
SMucK: Symbolic Music in ChucK
Alex Han

tae1han@ccrma.stanford.edu
Stanford University

Stanford, California, USA

Kiran Bhat
kvbhat@ccrma.stanford.edu

Stanford University
Stanford, California, USA

Ge Wang
ge@ccrma.stanford.edu
Stanford University

Stanford, California, USA

Abstract
SMucK (Symbolic Music in ChucK) is a library and workflow for
creating music with symbolic data in the ChucK programming
language. It extends ChucK by providing a framework for sym-
bolic music representation, playback, and manipulation. SMucK
introduces classes for scores, parts, measures, and notes; the latter
encode musical information such as pitch, rhythm, and dynamics.
These data structures allow users to organize musical informa-
tion sequentially and hierarchically in ways that reflect familiar
conventions of Western music notation. SMucK supports data
interchange with formats like MusicXML and MIDI, enabling
users to import notated scores and performance data into SMucK
data structures. SMucK also introduces SMucKish, a compact
high-level input syntax, designed to be efficient, human-readable,
and live-codeable. The SMucK playback system extends ChucK’s
strongly-timed mechanism with dynamic temporal control over
real-time audio synthesis and other systems including graphics
and interaction. Taken as a whole, SMucK’s design philosophy
treats symbolic music data not only as static representations but
also as mutable, recombinant building blocks for algorithmic
and interactive processing. By integrating symbolic music into
a strongly-timed, concurrent programming language, SMucK’s
workflow goes beyond data representation and playback, and
opens new possibilities for algorithmic composition, instrument
design, and musical performance.

Keywords
ChucK, programming, music notation, symbolic music

This work is licensed under a Creative Commons Attribution 4.0 International
License.
NIME ’25, June 24–27, 2025, Canberra, Australia
© 2025 Copyright held by the owner/author(s).

1 Introducing SMucK
SMucK exists to provide both familiar and novel ways of creating
music with ChucK[23]. It draws upon existing music information
systems used in graphical notation and music analysis, but re-
contextualizes these systems within the creative workflow of
ChucK.

SMucK addresses what has been absent in ChucK since its in-
ception: built-in tools and abstractions for working with symbolic
data. Normally, ChucK programmers must create their own sym-
bolic representations of high-level musical concepts like pitch
and rhythm. While, in theory, this “do-it-yourself” approach can
allow for extremely customizable development, in practice the
difficulty and scope of labor is often technically and artistically
limiting. SMucK attempts to strike a balance between providing
ready-to-use abstractions of common musical structures and al-
lowing users to further extend and adapt these tools into their
own workflows.

In addition to supporting parsing of commonly used data for-
mats like MusicXML[2] and MIDI[16], SMucK introduces its own
input syntax, SMucKish. This custom input syntax is designed to
be efficient and readable, allowing users to quickly compose and
edit musical material within ChucK’s text-based coding environ-
ment.

SMucK goes beyond static representation of score material,
taking advantage of ChucK’s strongly-timed, concurrent pro-
gramming model to allow for dynamic and precise control over
playback. SMucK’s playback system uses ChucK’s strongly-timed
mechanism to allow for dynamically editable, concurrent play-
back of multiple musical scores with independent timing and
tempo manipulation. Moreover, SMucK introduces a new frame-
work for virtual instruments in ChucK, allowing its symbolic
scores to be linked to sound synthesis in a tightly integrated and
highly customizable way.

Overall, these features make SMucK well suited for exploring
compositional ideas, live-coding, and designing interactive sys-
tems. SMucK is designed for and bymusicians and creative coders.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

NIME ’25, June 24–27, 2025, Canberra, Australia Alex Han, Kiran Bhat, and Ge Wang

It is a tool aimed at encouraging exploration and expressivity.
In this paper, we will discuss SMucK’s workflow, core features,
implementation, use cases, and future directions.

2 Related Work
Programming languages designed for music computation must
often deal with behaviors and capabilities that can be difficult to
implement in general-purpose programming languages. Music
involves precise and complex organization of sounds over time,
thus placing certain demands on computer music languages. Syn-
thesizing audio signals requires sample-synchronous processing,
at audio sample rates typically on the order of 44,100 samples
per second. The sounds themselves may be scheduled as musical
events (i.e. notes) occurring both sequentially in time and in paral-
lel, requiring precise time scheduling and concurrent processing.
Furthermore, to support real-time interactivity, languages must
allow for on-the-fly control of signal processing parameters and
the scheduling or manipulation of musical events as they occur.

Various computer music languages have been developed over
the past 60 years which introduce specialized semantics, syntax,
data types, and workflows that aim to address different aspects of
these demands. Some languages, like Faust [13], focus solely on
audio signal processing, but have no provisions for sequencing
of note events. In contrast, languages like ABC[21], Guido[7],
Adagio[4], andMusicXML[6] are designed for rich representation
of musical scores. However, these languages are intended to
encode fixed compositions, often for the purpose of graphical
score rendering or computational analysis of a corpus of musical
works rather than sound synthesis and performance.

Other languages aim to accommodate both signal processing
for sound synthesis and sequencing of musical events. Notably,
the MUSIC-N family of languages [9] introduced separate “or-
chestra” and “score” languages, allowing virtual “instruments”
defined by audio signal computing graphs to be connected to
lists of note events. A number of MUSIC-N’s contemporaries
have aimed to more tightly integrate “orchestra” and “score”
into one programming framework. SuperCollider[10] runs on a
client-server architecture that separates a real-time audio engine
scsynth from the interpreted compositional language sclang, and
allows these separate systems to communicate via the OSC mes-
saging protocol. Languages like Max/MSP[14] and PureData[15]
allow users to work with both signal flow graphs and control
messages in a graphical programming framework, but can ar-
guably make certain programming behaviors like abstraction,
functions, classes, recursion, and instancing somewhat difficult.

Nyquist[5] and ChucK[3] are examples of languages that re-
move the distinction between “orchestra” and “score” altogether.
Nyquist offers signal processing in a functional programming
style, fine-grained control over timing and tempo information,
and even the ability to write score information with the Adagio
notation language. Like Nyquist, ChucK allows users to program
sound synthesis and control structures in a unified framework.
Moreover, ChucK provides a unique concurrent, temporally de-
terministic, sample-synchronous timing framework. There is no
explicit global control rate in ChucK; control rate is an implicit
consequence of how users dynamically move through time in
the language. With ChucK’s model of concurrent processing, it
is also possible to have multiple processes ("shreds") executed
simultaneously with their own control rates. Unlike Nyquist,
which is not designed for real-time interactivity, ChucK is well-
suited for live-coding and interactive music performance: code

can be edited and re-run “on-the-fly” without interrupting the
audio stream. Furthermore, its object-oriented framework also
provides a way to combine sample-level audio computation with
asynchronous real-time manipulation of synthesis parameters
and events.

Each of the aforementioned programming languages offers a
unique approach to music computation. In designing SMucK, we
draw inspiration from many of these languages in order to bridge
gaps between them. ChucK provides a natural home for this
syncretic approach, as it already blends sound synthesis, control
structures, and real-time interactivity in one language. However,
unlike Nyquist, it does not have an embedded notational language
(like Adagio) that supports handling of rich symbolic information.
We take inspiration from Nyquist’s integration with Adagio as
well as dedicated notational languages like Lilypond[12] and
SCORE[18] for the design of our own ChucK-native notation
syntax SMucKish.

In an interesting twist, SMucK also reintroduces the distinction
between “orchestra” and “score” into a computer music language
that was designed to remove this very distinction. SMucK dif-
ferentiates between “orchestra” and “score” not as categorically
distinct languages (aswith CSound and itsMUSIC-N predecessors
[9, 17, 20]), but as constructs within the language. This approach
aims to provide the “best of both worlds”: a programmer can
choose to work with SMucK’s orchestra-score framework to the
extent that it suits their technical and aesthetic needs.

3 The SMucK Approach
In ChucK, typical workflows for handling symbolic note events
might include sequencing arrays of MIDI note numbers which
can be translated to unit generator frequencies, and advancing
time directly using the keyword now. This behavior might be
encapsulated in some sort of “play note” function to be called
repeatedly and concurrently during runtime. This open-ended,
do-it-yourself approach is part of ChucK’s design, and is meant
to provide a flexible, expressive environment.

However, it means that certain commonmusical structures and
behaviors can be difficult to realize: handling polyphonic material,
controlling dynamic tempo changes, and inputting and editing
complex scores all require bespoke, ground-up solutions. The
relative difficulty of realizing these kinds of behaviors also shapes
the art created with ChucK–for instance, it is easier to develop a
simpler, loop-based treatment of pitch and rhythm content, while
controlling signal-processing parameters governing timbre in a
more granular way.

In designing SMucK, we aim to unite the representational rich-
ness of music notation-focused languages with the integrated,
dynamic computation offered by ChucK. For our input syntax
SMucKish, we take inspiration from languages like ABC, Lily-
pond, and especially Leland Smith’s SCORE [18]. However, in-
stead of tailoring the syntax towards graphical score rendering
or analysis, we design our input syntax with real-time playback
and manipulation of score contents in mind.

With the SMucK playback workflow, we provide high-level
abstractions to handle some of the complex behaviors mentioned
above: handling polyphony, dynamic tempo control, and linking
of symbolic scores to audio synthesis chains. Importantly, these
high-level abstractions retain fine-grained controllability and
customizability, preserving ChucK’s core design principles of
flexible and expressive code.

SMucK: Symbolic Music in ChucK NIME ’25, June 24–27, 2025, Canberra, Australia

4 Workflow
The overall SMucK workflow encompasses several stages which
we will summarize here, before going over each part in more
detail. First, users create a score by instantiating an ezScore.
Next, users write or import the score content. This can be done
by importing a MIDI or MusicXML file, or by writing musical
material with the SMucKish input syntax.

Once the score is complete, users can play back the material
with a two-step process. Firstly, users define ezInstrument classes
which contain sound synthesis chains–these are analogous to
“synth patches” which set up a signal flow that performs notes as
they are received. Secondly, users create an ezScorePlayer object
that connects the “orchestra” to “score”. The score player sets
up a virtual timeline for the score material and sends note data
to the ezInstrument objects. The score player’s playback rate,
position, and looping behavior can all be controlled by the user.
This workflow can be seen in the example code snippet below. In
the next few sections, we will dive deeper into each step of this
process, starting with the ezScore family of classes.

1 // create score from a simple pitch
2 // sequence (using SMucKish input)
3 ezScore score("a4 b c d e");
4
5 // Define an instrument to play back the score
6 class myInstrument extends ezInstrument
7 {
8 // Sound synthesis chain
9 Sitar sitar => NRev reverb => outlet;
10
11 // Define note -on behavior
12 fun void noteOn(ezNote note , int voice)
13 {
14 // Set the pitch
15 Std.mtof(note.pitch()) => sitar.freq;
16
17 // Pluck the sitar
18 note.dynamics () => sitar.noteOn;
19 }
20
21
22 // Define note -off behavior
23 fun void noteOff(ezNote note , int voice)
24 {
25 sitar.noteOff ();
26 }
27 }
28
29 // Connect our instrument to audio output
30 myInstrument inst => dac;
31
32 // Create player object to play back the score
33 ezScorePlayer player(score);
34
35 // Set instrument(s) for player
36 player.setInstrument([inst]);
37
38 // Start playback
39 player.play ();
40
41 // Time loop
42 while(player.isPlaying ()) 1:: second => now;

4.1 The ezScore Class Family
SMucK introduces a set of objects used to store musical score
data, implemented as custom ChucK classes (which are therefore
extensible and inspectable by users). This data can be parsed from
MIDI files, MusicXML files, or from the SMucKish input syntax.
These classes are organized hierarchically, representing musi-
cal information from individual notes to multi-part polyphonic
scores. The hierarchy of objects is as follows:

4.1.1 ezNote. At the lowest level are ezNote objects. Each ezNote
has an associated pitch, rhythmic value, onset in beats relative to
the measure start, and dynamics value. See Table 1 for a summary.

Rhythms and onsets are stored as symbolic beat values rather
than durations in time. This is in contrast to data formats like
MIDI messages, which rely on pairs of ‘note on’ and ‘note off’
events which are received sequentially in time offsets. Currently,
ezNote objects only contain information relating to pitch, rhythm,
and dynamics. However, we plan to expand this by allowing user-
defined information (e.g. text annotations, abritrary numerical
values) to be attached to ezNote objects.

4.1.2 ezMeasure. One level up is the ezMeasure object, which
contains ezNote objects. ezMeasure objects also have a length(in
beats) and onset (relative to the score’s start). Each ezMeasure ob-
ject can be arbitrarily long; meter/time signature is not enforced.
The meaning of a measure in SMucK is looser than that of a tradi-
tional score, and can be thought of more as an intermediate-level
data structure to hold a collection of notes. This is done to main-
tain as much flexibility in editing, generation, and playback as
possible. Crucially, notes can be appended, edited, deleted, or in-
serted during runtime, allowing the sort of dynamic computation
not available in static score representations.

4.1.3 ezPart. Above the ezMeasure level is the ezPart, which
represents a single part within a score. Each ezPart contains
a sequence of ezMeasures. Each ezPart can be connected to an
ezInstrument during playback, assigning an audio synthesis chain
on a partwise basis. This is explained further in section 4.3.2. Just
like with notes within measures, the measure contents of an
ezPart are editable during runtime.

4.1.4 ezScore. Finally, above the ezPart is the ezScore, which
represents a multi-part polyphonic score. This top-level data
structure contains a number of ezPart objects and is the ob-
ject that interacts with the playback system. It is also the data
structure that external data formats are parsed into: MIDI and
MusicXML files can be imported as ezScore objects containing
ezParts, ezMeasures, and ezNotes. Alternatively, ezScore objects
may be built from the bottom up, using SMucKish to specify indi-
vidual notes, measures, parts, or whole scores. In the next section,
we will elaborate on how the SMucKish input system works and
how it interacts with the ezScore family of data structures.

4.2 SMucKish Input Syntax
The SMucKish input syntax is a way to write musical score con-
tent within ChucK. It is heavily influenced by languages like
ABC, Lilypond, and SCORE, emphasizing efficiency, local context
awareness, and human readability. It can be parsed directly into
arrays of pitch, rhythm, and dynamics values, or it can be parsed
into the ezScore-family data structures outlined in the previous
section.

SMucKish input is written as a ChucK string consisting of in-
dividual tokens delimited by spaces. Taking inspiration from
SCORE, there are different conventions for specifying pitch,
rhythm, and dynamics. Unlike SCORE, each of these layers can
be entered and parsed separately in a “non-interleaved” format,
or simultaneously with an “interleaved” format.

NIME ’25, June 24–27, 2025, Canberra, Australia Alex Han, Kiran Bhat, and Ge Wang

Table 1: ezNote properties

Property Meaning Data type
pitch MIDI note number (0-127), with special value -999 to denote a rest int
beats Rhythmic value in beats, where quarter note = 1.0, eighth note = .5, etc. float
onset Onset in beats, relative to the start of the measure float

dynamics Value representing the dynamics of the note, ranging from 0.0 to 1.0 float

As a simple example, to encode the following musical phrase
in a non-interleaved way:

The following SMucKish code could be used to represent the
pitches:

1 "k3# c5 b a b c c c b b b c e e"

And the following code to represent the rhythms:

1 "e e e e e e q e e q e e q"

As an example of some of the syntactic sugar provided by
SMucKish, the following code could be used to more compactly
represent the same rhythms:

1 "ex6 [q e e]x2 q"

With the “interleaved” method, pitch and rhythm can be en-
tered simultaneously (note the use of the | symbol, which "binds"
pitch and rhythm tokens in the following example):

1 "k3# c5|e b a b c c c|q b|e b b|q c|e e e|q"

We will now specify the syntax for each layer in more detail.

4.2.1 Pitch. Each pitch token consists of 3 parts: a pitch step,
accidental, and octave. The pitch step is a single character repre-
senting the note name (e.g. a, b, c) and is required. The pitch step
r denotes a rest. The accidental and octave parts may be multiple
characters long and are optional.

Pitch tokens can have an arbitrary number of accidental marks
(# or s for sharp, b or f for flat, and n for natural). Key signatures
can be specified using a special token of the format knx where n

is a number of flats or sharps and x is the accidental type (using
the same characters mentioned above). For instance, the key
signature token k3# means “key 3 sharps”, or A major/F# minor.
Key signatures can be set at any point in the pitch layer and
persist until overridden.

Octave numbers can be explicitly set: c5 means C5. If the
octave number is omitted, SMucKish assumes the pitch is in the
octave that puts it closest to the previous pitch. This “proximity
awareness” can be helpful in handling octave crossing situations.
For example, a4 b c is equivalent to a4 b4 c5. Additionally, the u

or d flags can be used to move up or down an octave relative to
the previous note.

Chords can be entered by linking multiple pitch tokens with
the : character. Here is an example showing the use of chords,
key signatures, accidentals, and octave handling:

1 ezMeasure measure("k3b c4:e:g f# g bn c bn c e gd a");

4.2.2 Rhythm. Rhythm tokens represent beat values. Basic sub-
divisions can be specified using w for whole, h for half, q for
quarter, e for eighth, and s for sixteenth notes. Dotted rhythms
are specified using . characters. Tuplets are specified either using
the character t as a prefix, denoting a triplet, or using the suffix
/n to specify a tuplet dividing the rhythmic value into n equal
parts. Ties can be entered using the prefix _. Lastly, arbitrary
beat values can be directly written as float values. Here is an
example incorporating all of these elements:

1 ezMeasure measure("e _e q q. q.. te te te
2 q/5 q/5 q/5 q/5 q/5 1.7 3.14");

We acknowledge that our naming convention for rhythm to-
kens could be confusing for users who do not think in English.We
chose these tokens based upon the use of English within ChucK,
and the use of similar naming conventions in other score-entry
formats, such as Adagio [4] and SCORE [18].

4.2.3 Dynamics. Dynamics are represented as values ranging
from 0.0-1.0. When importing MIDI files, which use integers 0-
127 to represent velocity, values are normalized to this range. In
SMucKish, values can be written with dynamic symbols ranging
from pppp to ffff. These symbols are mapped across the 0.0-1.0
range in increments of 0.1, as seen in the figure below. Alterna-
tively, arbitrary values can be specified directly, prefixed with a
d (e.g. d.5, d.72).

4.2.4 Repeated Tokens and Sequences. SMucKish also allows
users to repeat individual tokens or sequences of tokens in any
of the aforementioned layers. By adding the suffix xn, a token
will be repeated n times. Multi-token sequences can be enclosed
with brackets [and], followed by xn to specify how many times
the sequence will be repeated.

1 ezMeasure measure("hx3 [q e. s]x2 w");
2 // is equivalent to
3 ezMeasure measure("h h h q e. s q e. s w");

4.2.5 Chords and Scales. SMucK also provides functions for pars-
ing chord symbol notation and scales. Chord symbols commonly
used in jazz and popular music (e.g. “G#m”, “Cmaj7”, “Bb7#9b13”)

SMucK: Symbolic Music in ChucK NIME ’25, June 24–27, 2025, Canberra, Australia

can be translated into MIDI note numbers. Similarly, scale names
(e.g. “minor”, “mixolydian”, “double harmonic”) combined with
a given root note, can also be parsed into MIDI note numbers.
Additional specifications and conventions are supported, but we
will not elaborate on them in this paper. These parsing tools cur-
rently exist separately from the SMucKish input syntax, although
we plan to integrate them in the future.

4.2.6 Putting it All Together. Each of these layers–pitch, rhythm,
and dynamics–can be parsed individually into ChucK arrays or
into ezNote objects within an ezMeasure. In the former case,
pitches are parsed into a 2D integer array of MIDI note num-
bers, with the first dimension representing temporal order (“hor-
izontal”) and second dimension concurrent notes (“vertical”).
Rhythms and dynamics are both parsed as float arrays. This way,
users have the freedom to use SMucKish input syntax without
necessarily using ezScore-family classes.

Parsing of SMucKish into ezNotes in an ezMeasure can be
performed in multiple stages, or all at once using an “interleaved”
format. In multi-stage entry, users create an ezMeasure object,
then set each layer separately. For example, the following code:

1 ezMeasure measure;
2
3 measure.setPitches("c4 d e f g");
4 measure.setRhythms("tqx3 e e");
5 measure.setDynamics("mfx5");

Is equivalent to the following notated measure:

Layers can be set in any order. In the case that the number of
tokens does not match between layers, missing tokens are “filled
in” according to the last valid token parsed.

The “interleaved” approach to writing SMucKish uses the |

character to connect tokens from different layer types (pitch,
rhythm, and dynamics, in that order). This makes it possible
to specify a measure’s contents in a single string. If one of the
layers is not specified for a given token, its value will be inferred
from the previous note, as in multi-stage input. For instance, the
following code:

1 ezMeasure measure("k1# c4|q|mf d e f g|e|mp a b c");

Is equivalent to the following notated measure:

From here, users can build up a longer, multi-part score. Individ-
ual measures can be added to an ezPart, and multiple parts can
be packed into an ezScore. Here is a simple example of building
a score with a single part and two measures:

1 // Create a score
2 ezScore score;
3
4 // Create a part
5 ezPart part;
6
7 // Create a measure using SMucKish add it to the part
8 ezMeasure measure("a b c d");
9 part.addMeasure(measure);
10
11 // Create another measure and add it to the part
12 ezMeasure measure2("c d e f");

13 part.addMeasure(measure2);
14
15 // Add the part to the score
16 score.addPart(part)

This process is flexible and can operate at any level of the
ezScore class hierarchy–users can construct an ezScore directly
from an interleaved SMucKish string, set an ezPart in multiple
stages using the non-interleaved format, and so on.

4.3 Playback
Once users have input their score data into an ezScore object
using the methods described above, they can play back the score.
SMucK’s playback system is designed to handle several com-
plex behaviors “under the hood”. It connects the symbolic score
data to sound synthesis, handles timing of note events, and al-
locates voices for polyphonic material, among other behaviors.
This is done through the ezScorePlayer object. Users create an
ezScorePlayer and assign an ezScore to be played back.

4.3.1 Score Previewing. Users can immediately hear their score
played back without designing any sound synthesis chains by
using the .preview() function. This uses a built-in “default instru-
ment” that uses sine oscillators with an amplitude envelope. This
can be accomplished in just three lines of code:

1 ezScore score("[a4:c:e|q.]x2 a3:d:f|q");
2 ezScorePlayer player(score);
3 player.preview ();

The .preview() function allows users to instantly translate their
encoded score material into sound. This can be useful for debug-
ging their score entry or rapidly iterating on compositional ideas.

4.3.2 Creating an ezInstrument. To go beyond the default sound
design of .preview(), users can define “instruments” by extending
SMucK’s ezInstrument base class. Once defined, these instru-
ments are connected to the ezScorePlayer on a part-wise ba-
sis–each part within the score can be played back by a different
instrument. Each ezInstrument has a noteOn() and noteOff() func-
tion which receive ezNote data from the ezScorePlayer during
playback. In the base class, these functions are empty–they are
designed to be overridden by the user, who decides how to map
the ezNote parameters to their own signal processing chain. As
an example of a fully implemented ezInstrument, here is a simple
polyphonic instrument similar to the one used in .preview():

1 class ezPreviewInst extends ezInstrument
2 {
3 // Set up signal flow
4 20 => n_voices;
5 SinOsc oscs[n_voices];
6 for(int i; i < n_voices; i++)
7 {
8 oscs[i] => outlet;
9 }
10
11 // User -defined noteOn function
12 fun void noteOn(ezNote note , int voice)
13 {
14 // map note's pitch to oscillator 's frequency
15 Std.mtof(note.pitch ()) => oscs[voice].freq;
16
17 // map note's dynamics to oscillator 's gain
18 note.dynamics () => oscs[voice].gain;
19 }
20 // User -defined noteOff function
21 fun void noteOff(ezNote note , int voice)
22 {
23 // set the oscillator 's gain to zero
24 0 => oscs[voice].gain;
25 }
26 }

NIME ’25, June 24–27, 2025, Canberra, Australia Alex Han, Kiran Bhat, and Ge Wang

Users don’t need to call the noteOn and noteOff functions them-
selves–these functions are automatically called by the ezScore-
Player, which passes the current note information and routes
it to individual “voices” in the signal chain if the score is poly-
phonic. Once users define their ezInstruments, they connect them
to individual parts. Suppose the user loads in a MIDI file with
two parts, and has defined two ezInstruments called myInst and
myInst2. Here’s how they could link their custom instruments to
the score:

1 // Load in a MIDI file with two parts
2 ezScore score("bwv784.mid");
3
4 // Instantiate the two user -defined
5 // instruments , "myInst" and "myInst2"
6 myInst inst1;
7 myInst2 inst2;
8
9 // Create the score player
10 ezScorePlayer player(score);
11
12 // Set myInst to part 0, and myInst2 to part 1
13 player.setInstrument (0, inst1);
14 player.setInstrument (1, inst2);
15
16 // Start playback
17 player.play ();
18
19 // Advance time
20 while(player.isPlaying ())1:: second => now;

4.3.3 Playback Control. Once the ezScorePlayer is set up with
an ezScore and ezInstruments, its playback behavior can be con-
trolled dynamically. Users can change the playback rate, go to
different positions in the score, and loop sections, all in real-
time. Because SMucK scores are editable during runtime, this
is a natural setting for live-coding: users could loop playback,
make changes to the score contents, jump to different positions,
and swap instruments all on-the-fly. Additionally, dynamic rate
change is normally a challenge when dealing with concurrent
processes, but with SMucK’s playback system it is as easy as
setting the ezScorePlayer’s .rate(). In fact, since playback is han-
dled for each ezScorePlayer independently, it is possible to play
multiple scores concurrently with different tempi and control
each of these tempi in real-time. The implementation of SMucK’s
“virtual playhead” mechanism is discussed further in sections 5.1
and 6.1.

With SMucK, the act of creating a score, setting up the score
player, and playing back the score can be accomplished in a few
lines of code. The setting up of ezInstrument objects is the part
that requires more “work” on the programmer’s behalf. This is
intentional–SMucK’s focus is on providing the ability to represent
scores and handle their interaction with synthesis, not on the
synthesis itself. This gives creative freedom for users to decide
what kind of behavior they would like to happen as symbolic
score data is read through time.

In the most common use case, users might use incoming notes’
pitch and dynamics values to control frequency and gain of unit
generators. However, users could also map dynamics values to a
filter cutoff, or play a certain sound file if the note’s pitch is higher
than Ab5, or generate graphical elements when the pitch belongs
to a certain scale. Our hope is that building a framework full
of abstractions and conveniences actually enables and inspires
users to do more with the language, not less.

5 Implementation
SMucK is implemented entirely in ChucK, as opposed to C++
modules or “chugins” to the language. SMucK’s ezScore family
of data structures are custom ChucK classes and the SMucKish
input syntax parsing happens via operations on ChucK strings. It
would certainly have been possible to implement these features
in a lower-level language, but also not strictly necessary. SMucK’s
playback system, however, is more intimately ChucKian in its
treatment of time, and so building out this component within
ChucK itself was helpful. We will now briefly discuss some of
our methods with respect to the playback system.

5.1 Symbolic Time
At a high level, SMucK’s playback system utilizes a virtual play-
head, which moves across a score, to notify each instrument
what notes to play or release at any given moment in time. The
playhead does not move continuously in time, but takes small
discrete steps. We refer to the step size as a tatum, inspired by Jeff
Bilmes’ term which describes “the fastest pulse present in a piece
of music” [1]. The playhead’s position is updated repeatedly at
a constant period, which we refer to as a tick, but the step size
(i.e. tatum) itself depends on the playback rate. A faster playback
rate demands a longer tatum, and a slower playback rate requires
a shorter tatum. Even reverse playback is made possible with a
negative tatum value.

The difference between a tick and tatum is related to the con-
cept of logical time. ChucK distinguishes between logical time
and actual time: logical time is “the deterministic accounting of
time internal to an audio environment” (i.e. through counting
audio samples), while actual time corresponds to “the continu-
ous flow of time as we perceive it” (e.g. system clock or timer)
[23]. One of ChucK’s unique features is that it allows users to
control logical time via the now construct, in a deterministic and
sample-synchronous way. Logical time does not advance until
the user explicitly tells it to do so.

SMucK builds on top of this by adding what we call sym-
bolic time. Our playback system is concerned with progressing
through a symbolic score representation. As such, the virtual
playhead that indicates current position within that score lies on
a further level of abstraction from ChucK’s logical time. The tick
corresponds to an actual movement forward in ChucK’s logical
time, but the tatum corresponds to a movement in SMucK’s sym-
bolic time. This update to symbolic time is essentially a fractional
beat value, and can move backwards, as opposed to logical time.
The playback rate is represented by a float value that scales the
tatum length relative to the tick length, determining the mapping
between symbolic and logical time.

A simplified version of the internal update function in the
ezScorePlayer can be seen below:

1 // Update the tatum size
2 tick * rate => tatum;
3
4 // Advance symbolic time by one tatum
5 tatum +=> playhead;
6
7 // Advance logical time by one tick
8 tick => now;

The tick and tatum are both of type "dur", which is a ChucK
primitive type that represents a duration of logical time (e.g. 1
millisecond). The resolution of the tick is set to 1 ms by default,
but can be set directly by the user. This means that the resolution
of score playback could theoretically be sample-accurate at the

SMucK: Symbolic Music in ChucK NIME ’25, June 24–27, 2025, Canberra, Australia

audio sample rate (e.g. with a tick of 1 sample and playback rate
of 1.0), although in practice this could lead to performance issues.

On top of the virtual playheadmechanism, our implementation
of score playback includes a number of other components, such
as voice allocation for polyphony and interaction with external
devices and software via OSC [24] and MIDI [16]. However, these
are outside the scope of this paper so we will not detail them
here.

6 Use Cases
SMucK has a wide variety of use cases in the realm of live perfor-
mance, instrument design, interactive graphics, score following,
and more. At the time of writing, SMucK has not been officially
released publicly. This means that we cannot yet showcase a
large body of work created with SMucK. However, in this section
we briefly share a few of our own case studies that capture some
of what is possible with our system.

6.1 Dynamic Playback
In ChucK, it is straightforward to play musical notes at a fixed
tempo, since their durations are decided ahead of time. However,
it is surprisingly challenging to dynamically alter tempo during
playback, since it requires modifying the duration of the notes in
the midst of their synthesis. However, SMucK facilitates dynamic-
tempo playback of complex scores, opening rich new possibilities
for musical expression in ChucK.

As an example, let’s observe how we can use an external
controller, called a “GameTrak”, in conjunction with SMucK’s
playback system to create an expressive, dynamic-tempo perfor-
mance (see Figure 1). The GameTrak controller can be used to
translate physical gestures to a stream of numerical data, and is
frequently used in the Stanford Laptop Orchestra (SLOrk) [22].

1 // create score from a single -part MIDI file
2 ezScore score("my_midi_file.mid");
3
4 // create an instrument
5 class myInstrument extends ezInstrument
6 {
7 // design whatever instrument we want!
8 }
9 myInstrument inst => dac;
10
11 // begin playback of our score
12 ezScorePlayer player(score);
13 player.setInstrument ([inst]);
14 player.play ();
15 player.loop(True);
16
17
18
19 // use the GameTrak controller to control the playback
20 // rate in real time
21 while(true)
22 {
23 // retrieve the GameTrak position value
24 // (between -1.0 and 1.0)
25 get_gametrak_position () => float position;
26
27 // map the GameTrak position to the playback rate
28 player.rate(position * 5);
29
30 // wait 10 ms before the next GameTrak measurement
31 10::ms => now;
32 }

This example might raise the question: why not just play
a sound file and adjust the playback rate in real time? With
audio files, we can control playback rate, but have little control
over individual notes and their synthesis process. Conversely, in
native ChucK we can algorithmically modify our notes and sound

Figure 1: A student uses a GameTrak controller to dynami-
cally control playback rate

synthesis process, but dynamic tempo playback is challenging.
But with SMucK, we have control over playback rate, note-level
parameters, and synthesis all at once.

6.2 Note-aware Instrument Design
The ezInstrument framework makes it possible to map note pa-
rameters to a wide variety of other behaviors. This can lead to
potentially unconventional and artistically interesting interac-
tions between symbolic data and synthesis. Here are a couple of
examples.

If we want an instrument that increases vibrato with note
duration, we can design an ezInstrument with the following
noteOn function:

1 Bowed bow => outlet;
2 ...
3 fun void noteOn(ezNote note , int voice)
4 {
5 // longer notes -> increased vibrato
6 (note.beats / 16) => bowed.vibratoGain;
7
8 // design rest of noteOn () function as normal
9 }

If we want an instrument that plays a score “upside down”
(lowest pitches become the highest, and vice versa), we can design
an ezInstrument with the following noteOn function:

1 SinOsc osc => outlet;
2 ...
3 fun void noteOn(ezNote note , int voice)
4 {
5 // low notes become high , and vice versa
6 Std.mtof (127 - note.pitch) => osc.freq;
7
8 // design rest of noteOn () function as normal
9 }

There are endless possibilities for designing your instruments,
and using the symbolic music data in creative ways. The com-
bination of SMucK’s instrument design and dynamic playback
capabilities presents users with an exciting new sandbox to build
expressive performances.

6.3 Graphical and Interactive Scores
Another powerful use case of SMucK is the ability to tie graphics
and interaction to a score’s symbolic data and playback. As a case
study, let’s examine a 3D platforming game named The Trebled C,
written using ChucK’s new audiovisual programming framework
ChuGL [25].

NIME ’25, June 24–27, 2025, Canberra, Australia Alex Han, Kiran Bhat, and Ge Wang

Figure 2: Screenshot from The Trebled C

In The Trebled C, the player must run away from a flying pirate
ship by jumping across a series of platforms. The backing music
and platform placement are linked to an ezScore, whose playback
is responsive to the player’s movement – as a player moves
forward, the music begins and platforms are placed in front of
their feet. Additionally, the position and scale of these platforms
is linked to the score, such that the platforms are organized in
the form of a piano roll from a bird’s eye view. (See Figure 2)
Here’s how we drive graphics in The Trebled C with SMucK:

1 class platformInstrument extends ezInstrument
2 {
3 // set up sound chain
4 ...
5 fun void noteOn(ezNote note , int voice)
6 {
7 // compute platform position
8 // using note.pitch() and note.onset()
9
10 // compute platform size using note.beats()
11
12 // set platform 3D position and size
13
14 // play note!
15 }
16 }
17
18 ezScore score("level_one.mid");
19 ezScorePlayer score_player(score);
20 platformInstrument inst => dac;
21 score_player.setInstrument ([inst]);
22 score_player.play ();
23
24 while (true)
25 {
26 // use player 's in-game velocity to control the
27 // score playback rate
28 avatar.velocity () => score_player.rate ();
29
30 // advance graphics/audio frame
31 GG.nextFrame () => now;
32 }

The playback of the score is tied to the player’s movement,
and the placement of the platforms occurs as a result of playback.
Each call to noteOn() during playback spawns a new platform,
which is offset to the left or right based on the note’s pitch. This
project exemplifies the ways SMucK’s score representation and
playback can be used beyond the sound domain, and drive au-
diovisual interactive systems.

7 Reflections and Future Work
“If HumanComputer Interaction (HCI) research strives
to give people greater and better access to using the
computer, then perhaps computer music language
design aims to give programmers more natural rep-
resentation of audio and musical concepts.”

The above sentiment comes from a 2005 paper from the cre-
ators of ChucK [3] outlining the philosophies underlying the
language’s design. It perfectly captures the ethos of SMucK–at
its heart, our project is about providing natural representation of
musical concepts. SMucK is neither the first nor the most com-
prehensive system for representing musical information sym-
bolically. However, we would argue that it certainly provides
an accessible, versatile, extensible, and indeed natural workflow
within ChucK’s programming environment.

SMucK is fundamentally about bridging different kinds of
workflows used in computer music. It draws inspiration from
graphic notation systems, symbolic score entry languages, digital
audio workstations, and interactive live-coding environments.
Each of these offers unique strengths and weaknesses. The over-
arching goal of SMucK is to draw upon the affordances of all
of these systems: it borrows the compactness and readability
of notation-focused languages, the hierarchical organization of
score information found in graphic score editors and DAWs, and
the customizability and dynamic computing of live-coding frame-
works. ChucK, with its strongly-timed concurrent programming
model, provides the perfect home for SMucK to bring these work-
flows together.

Our project is still in its infancy. It has not been widely tested
and used by musicians and coders, and its features are still ac-
tively being improved upon and added to. In the future, we plan
to introduce our tools in computer music courses at Stanford
University’s Center for Computer Research in Music and Acous-
tics (CCRMA). We also plan to document works created using
our system and collect feedback about students’ experience with
SMucK, both from a technical and artistic standpoint. We hope
that, as people start to use our tools, we will gather additional
insight on what SMucK should become and how it can best serve
the computer music community.

There are many features we plan to implement in the future.
On the representation front, we are working on allowing ezNote
objects to carry more kinds of information, including MIDI-CC-
like messages, additional articulation and expression markings,
text annotations, and user-defined data structures. We are also
considering including ABC and Lilypond as usable input syntaxes
alongside SMucKish.

We also plan to add more functionality supporting live coding
and algorithmic composition, including abstractions for manipu-
lating score contents programmatically (e.g. shuffling contents,
arpeggiating chords, and systems for generating SMucKish to-
kens). We are exploring ways to expand on our playback system
to allow users to create “branching scores” that follow non-linear
trajectories. We imagine a score with “transition points” with
multiple potential musical pathways, where the transition condi-
tions can be defined by the user.

In recent years, ChucK development has become increasingly
active [19]; ChucK now features an extensive audiovisual pro-
gramming framework in ChuGL [25], web integration with We-
bChucK [11], and interactive AI tools with ChAI [8]. These kinds
of developments bolster each other and invite research and art-
making that links multiple methodologies and media. SMucK

SMucK: Symbolic Music in ChucK NIME ’25, June 24–27, 2025, Canberra, Australia

contributes to this ecosystem by providing new capabilities in it-
self, but also in its potential integration with these new offerings.

We are excited to see what the future holds for SMucK. Our
hope is that SMucK will continue to grow and mature into a
powerful, versatile system that inspires new forms of expression.
We believe that the affordances and constraints of a system inti-
mately shape the creative process, and that by expanding what
ChucK can do, we might diversify and enrich the art that people
create with it.

8 Acknowledgements
We would like to thank the ChucK development team for their
feedback, support, and company throughout the SMucK design
process. We also thank Celeste Betancur and the students of Mu-
sic 220B for their willingness to be the first users of our system.
Additionally, we would like to thank Craig Sapp and Eleanor
Selfridge-Field whose mentorship and expertise in symbolic mu-
sic information inspired many of the ideas we used here.

9 Ethical Standards
SMucK has been developed with the support of CCRMA’s de-
partmental funding, curricular student research, and volunteer
contributions. The authors are aware of no potential conflicts of
interest.

References
[1] Jeff A Bilmes. 1993. Techniques to foster drum machine expressivity. Citeseer.
[2] World Wide Web Consortium et al. 2000. Extensible Markup Language (XML)

1.0 (Sec–ond Edition).
[3] GeWang Perry R Cook and Ananya Misra. 2005. Designing and implementing

the chuck programming language. In Proceedings of the 2005 International
Computer Music Conference.

[4] RB Dannenberg. 1998. The CMU MIDI Toolkit. Manual. Center for Art and
Technology, College of Fine Arts, CMU (Aug. 1986) (1998).

[5] Roger B Dannenberg. 1997. Machine tongues XIX: Nyquist, a language for
composition and sound synthesis. Computer Music Journal 21, 3 (1997), 50–60.

[6] Michael Good. 2001. MusicXML for Notation and Analysis. W. B. Hewlett and
E. Selfridge-Field.

[7] Holger H Hoos, Keith Hamel, Kai Renz, and Jürgen Kilian. 1998. The GUIDO
notation format: A novel approach for adequately representing score-level
music. In ICMC, Vol. 98. 451–454.

[8] Yikai Li and Ge Wang. 2024. Chai: Interactive ai tools in chuck. In New
Interfaces for Musical Expression.

[9] Max V Mathews, Joan E Miller, F Richard Moore, John R Pierce, and Jean-
Claude Risset. 1969. The technology of computer music. the MIT Press.

[10] James McCartney. 2002. Rethinking the computer music language: Super
collider. Computer Music Journal 26, 4 (2002), 61–68.

[11] Michael R Mulshine, Ge Wang, Jack Atherton, Chris Chafe, Terry Feng, and
Celeste Betancur. 2023. Webchuck: Computer music programming on the
web. In New Interfaces for Musical Expression.

[12] Han-Wen Nienhuys-Jan Nieuwenhuizen and H Nienhuys. 2003. Lilypond, a
system for automated music engraving. In Proceedings of the XIV Colloquium
on Musical Informatics (konferenciaanyag).

[13] Yann Orlarey, Dominique Fober, and Stéphane Letz. 2009. Faust: an efficient
functional approach to dsp programming. New computational paradigms for
computer music (2009), 65–96.

[14] Miller Puckette. 1991. Combining event and signal processing in the MAX
graphical programming environment. Computer music journal 15, 3 (1991),
68–77.

[15] Miller S Puckette et al. 1997. Pure data. In ICMC.
[16] Joseph Rothstein. 1995.MIDI: A comprehensive introduction. Vol. 7. AR Editions,

Inc.
[17] Bill Schottstaedt. 1994. Machine tongues XVII: CLM: Music V meets common

lisp. Computer Music Journal 18, 2 (1994), 30–37.
[18] Leland Smith. 1972. Score-a musician’s approach to computer music. Journal

of the Audio Engineering Society 20, 1 (1972), 7–14.
[19] Marise van Zyl and Ge Wang. 2024. What’s up ChucK? Development Update

2024. In Proceedings of the International Conference on New Interfaces forMusical
Expression. 549–552.

[20] Barry Vercoe et al. 1986. Csound. The CSound Manual Version 3 (1986).
[21] Chris Walshaw. 2021. The abc music standard 2.1 (dec 2011).
[22] Ge Wang, Nicholas J Bryan, Jieun Oh, and Robert Hamilton. 2009. Stanford

laptop orchestra (slork). In ICMC.

[23] Ge Wang, Perry R Cook, and Spencer Salazar. 2015. Chuck: A strongly timed
computer music language. Computer Music Journal 39, 4 (2015), 10–29.

[24] Matthew Wright. 2005. Open Sound Control: an enabling technology for
musical networking. Organised Sound 10, 3 (2005), 193–200.

[25] Andrew Zhu and Ge Wang. 2024. ChuGL: Unified Audiovisual Programming
in ChucK. In Proceedings of the International Conference on New Interfaces for
Musical Expression. 351–358.

	Abstract
	1 Introducing SMucK
	2 Related Work
	3 The SMucK Approach
	4 Workflow
	4.1 The ezScore Class Family
	4.2 SMucKish Input Syntax
	4.3 Playback

	5 Implementation
	5.1 Symbolic Time

	6 Use Cases
	6.1 Dynamic Playback
	6.2 Note-aware Instrument Design
	6.3 Graphical and Interactive Scores

	7 Reflections and Future Work
	8 Acknowledgements
	9 Ethical Standards
	References

