MIDI lacks
flexibility for data types and ranges outside of its stan-
dard though, which can restrict the user’s ability to ex-
press their sonic intents [11].

The networking protocol OSC allows the design of cus-
tom namespaces for signals. This freedom is an attrac-
tive feature for researchers using complex gestural data,
but results in one-off implementations for devices that
are unable to be used for other purposes. A few libraries
have been created to address some of OSC’s limitations
such as device connections [4] or signal discovery2, but
still rely on the user to find their own method of creat-
ing dynamic mappings to devices. The original authors
of OSC imagined that compatibility would be achieved
through the use of common schemas defining signal
names and data types.

In development since 2007, the open-source library
libmapper3 [10, 9] aims to resolve the issues of com-
patibility in a different way. Instead of devices agree-
ing on a common signal representation, each device de-
fines the signals that it sends and receives independently.
Once registered with libmapper, devices, signals and
other metadata can be discovered through multicast net-
working, and signal datastreams can be freely connected
with libmapper handling any necessary translation, type
coercion, and vector truncation or padding so that the
destination always receives messages it knows how to
process. Runtime connections between signals (called
“maps”) also embed configurable processing and other
metadata, and can be managed over the network using
OSC messaging or an arbitrary number of session man-
agers such as webmapper [13]. Users of the libmapper

2https://github.com/vidvox/oscqueryproposal
3http://www.libmapper.org

2

https://github.com/vidvox/oscqueryproposal
http://www.libmapper.org/


API4 are encouraged to use “strong semantics” and real
units when designing device and signal representations;
if they choose to define ranges for signals, new maps will
default to linear scaling. Its support for complex map-
pings and signal abstractions lead to libmapper being
the protocol of choice for Mapper4Live.

2.3 Embedding mapping tools in Ableton
Live

Ableton Live5 is a well-known commercial music pro-
duction and performance program. It presents a number
of developer friendly tools for creating devices that can
interact with the production session, most of which are
unique to Ableton Live. Few DAWs offer similar tools
to developers, therefore Ableton Live was chosen as the
production environment for this project despite its paid
licensing source model.

2.3.1 Ableton’s Live Object Model

Ableton Live uniquely presents its internal structure to
developers in the form of its Live Object Model (LOM).
The LOM is hierarchically structured to organize tracks,
software devices and audio parameters in the production
session and can be accessed using Max6 objects. State
variables such as the currently selected track or audio
parameter can be accessed via the LOM to track the
user’s interactions with the program. Parameters from
synthesis and effect plugins are contained in this hierar-
chy as well, giving Max for Live developers the ability
to control other devices in the session.

These features provide a number of useful tools for map-
ping frameworks. In the case of libmapper, this results
in the ability to view and control the parameter spaces
of all audio devices in the production session, giving
mapping designers a multitude of new synthesis and
audio effect signals that can be connected to gestural
controllers.

2.3.2 Bringing communities together

A partnership between Ableton and Cycling 74, the com-
pany that maintains and develops Max, embeds a version
of Max into Ableton Live called Max for Live7 that lets
developers create their own software devices in Ableton

4libmapper is written in C, with bindings for a growing list of lan-
guages and environments including C++, C#, Python, Java, Processing,
Max, Pure Data, and SuperCollider.

5https://www.ableton.com/en/live/
6https://cycling74.com/products/max
7https://www.ableton.com/en/live/max-for-live/

Live using the Max framework. Functionally the same as
software plugins hosted by Ableton Live, Max for Live
devices can produce and process audio as well as MIDI.
These hackable devices also have access to the LOM,
giving developers access to other plugins and parameters
in the production session. This intended extensibility of
the Ableton Live platform provides a natural entry point
to connect with libmapper, and thus Mapper4Live was
created as a Max for Live device.

2.3.3 Functionality in other DAWs

Mapper4Live is built as a Max for Live device, meaning
that it is only compatible in Ableton Live and would
need a different implementation to work in other DAWs.
Max for Live is unique in that it exposes the session
parameters, and most popular DAWs do not offer sim-
ilar tools to developers. However, a similar approach
can be done with other DAWs as well. For example,
researchers at the University of Bordeaux are exploring
integrating libmapper into the structure of Ossia Score
[3], an open-source DAW. This addition to Score would
give similar functionality to Mapper4Live, letting users
expose libmapper signals from the production session.

3. Technical Design

3.1 Prerequisite work
Ableton Live, as well as Max for Live runs on Windows
and MacOS, while libmapper was originally built and ex-
tensively tested under Unix environments (MacOS and
Linux), with Max external objects available for MacOS.
It would be ideal for our Mapper4Live interface to op-
erate on both platforms that Ableton and Max supports,
and in this section we present updates to the existing
components necessary: the main libmapper library as
well as the Max/MSP external objects8.

While in theory it had been possible to build libmapper
on Windows using the MinGW toolchain, any applica-
tions compiled this way would not work with Windows-
based applications developed using the Visual Studio
compiler and run-time. This meant for example that
the Max external objects, built in Windows via the Max
SDK in Visual Studio, would not be supported. As such,
we made changes to libmapper and subsequently the
Max/Pure data externals. The most notable changes in-
clude the removal of variable length array definitions9,

8https://github.com/malloch/mapper-max-pd
9https://github.com/libmapper/mapper-max-pd/pull/2

3

https://cycling74.com/products/max
https://www.ableton.com/en/live/max-for-live/


which are not supported by the Visual Studio C compiler.
In addition to enabling our development of Mapper4Live,
these updates to libmapper provided better compatibility
of the library including support for native Windows ap-
plications, as well as Max external objects in Windows.
With these changes, it was possible to embed libmapper,
via the Max external object, into a Max for Live device,
and provide the fundamental interfaces to implement our
Mapper4Live plugin.

3.2 Development Process
The publicly available LFO (low frequency oscillator)
Max for Live device10 was used as a reference for re-
trieving information from the LOM because of its pa-
rameter mapping functionality. Max for Live devices
are inherently editable, allowing the parameter mapping
subpatches in the LFO device to be copied and tweaked
for the new plugin. The live.path Max object can be
used to detect changes in LOM variables, and is used
by Mapper4Live to listen to changes in the currently
selected parameter when adding new signals. Once a
new parameter is selected to be added to Mapper4Live,
the live.object Max object retrieves information about
the parameter including its name, parent device, value
range and id within the session. The parameter’s name,
parent and id is formed into a unique hierarchical ad-
dress for the libmapper network, while the range allows
libmapper to automatically normalize incoming values
for the signal. Finally, the device creates a mappable
libmapper signal for the parameter on the network.

3.3 Interface design
The plugin operates by users first clicking an open Map
button, and then clicking on an Ableton Live parameter
in the session that they wish to connect with libmapper.
Once created, the signals will appear on the libmap-
per network under a mapper.x device, x being the in-
stance number of the object. This allows users to create
multiple instances to separate signals between tracks if
intended. Clicking a Map button’s corresponding “X”
button to its right will remove the signal from the net-
work, deleting any connections containing the signal as
well.

Although Mapper4Live could exist as an audio effect
device, it was created as a MIDI effect device in order to
always place it at the beginning of the chain for visibility
(seen in Figure 2). The device can be placed on any track

10https://www.ableton.com/en/packs/max-live-essentials

Figure 2: Mapper4Live user interface in Ableton Live

Figure 3: Webmapper user interface

without any functional changes and can create signals
from any other track’s parameters.

3.3.1 Mapping Interfaces

Once signals are created using Mapper4Live, webmap-
per [13] (seen in Figure 3) can be opened via the “edit
mappings” button to manage connections. Webmapper
offers several options for connection visualization and
editing, and supports preset saving to easily load up com-
plex configurations. Users can also connect mappings
on the network with libmapper’s command line func-
tions, but webmapper provides much more user-friendly
controls for the connections.

4. Potential Scenarios
In this section, we present several imagined mapping
and interaction scenarios enabled by the Mapper4Live
device. The affordances of the LOM for mapping tools
connects several communities including mapping and
instrument designers, Max for Live developers and Able-
ton Live producers. Each of these groups has a potential
role and interest in the design, development or use of
complex mappings, and the integration into Ableton

4

https://www.ableton.com/en/packs/max-live-essentials


Live produces many opportunities for exploration into
the new features.

4.1 Scenario 1: Ableton Live as the map-
ping destination

Our first scenario considers Ableton Live as a destination
for control signals.

Alice is an experienced user of Ableton Live, and is
always looking for new ways to control her software
synthesizers and live audio effects. In her studio she uses
traditional control surfaces with sliders and knobs for
putting "physical handles" on software parameters, and
enabling bimanual, simultaneous control over multiple
parameters. She is familiar with MIDI, MPE, and OSC,
and has experimented with Max4Live and Connection
Kit11.

Alice loads the Mapper4Live device into Live, and uses
the webmapper GUI (launched from Live) to explore the
LOM, connect various input devices to Live parameters,
and play along with some sequenced material she was
working on previously. In quick succession, she tries a
variety of input devices she has in the studio: her laptop
trackpad, a game controller, hand tracking using a Leap
Motion12, and a Sensel Morph13. She is able to record
the live data from the devices as automation so she can
use the same fingers to control other parameters. She
starts to plan a live set, and decide which parameters
will be automated and which would be mapped live.

Alice knows that she is fully capable of creating custom
software bridges to import streaming data from these
devices into Live, but Mapper4Live allows her to stay
"in the flow" during studio sessions, quickly trying new
devices, experimenting with mapping connections, and
tweaking the data processing to match her particular way
of playing the controllers. She is planning to create a
custom hardware interface, perhaps prototyped using a
platform like Probatio [1].

Bob is a data scientist and musician interested in data
sonification. His friend Alice told him about her experi-
ments with Mapper4Live, and when he checks out the
libmapper website he notices that there are language
bindings for Python—his programming language of
choice for data processing and analysis! At their next
session together, Bob uses Python to load public datasets
and declare their fields as libmapper signals. Together,

11https://www.ableton.com/en/packs/connection-kit/
12https://www.ultraleap.com/product/leap-motion-controller/
13https://morph.sensel.com/

Alice and Bob design a mapping from Bob’s datasets to
Ableton Live parameters, and use the signals published
by Ableton Link14 to synchronize playback. They spend
the rest of the evening jamming along with automation
driven by elevation data from a LiDAR survey of their
city.

4.2 Scenario 2: Ableton Live as the map-
ping source

Our second scenario concerns using Ableton Live as the
source for mapping connections.

Charly is an Ableton Live producer and a synthesizer
fanatic. They love to collect and use hardware and soft-
ware synthesizers, and have been getting into low-level
media programming in Pure Data15 and SuperCollider16

in Linux. They can use Ableton Live to stream MIDI
over the network to their Linux laptop or an embedded
computer such as Bela17, but to use MIDI they have
to choose seemingly arbitrary mappings between con-
trol change numbers and synthesis properties. By using
Mapper4Live and declaring libmapper signals in their
Max patches and SuperCollider programs, they make the
programs mutually discoverable, and can design map-
pings between named signals instead of remembering
and interpreting control change codes.

Li is a composer who usually uses Max to create com-
plex pieces for traditional instruments and "live electron-
ics". Typically, their pieces involve a series of scenes or
presets, each of which has associated media and map-
pings from audio features to effects parameters. Li en-
joys using Max, but finds using queue lists for stepping
between scenes limiting and wants to explore using more
continuous transitions instead of discrete state changes.
He knows he can use ramps or preset interpolators in
Max, but decides to try using a dedicated sequencer envi-
ronment instead. Using Mapper4Live, Li creates conver-
gent maps for relationships that he wants to evolve over
time, with Ableton Live providing one of the map inputs
for each. He starts by sequencing simple ramps that
imitate preset interpolation, and quickly iterates toward
more complex modulation.

Charly and Li meet at a workshop on networked mu-
sic creation, and during discussion discover that they
have both been using Mapper4Live. Realizing that they
could recreate distributed control topologies by mapping

14https://www.ableton.com/en/link/
15https://puredata.info/
16https://supercollider.github.io/
17https://bela.io/

5

https://bela.io/


streams of data between their two instances of Ableton
Live, they make plans to explore playing together.

4.3 Scenario 3: Mapping within Ableton
Live

Our final scenario explores the implications of using
Mapper4Live solely for mapping within Ableton Live.
In this case, we are obviously duplicating existing capa-
bilities, since automation data can be copied, modified
and reassigned to different parameters. Bringing libmap-
per into the mix does more than assign semantic labels
to MIDI events and control change messages, however.
We do not have the scope here to explore the full set of
processing capabilities supported by libmapper’s expres-
sion interpreter, but in brief it supports:

• user-specified linear, exponential and logarithmic
scaling, with UI support for designing curves

• arithmetic, comparison, logical, conditional and
bitwise operators

• referencing past values of a source or destination
signal, enabling FIR and IIR filters and live looping
[5]

• referencing ranges or individual elements of vector
signals

• using timestamps in expressions, enabling down-
sampling and time-dependent modulation such as
control-rate LFOs

• convergent maps with up to eight source signals

• reducing expressions that operate over source sig-
nals, vector elements, historical samples, and signal
instances [8].

These additions to the capabilities of Ableton Live pro-
vide a number of opportunities for practical exploration
of complex mapping features inside of a music produc-
tion environment. Combined with the expanding capa-
bilities of gestural controllers, Mapper4Live prepares the
stage for both researchers and musicians to experiment
with advanced mappings in their own works.

5. Conclusion
This paper presents Mapper4Live, a plugin in Ableton
Live that allows complex mappings between input de-
vices and Ableton Live parameters. This tool aims to
accelerate the audio signal side of mapping research by
utilizing commercial plugins instead of custom patches

for synthesis and effects. Introducing the libmapper
mapping framework into a production program results
in a variety of opportunities for instrument designers,
Ableton Live producers and Max for Live developers.
Embedding complex mapping tools into Ableton Live
opens up a conceptual discussion of further methods the
framework can be used in live performance and music
production contexts.

Acknowledgments
The authors would like to thank Travis West for their
valuable insights and comments, as well as Paul Buser
and Robin Vandebrouck for their help in preparing demo
videos with the plugin.

Ethics Statement
This work is partially supported by a Discovery grant
from the Natural Sciences and Engineering Council of
Canada to the last author. There are no observed con-
flicts of interest.

References
[1] Calegario, Filipe, Marcelo M. Wanderley, Stephane

Huot, Giordano Cabral, and Geber Ramalho. 2017.
“A Method and Toolkit for Digital Musical Instru-
ments: Generating Ideas and Prototypes.” IEEE Mul-
tiMedia 24 (1): 63–71.

[2] Caramiaux, Baptiste, Jules Françoise, Norbert
Schnell, and Frédéric Bevilacqua. 2014. “Mapping
Through Listening.” Computer Music Journal 38 (3):
34–48.

[3] Celerier, Jean-Michaël, Pascal Baltazar, Clément
Bossut, Nicolas Vuaille, Jean-Michel Couturier, and
Myriam Desainte-Catherine. 2015. “OSSIA: Towards
a Unified Interface for Scoring Time and Interaction.”
In Proceedings of the International Conference on
Technologies for Music Notation and Representation.
Paris, France.

[4] Dannenberg, Roger B, and Zhang Chi. 2016. “O2:
Rethinking Open Sound Control.” In Proceedings of
the International Conference on Computer Music,
494.

[5] Frisson, Christian, Mathias Bredholt, Joseph Mal-
loch, and Marcelo M Wanderley. 2021. “MapLooper:

6



Live-Looping of Distributed Gesture-to-Sound Map-
pings.” In Proceedings of the International Confer-
ence on New Interfaces for Musical Expression.

[6] Hunt, Andy, and Marcelo M Wanderley. 2002.
“Mapping Performer Parameters to Synthesis En-
gines.” Organised Sound 7 (2): 97–108.

[7] Hunt, A., M. M. Wanderley, and M. Paradis. 2002.
“The Importance of Parameter Mapping in Electronic
Instrument Design.” In Proceedings of the Interna-
tional Conference on New Interfaces for Musical Ex-
pression, 149–54.

[8] Malloch, Joseph, Stephen Sinclair, and Marcelo M
Wanderley. 2018. “Generalized Multi-Instance Con-
trol Mapping for Interactive Media Systems.” IEEE
MultiMedia 25 (1).

[9] Malloch, Joseph, Stephen Sinclair, and Marcelo M.
Wanderley. 2013. “Libmapper (A Library for Con-
necting Things).” In Extended Abstracts on Human
Factors in Computing Systems, 3087–90. New York,
NY, USA: ACM.

[10] ———. 2015. “Distributed Tools for Interactive
Design of Heterogeneous Signal Networks.” Multi-
media Tools and Applications 74 (15): 5683–5707.

[11] Moore, F. Richard. 1988. “The Dysfunctions of
MIDI.” Computer Music Journal 12 (1): 19–28.

[12] Wanderley, Marcelo M. 2001. “Gestural Control of
Music.” In Proceedings of the International Workshop
on Human Supervision and Control in Engineering
and Music, 632–44.

[13] Wang, Johnty, Joseph Malloch, Stephen Sinclair,
Jonathan Wilansky, and Marcelo M Wanderley. 2019.
“Webmapper: A Tool for Visualizing and Manipu-
lating Mappings in Digital Musical Instruments.” In
Proceedings of the International Conference on Com-
puter Music Multidisciplinary Research, 12.

7


	Introduction
	Background and Motivation
	The importance of mapping
	The state of mapping tools
	Mapping frameworks

	Embedding mapping tools in Ableton Live
	Ableton's Live Object Model
	Bringing communities together
	Functionality in other DAWs


	Technical Design
	Prerequisite work
	Development Process
	Interface design
	Mapping Interfaces


	Potential Scenarios
	Scenario 1: Ableton Live as the mapping destination
	Scenario 2: Ableton Live as the mapping source
	Scenario 3: Mapping within Ableton Live

	Conclusion

