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Abstract
We present Melia, a digital harmonizer instrument that explores
how common failure modes of machine learning and artificial
intelligence (ML/AI) systems can be used in expressive and mu-
sical ways. The instrument is anchored by an audio-to-audio
neural network trained on a hand-curated dataset to perform
pitch-shifting and dynamic filtering. Biased training data and
poor out-of-distribution generalization are deliberately leveraged
as musical devices and sources of instrument-defining idiosyn-
crasies. Melia features a custom hardware interface with a MIDI
keyboard that polyphonically allocates instances of the model to
harmonize live audio input, as well as controls that manipulate
model parameters and various audio effects in real-time. This
paper presents an overview of related work, the instrument itself,
and a discussion of how audio-to-audio AI models might fit into
the long-standing tradition of musicians, artists, and instrument-
makers finding inspiration in a medium’s shortcomings.
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1 Introduction
Artists have long found inspiration in the limitations of technol-
ogy’s ability to capture and understand the world. Artist Brian
Eno noted that: “whatever you now find weird, ugly, uncomfortable
and nasty about a newmedium will surely become its signature. CD
distortion, the jitteriness of digital video, the crap sound of 8-bit...it’s
the sound of failure...of a medium pushing to its limits and breaking
apart” [6]. Further, that when technology “fails conspicuously,
and especially if it fails in new ways, the listener believes something
is happening beyond its limits.”

We present Melia, an instrument built around an audio-to-
audio AI model pushed to fail—trained on limited, biased training
data and performed in adversarially noisy outdoor environments—
in an exploration of how the failure modes of this new technology
might be employed as expressive, musical tools. At its core, the
instrument is a harmonizer: a musician sings into a microphone
and uses a piano keyboard interface to polyphonically manipulate
synthetic copies of their voice. Harmonizers typically use non-ML
digital signal processing (DSP) techniques to perform this task
[2, 3, 7, 11]—withMelia, we are not aiming to outperform existing
harmonizers, but rather to use the affordances and expressivity
of harmonizer-type instruments to explore new interactions and
sonic paradigms in the failure modes of AI models.

The NIME community has long been interested in both ML/AI
[8] and the human voice [9] as gateways to new sounds and
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Figure 1: The Melia instrument
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Figure 2: Diagram of the signal path ofMelia

interfaces. Utilizing failure in NIMEs as a means for musical ex-
pression has been explored in the sense of human failure [10],
but less explicitly for technological failure. That said, the idea of
building instruments around the idiosyncrasies of how technolo-
gies “fail” is certainly not new: examples include distortion from
vacuum tube guitar amplifiers, saturation of Moog-style ladder
filters, and wow and flutter in magnetic tape-based delay and
modulation effects. Many extended techniques can also be con-
sidered controlled, expressive uses of “failures” of instruments’
intended playing modes, from overblowing on woodwinds to
electric guitar feedback.

2 Melia
An overview ofMelia’s signal processing chain is given in Figure
2. This signal path is duplicated for each voice, enabling up to
8-voice polyphony.

2.1 Model
The Melia model is a convolutional autoencoder trained to per-
form pitch shifting and dynamic filtering. The encoder extracts
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an estimated pitch 𝐹0𝐸 and a condensed timbre representation 𝑍
from the input audio. The target pitch of the voice 𝐹0𝑇 is used to
calculate the required relative frequency shift Δ𝐹0 = 𝐹0𝑇 − 𝐹0𝐸 ,
which is passed to the decoder along with the absolute target
pitch 𝐹0𝑇 and timbral representation 𝑍 to be processed into a
shifted result. The signal is then mixed with the original input
audio and passed through a final bank of parameterized, trainable
feedback comb filters.

The model is trained in a two-step process: first, we train just
the 𝐹0𝐸 extractor. Then, we freeze the 𝐹0𝐸 extractor weights and
train the rest of the model end-to-end using pairs of samples
generated by the same synthesizer at different pitches using
multi-scale spectrogram (MSS) loss.

The training data is taken from a small dataset of audio clips
generated using a variety of simple subtractive synthesizer patches
[4]. By carefully curating the training dataset, we induce symp-
toms of two of the most common failure modes in AI/ML sys-
tems: out-of-distribution generalization and training data bias.
The model is parameterized with a tonic frequency, which is dis-
proportionately favored as a target output pitch. In the trained
model, we observe that this causes several of the comb filters to
emphasize the tonic as a resonant frequency—with sufficiently
broadband input, this sets up a drone at the tonic frequency and
its corresponding harmonics.

Because the training data has virtually no noise, the perfor-
mance of the trained model is highly vulnerable to noisy input
audio. When Melia is performed outdoors, the user must sing
loudly to overcome the high noise floor. When the user sings
quietly, environmental noise interferes with the model’s ability
to track and modify pitch. When a singing voice is not present
at all, the model continues to search for a stable tone to tune—
which it may occasionally find in birdsong or wind howling—and
this oscillation between occasional success and repeated failure
creates a sonically rich and unpredictable texture.

This setup allows a musician to play with the contrast between
the “in-distribution” inputs of a pitched singing voice and the
“out-of-distribution” inputs of complex environmental noise.

2.2 ML-less Harmonizer Backbone
Unpredictable black boxes can be difficult and frustrating inter-
faces for artists trying to realize an artistic vision [1]. Because
the model is intentionally designed not to be robust, we wanted
to be careful that the instability or unpredictability of the output
would not inhibit the clarity of the pitches a musician plays. To
this end, the model output is supplemented with a “conventional”
polyphonic harmonizer backbone, which has a far more stable
output. This non-ML harmonizer layer can be mixed with the
model output audio using a hardware fader on the instrument.

Each voice of the harmonizer backbone is synthesized by es-
timating the F0 of the input using the YIN algorithm [5] and
pitch-shifting it by the difference between the input’s intended
pitch and the input’s estimated pitch. Source code for the non-ML
harmonizer layer is open source and publicly available.1

2.3 Hardware
Melia is built into the enclosure of a recycled tower computer—we
remove the internal PCBs, rewire several of the internal lights for
custom control, and reroute the USB ports to connect to the MIDI
keyboard, microphones, and hardware buttons and sliders. Two
microphones are mounted inside the instrument, one directed
1https://github.com/matthewcaren/tiny-harmonizer

Figure 3: A live performance ofMelia in an outdoor field

towards the user to capture singing and the other directed away
to capture ambient sound. A Teensy microcontroller handles
signal routing, lighting, and A/D conversion, while an offboard
laptop computer linked via several parallel USB connections is
used for model inference and real-time signal processing.

Hardware knobs and sliders control key instrument param-
eters, including the mix between the two microphones and a
variety of real-time effects: a feedback delay network reverb,
granular delay, and peaking equalizer filter section.

Taking inspiration from the harmonizer built by Ben Bloomberg
for Jacob Collier [3], a “freeze” function also allows the user to
infinitely sustain voices. This is controlled by an arcade-style mo-
mentary button placed directly in front of the keyboard, which
allows a user to hold the button with their thumb while keeping
their other fingers available to play notes on the keyboard.

3 Discussion & Future Work
Due to the constraints of FFT window sizes and model inference
times, the instrument has significant end-to-end latency (up to
80 ms). Though this is not enough to break the impression of
a live performance from a listener’s perspective, it can make
performance challenging for a musician. In live settings, we cir-
cumvent this issue by mixingMelia’s output with an off-the-shelf
hardware vocoder as an approximate but low-latency monitor.

In future work, we hope to migrate to a Field Programmable
Gate Array (FPGA) to speed up model inference, and more gen-
erally to further explore how deliberate biases in training data
can be used to induce desired musical effects.
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