
Synthesizing Music with Logic Gate Networks
Ian Clester
ijc@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Figure 1: Visualization of a logic gate network generating audio samples

Abstract
Small digital circuits consisting of basic logic gates (AND, XOR,
etc.) are capable of generating surprisingly complex musical out-
put. In this paper, I present physical and web-based interfaces
for exploring the space of audio-generating logic gate networks
and ‘bending’ such networks via touch (or mouse) gestures to
interfere with their operation and change their output while they
are running. This work follows in the vein of bytebeat practices,
in which music is generated by short code snippets at the level of
individual audio samples, but takes things further by relying on
an even lower-level form of computation. In addition to present-
ing the system, I offer some preliminary analysis of why these
logic gate networks tend to produce musical output.

Keywords
computermusic, logic gate synthesis, bytebeat, live coding, circuit
bending

1 Introduction
Complex output can emerge from simple mechanisms. Here, I
explore the musical potential of small logic gate networks that
generate audio samples as a function of time. Despite the small
size and low level of abstraction of these networks, which gen-
erate audio samples directly from basic digital building blocks,
they are capable of generating surprisingly rich musical output,
simultaneously determining all levels of musical organization
from timbre up to form.

Of course, a sufficiently large logic gate network could encode
any possible mapping between input time and output sample.
(Any function over a finite set of inputs can be expressed as a truth
table, and any truth table can be implemented by combinational

This work is licensed under a Creative Commons Attribution 4.0 International
License.
NIME ’25, June 24–27, 2025, Canberra, Australia
© 2025 Copyright held by the owner/author(s).

logic.) However, I find that rather small networks (e.g. 100-200
gates) can produce surprisingly rich musical output. Examples of
some small logic gate networks and their audio output are avail-
able in the supplementary materials (see a_few_networks.mp4).

In this paper, I present glitchgate,1 an application for explor-
ing the space of such networks and manipulating them through
live interaction. I describe the design and implementation of
glitchgate, which includes interfaces for running in the browser
(via WebAssembly and Audio Worklets), including on mobile de-
vices with touchscreens, and on the Bela platform in combination
with a Trill Square. Additionally, I consider why these networks
tend to produce musical output.

2 Related Work
A primary inspiration for this work is bytebeat. bytebeat is a
musical practice which involves writing short code expressions
(typically in C) that describe audio as a function of time, gen-
erating sound directly, sample-by-sample [8]. For example, the
expression ((t>>10)&42)*t generates audio which is distinctly
melodic.

The bytebeat approach is rather unusual compared to the
conventional computer music approach, which tends to feature
a rigid separation of different layers (control vs. synthesis, score
vs. orchestra). Bytebeat expressions, in contrast, simultaneously
determine everything — timbre, rhythm, melody, structure —
from the level of individual audio samples on up. This unity also
characterizes the logic gate networks described in this work, with
the difference that the networks operate at an even lower level of
abstraction, as they are built on individual logic gates operating
on individual bits rather than C’s bitwise & arithmetic operators
operating on 32-bit integers.

The aesthetic of these networks and this application relates
to that of glitch [5]. Aside from the raw, low-fidelity, aliased
digital sounds produced by these networks, the primary mode
of interaction (described in §3) is based on interfering with an

1The source code for glitchgate is available at https://github.com/ijc8/glitchgate,
and the web version is live at https://ijc8.me/glitchgate.

https://orcid.org/0009-0006-2383-4739
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/ijc8/glitchgate
https://ijc8.me/glitchgate

NIME ’25, June 24–27, 2025, Canberra, Australia Ian Clester

existing network, injecting points of failure to make it ‘glitch’ in
different ways.

This work also relates to compression-oriented artistic prac-
tices, such as the aforementioned bytebeat, the demoscene [4]
(which tends to focus on generating interesting audiovisual out-
put with as little code as possible), sctweets [10] (SuperCollider
compositions that fit in 140 characters or less), and ScoreCard
(generative music programs that fit in a QR code) [6]. In this
vein, I note aesthetic kinship to artworks such as Protoroom’s
“SmallBig_SØ”,2 which is centered on the ‘big’ space of possibili-
ties offered by ‘small’ formulas (code expressions), and Tristan
Perich’s 1-Bit Symphony, which fits a 40-minute, five-movement
symphony written in assembly language on a single micropro-
cessor with just 8KB of RAM [11].

I also draw inspiration from works which make musical com-
putation visible. Dave Griffith’s Betablocker exposes the opera-
tions of an 8-bit musical machine to the audience as it executes
[2]. Orca is a 2D programming language for music whose exe-
cution unfolds visibly over time [9]. Similarly, pieces featuring
artificial life, such as Jack Armitage’s work with Tölvera [1], tend
to foreground the simulation itself. glitchgate likewise uses
visuals to expose the operation of the network and suggest sites
for interaction.

glitchgate allows for intervening in the network while it is
executing. Thus, it relates to other practices involving the live
manipulation of sonic machinery, such as circuit bending [7],
live patching, and live coding. It also bears some resemblance
to interactive machine learning techniques, especially those fo-
cused on exploring latent spaces within (neural) networks [3].
glitchgate bears some similarity to these in its interface, with
the distinction that it supports exploring the space of nearby
(logic gate) networks, rather than the latent space encoded by a
larger (neural) network.

3 Design
glitchgate is an application for creating and executing audio-
generating logic gate networks. Such networks consist of an input
layer, several layers of logic gates,3 and an output layer. The input
layer consists of several bits encoding the time of the current
audio sample, which is fed to the subsequent layer as a binary
integer. Each of the middle layers consists of logic gates whose
operands are outputs from the preceding layer. The output layer
consists of several bits (from the last layer of gates) encoding the
output sample as an unsigned integer. Note that the number of
bits in the input layer determines the periodicity of the entire
network, while the number of bits in the output layer determines
the bit depth of the audio.

During execution, the current sample time is fed into the
network to compute the corresponding audio sample. The sample
time is incremented and the process repeats. Note that the sample
time overflows to zero once every 2𝑛 samples, where 𝑛 is the
number of bits in the input layer. Following conventions from
bytebeat, the sampling rate is 8kHz, so the whole network is
evaluated 8000 times a second.

The glitchgate interface displays the gates in each layer and
the connections between them. The connections are hidden in
some modes to make the interface more compact for ease of

2https://protoroom.kr/works/smallbig/
3There are 16 supported logic gates, corresponding to the 222 = 16 possible truth
tables of two inputs. Note that this set includes gates which take one input (NOT
and the identity function), ‘gates’ which take no inputs (constant 0 and 1), and gates
which are merely operand-flipped versions of others.

interaction. The interface also features real-time visualization of
network operation, in which each gate is colored according to
its average output during the previous block of audio samples.

The user can interact with the network in a fewways, spanning
a range of granularity. On the fine-grained end, the network
can be modified directly by editing a textual description of the
network. This enables the user to modify individual gates or
their operands, although in practice it is primarily useful as a
way to save/load entire networks that sound interesting. On
the coarse-grained end, the user can generate an entirely new
network with the “Randomize” button, which preserves the shape
of the network (the number and sizes of layers) but randomizes
all the gates within the layers and the connections between them.
“Randomize” is useful for quickly exploring the space of networks
to find something interesting.

In between these extremes, the user can interact with the
network while it is running by painting over it, masking gates
by temporarily replacing them with 0s. Masking a gate nullifies
its output, affecting all gates in subsequent layers that depend
on it. Conceptually, this is akin to shorting input pins to GND in
a digital circuit, unplugging cables in a modular synthesis patch,
or ablating neurons in a neural network. In all cases, signal is
replaced with silence.

This network-painting interaction is the primary method of
manipulation: beginning with a network that sounds interesting,
one can then perform live ‘network surgery’, exploring the work-
ings of the network via temporary ablations. The network can
be restored to its original state at any point. As I discuss in §5.2,
glitchgate’s visualization features can help guide the player in
identifying interesting sites for intervention.

4 Implementation
glitchgate comprises two interfaces: one for the web and one
for Bela. Both are built on the same small C core which runs the
logic gate network. The C core serves as a network interpreter,
iterating through the layers and dispatching the appropriate
operation for each gate. I opted to interpret networks rather than
compile them (by e.g. generating and compiling C specifically
for the current network, with fixed logic operations) for the sake
of responsiveness, particularly when painting over the network.

Both the web and Bela versions use this core to execute the
network. For the web version, the core is compiled to WebAssem-
bly and called from an audio worklet. In the Bela version, it is
simply compiled along with the C++ as a part of the Bela project.
Both versions support running the network, playing its output,
randomizing the network, and painting over the network to mask
the output of gates. In the web version, painting can be accom-
plished with mouse or touch screen, and on the Bela it can be
done with the Trill Square.

Only the web version supports directly editing the network or
visualizing its execution. However, the Bela version can be used
in conjunction with the web version via WebSockets, in which
case the Bela is used for control and synthesis, while the web
interface is used for visualization.

5 Discussion
5.1 Musical Biases of Logic Gate Networks
I stumbled upon the musical potentials of small logic gate net-
works rather by accident in the course of a project focused on
training difflogic [12] networks for musical applications. I soon

https://protoroom.kr/works/smallbig/

Synthesizing Music with Logic Gate Networks NIME ’25, June 24–27, 2025, Canberra, Australia

Figure 2: Intervening in a playing network on a Bela (with
visualization projected from the web interface)

noticed that, even without any training, random logic gate net-
works often sounded interesting, at least relative to their own
apparent complexity. This observation prompted me to build
glitchgate for exploring and manipulating logic gate networks,
but it leaves open the question of why logic gate networks often
sound musical. Thus, this section offers some preliminary anal-
ysis of the musical affordances of logic gates at the audio level
and beyond.

To begin, consider the properties of the input to the network.
By feeding in the sample time as the bits of an increasing integer,
we have a binary clock. Instead of viewing this clock as represent-
ing an increasing integer, we can view it as consisting of several
independent square waves of repeatedly doubling periodicity. For
example, the least significant bit of the sample time flips every
sample; that is, it is a square wave with a frequency of 4 kHz. The
next most significant bit in the sample counter only flips every
two samples; its period is twice as long as the previous bit and
so its frequency is halved (2000 kHz). This pattern continues for
each subsequent bit of the sample counter, so we are feeding in a
family of square waves to the network with periods related by
powers of two.

The gates inside the network then mix and combine these
square waves using logical operations, resulting in interference
patterns between different periodicities. Looking just at the input
bits, we can already see important musical biases. For the less
significant bits, which flip rapidly, the period-doubling relation
corresponds to an audible octave relationship. For themore signif-
icant bits, where the periods are longer and the frequencies lower,
the doubling instead corresponds to a subdivision relation, giving
rise to rhythm, meter, and form. For example, the fourteenth bit
will flip roughly every two seconds (214

8000𝐻𝑧
= 2.048𝑠) whereas

the thirteenth bit will flip every second (213
8000𝐻𝑧

= 1.024𝑠). In
other words, logic gate networks have a bias towards duple sub-
divisions and meters.

The rest of the network consists of logic gates applied to these
inputs, with the result that every gate’s output is some combina-
tion of these power-of-two periodicities—an interference pattern
of square waves. The entire network is biased towards subdivi-
sions of powers of two. Because the network generates audio
at the sample level, simultaneously determining every level of
musical hierarchy (from timbre to form), this effect is pervasive.
The tendency towards octave relationships at the timbral level
is identical to the tendency towards duple subdivisions at the
rhythmic level.

Figure 3: Example of an AND gate combining inputs of dif-
ferent periodicities, producing an output that spans multi-
ple levels of musical perception.

𝐴 𝐵 𝐴 ⊙ 𝐵

0 0 1
0 1 0
1 0 0
1 1 1

𝐴 𝐵 𝐴 · 𝐵
−1 −1 +1
−1 +1 −1
+1 −1 −1
+1 +1 +1

Table 1: Equivalence of XNOR (left) and multiplication
(right) for binary signals: at audio rate, XNOR performs
ring modulation.

After the input, which introduces power-of-two periodicities
into the network, the logic gates determine how those periodici-
ties combine and interfere. As with the inputs, we can consider
the effect of the gates at different levels of perception. For exam-
ple, we can see the effect of AND at the rhythmic level as a gate
(in the conventional audio-processing sense): if the first operand
is high, the other signal is allowed through; if the first operand
is low, the second signal is blocked. Thus if the first operand is
slow-changing and the second is fast-changing (e.g. a perceptible
tone), the AND gate, acting as a signal gate, serves to impose
of a rhythm on the tone, or (equivalently) fill the substanceless
form with the tone, either way combining the rhythm of the first
signal with the timbre of the second as shown in Fig. 3. If both
signals are fast-changing, AND effectively performs amplitude
modulation.

As another example, consider the XNOR gate (the inverse of
XOR). When both inputs are the same, the output is high; when
they differ, the output is low. As depicted in Table 1, this has
exactly the same effect as simple multiplication of audio signals,
if those signals are restricted to being high (+1) or low (-1). Thus
we have a clear analogy for XNOR at the audio level: it acts as
a frequency mixer. In signal processing terms, XNOR performs
ring modulation.

Furthermore, we can view XOR as performing phase modu-
lation. Logically, XOR can be viewed as a controlled NOT gate:
when the first signal is low, the second signal passes through
unchanged. When the first signal is high, the second signal is
inverted. At audio rate, inversion is a phase change (180°), so one
signal modulates the phase of the other. This observation, along
with the connection to XNOR, suggests that when we restrict our-
selves to binary signals, ring modulation and phase modulation
converge.

NIME ’25, June 24–27, 2025, Canberra, Australia Ian Clester

5.2 Playing the Network
As mentioned in §3, I implemented visual feedback to watch
the network operate. This visualization immediately suggested
some intuition for why small logic gate networks, featuring sim-
ple positional binary encoding, might tend to sound musical,
as described in the previous section. For the same reasons, this
visualization has proven useful for manipulating the network.

glitchgate’s network visualization allows the player to see
the output of each gate as the network runs. Because the audio
rate is much faster than the display refresh rate, this visual output
is averaged over the last block of audio (128 samples). Thus,
rapidly-changing outputs appear in shades of gray, while slower
outputs visibly blink as their outputs change across blocks. In
this way, the visualization gives the player a sense of which
perceptual levels gates have an effect on: a solid gray gate has
an impact at the level of timbre, while a gate that slowly blinks
black and white has an impact at the level of form. This gate-level
visual feedback gives the player some idea of what timescale(s)
(and thus musical elements) will be affected by intervention at a
given node in the network.

With this information, the player can then intervene in the net-
work via pointing and touching interactions. In the web browser,
the player can use the mouse or a touchscreen to directly choose
gates to mask. On the Bela, the gates are stretched and packed
to fit into a square, which is mapped onto the surface of the
Trill Square. The web version also supports this square layout,
which is especially useful when used in conjunction with the Bela
as in Fig. 2 (see also bela_and_web.mp4 in the supplementary
materials).

Overall, the spatial layout of the network is somewhat arbi-
trary; the same network could be laid out many different ways.
The x-axis corresponds to depth within the network, as consecu-
tive layers are laid out horizontally. However, the y-axis has no
intrinsic meaning. In an effort to make the spatial relationship
between gates correspond a bit more closely to the functional
relationship, the gates are vertically sorted in each layer by their
input operands, with the rough goal of putting gates near the
gates they are fed by or feed into in preceding/succeeding layers.
However, this scheme could likely be improved upon.

glitchgate aims to make interventions in the network feel
quick and cheap. In the technical implementation, this aim is
why the network is interpreted rather than recompiled every
time it changes. In the interface design, this aim is why the
application supports touching and dragging gestures to paint
over the network in quick strokes. These interventions are meant
to be ephemeral, so they disappear when the touch is released.

6 Future Work
In this paper, I have described the musical possibilities afforded
by small audio-generating logic gate networks, and presented an
application for playing with them.

I envision several possible improvements to glitchgate itself.
For example, it may be useful to have tools for exporting logic
gate networks to other formats, such as small generative music
programs (suitable for use in ScoreCard), hardware descriptions
in Verilog (suitable for implementation on FPGAs or ASICs), or
patches for languages such as Max/MSP and Pure Data. I would
also like to give the user more precision tools for working with
the network: for example, allowing the user to inspect the output
of individual nodes aurally or visually (as in a logic analyzer),
and to more easily build up logic gate networks from scratch.

As it is, the application is strongly oriented towards discovering
musical networks, and it remains to be seen how feasible it is to
compose such networks intentionally.

Another avenue to explore is enriching the space of logic gate
networks. Currently, the networks supported by glitchgate
are exclusively feedforward. Allowing for feedback would open
up the possibility of memory (as in digital flip-flops or latches)
and thus sequential logic, significantly expanding the space of
possible networks and the complexity of their output.

Looking beyond glitchgate, future research might focus on
generating logic gate networks to approximate specific sounds or
existing pieces of music—in effect using logic gate networks as
a highly-compressed (lossy) audio codec. (Such networks could
then be manipulated in the ways described here.) It would also be
valuable to conduct a more rigorous analysis of the spectral and
perceptual possibilities of logic-gate audio synthesis, as I have
only begun to scratch the surface in the discussion here.

More broadly, I hope that the work I have described here con-
tributes to and inspires future work in frugal, unconventional,
and ‘low-tech’ approaches to audio synthesis and music technol-
ogy, as a countercurrent to trends towards ever ‘smarter’, costlier,
and more complex models.

7 Ethical Standards
This research was supported in part by Google (as part of the
2024 Google Summer of Code), BeagleBoard.org, and Bela. One
aim of this research is to find rich musical spaces and interfaces
using fewer computing resources.

Acknowledgments
Thanks to Jack Armitage and Chris Kiefer for their mentorship
on the Google Summer of Code project from which this work
emerged.

References
[1] Jack Armitage, Victor Shepardson, and Thor Magnusson. 2024. Tölvera:

Composing With Basal Agencies. 282–291. https://doi.org/10.5281/zenodo.
13904854 ISSN: 2220-4806.

[2] Till Bovermann and Dave Griffiths. 2014. Computation as Material in Live
Coding. Computer Music Journal 38, 1 (March 2014), 40–53. https://doi.org/
10.1162/COMJ_a_00228 Conference Name: Computer Music Journal.

[3] Nick Bryan-Kinns, Berker Banar, Corey Ford, Courtney N. Reed, Yixiao Zhang,
Simon Colton, and Jack Armitage. 2021. Exploring XAI for the Arts: Explaining
Latent Space in Generative Music. https://openreview.net/forum?id=GLhY_
0xMLZr

[4] Anders Carlsson. 2009. The Forgotten Pioneers of Creative Hacking and
Social Networking – Introducing the Demoscene. In Proceedings of the Third
International Conference on the Histories of Media Art, Science and Technology
(Re:live Media Art Histories).

[5] Kim Cascone. 2000. The Aesthetics of Failure: "Post-Digital" Tendencies in
Contemporary Computer Music. Computer Music Journal 24, 4 (2000), 12–18.
https://www.jstor.org/stable/3681551 Publisher: The MIT Press.

[6] Ian Clester and Jason Freeman. 2024. ScoreCard: Generative music programs
as QR codes. In Proceedings of the International Web Audio Conference.

[7] Qubais Reed Ghazala. 2004. The Folk Music of Chance Electronics: Circuit-
Bending the Modern Coconut. Leonardo Music Journal 14 (Dec. 2004), 97–104.
https://doi.org/10.1162/0961121043067271

[8] Ville-Matias Heikkilä. 2011. Discovering novel computer music techniques by
exploring the space of short computer programs. https://doi.org/10.48550/
arXiv.1112.1368 arXiv:1112.1368 [cs].

[9] Hundredrabbits. [n. d.]. 100R — orca. https://100r.co/site/orca.html
[10] Felipe M. Martins and José Henrique Padovani. 2023. Be Brief: Convergences

and Possibilities of Live-Coding and sctweeting. In Proceedings of the 7th
International Conference on Live Coding (ICLC2023). Utrecht, Netherlands.
https://zenodo.org/records/7843864

[11] Tristan Perich. 2007. 1-Bit music. In Proceedings of the 7th international con-
ference on New Interfaces for Musical Expression (NIME ’07). Association for
Computing Machinery, New York, NY, USA, 476. https://doi.org/10.1145/
1279740.1279897

[12] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. 2022.
Deep Differentiable Logic Gate Networks. In Proceedings of the 36th Conference

https://doi.org/10.5281/zenodo.13904854
https://doi.org/10.5281/zenodo.13904854
https://doi.org/10.1162/COMJ_a_00228
https://doi.org/10.1162/COMJ_a_00228
https://openreview.net/forum?id=GLhY_0xMLZr
https://openreview.net/forum?id=GLhY_0xMLZr
https://www.jstor.org/stable/3681551
https://doi.org/10.1162/0961121043067271
https://doi.org/10.48550/arXiv.1112.1368
https://doi.org/10.48550/arXiv.1112.1368
https://100r.co/site/orca.html
https://zenodo.org/records/7843864
https://doi.org/10.1145/1279740.1279897
https://doi.org/10.1145/1279740.1279897

Synthesizing Music with Logic Gate Networks NIME ’25, June 24–27, 2025, Canberra, Australia

on Neural Information Processing Systems. arXiv. https://doi.org/10.48550/ arXiv.2210.08277 arXiv:2210.08277 [cs].

https://doi.org/10.48550/arXiv.2210.08277
https://doi.org/10.48550/arXiv.2210.08277

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	4 Implementation
	5 Discussion
	5.1 Musical Biases of Logic Gate Networks
	5.2 Playing the Network

	6 Future Work
	7 Ethical Standards
	Acknowledgments
	References

