
ChuMP and the Zen of Package Management
Nicholas Shaheed

nshaheed@ccrma.stanford.edu
CCRMA, Stanford University
Stanford, California, USA

Ge Wang
nshaheed@ccrma.stanford.edu
CCRMA, Stanford University
Stanford, California, USA

I can confirm that I’m not unreasonably excited about
package management.

—Author 1

Can we even write a paper about a package manager?
—Author 2

Abstract
ChuMP stands for “ChucK Manager of Packages”, designed to
automate the process of installing, upgrading, and removing
software components for the ChucK programming ecosystem.
ChuMP manages libraries, tools, audio and graphics plugins in
a centralized, structured, and versioned manner. This project
originated out of the recent ChucK development “renaissance”
alongside a growing user community, now entering its third
decade. The time for package management, as the ChucK slogan
goes, is now.

What began as a practical project has expanded into broader
reflections on tool-building, service, and community. As we la-
bored on what seemed like a “no-brainer” tool that everyone
wanted but that no one wanted to build, questions arose: “how
did we get here?”, “what is the role of service-based tool-building
in our field–andwhat, if any, is its research value?”—in short, “can
we even write a paper about a package manager?” Meanwhile,
we couldn’t help but notice that the act of creating a package
manager seems to unify not only disparate software fragments,
but also something of community. In other words, there may be
more than meets the eye. This paper chronicles the making of
a package manager and all that goes along with it. This is the
story of ChuMP.

Keywords
Package manager, philosophy, craft, community, thankless work,
"is this research?"

1 Introduction
Package manager: a collection of software tools that
automates the process of installing, upgrading, configuring,
and removing computer programs for a computer in a
consistent manner.

—from Wikipedia, the free encyclopedia

1.1 What is ChuMP?
ChuMP is a package manager for the ChucK music programming
language. It is a tool that queries and installs and upgrades plugins
and libraries from a centralized package repository for ChucK
and its growing ecosystem of community-supported tools.

This work is licensed under a Creative Commons Attribution 4.0 International
License.
NIME ’25, June 24–27, 2025, Canberra, Australia
© 2025 Copyright held by the owner/author(s).

Since its inception more than two decades ago, ChucK—a
strongly-timed computer music language[16]—has been used
for sound design, instrument building, audiovisual design, games,
laptop orchestras, live coding, composition, performance, as well
as many educational contexts. Somewhat worryingly, ChucK has
even found application in healthcare[13].

While ChucK is in use within and beyond different academic
institutions, the amount of cross-pollination has tended to be
minimal: tools created by users historically have remained de-
centralized and confined to their respective silos. As the ChucK
ecosystem and community have experienced renewed growth
in recent years[14], the need for the discovery, sharing, and dis-
tribution of commonly-used tools has increased drastically. A
package manager seemed to be the logical answer to address this
need.

While everyone seemed to want a package manager, nobody
seemed particularly excited to build one. Through an unlikely
sequence of events, the authors willed a package manager into
existence. Moreover, what began as a project of pure practicality
has inadvertently ballooned into a meditation on tool-building,
service, community, and even the nature of academic research.
The sheer mind-numbing dryness of designing and implementing
a package manager has compelled the authors to ponder its very
philosophy. Is this even research? (Or can it at least appear to be
research?!) The ecosystems of peer computer music languages
already have package managers,123 and yet there are no research
papers in the computer music literature regarding these tools.
What is the academic value of making something that serves
an obvious need, but may not be readily publishable?4 Can a
package manager create new contexts and enhance community?
Should we have, like, not written this paper?

In order to unpack these and others questions, we will need
to start at the beginning.

2 Origins of a ChuMP
(Section 2 is written as a personal account of Author 1.)

2.1 Original Sin; or, Temptations of Package
Management

Back in spring of ‘22, after taking two or three computer music
composition courses at Stanford University that were taught
in ChucK, I began to get involved in ChucK development at

1https://docs.cycling74.com/userguide/package_manager/
2https://github.com/pure-data/deken
3https://doc.sccode.org/Guides/UsingQuarks.html
4a thought experiment: is academic publication a form of package management?

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://docs.cycling74.com/userguide/package_manager/
https://github.com/pure-data/deken
https://doc.sccode.org/Guides/UsingQuarks.html

NIME ’25, June 24–27, 2025, Canberra, Australia Nicholas Shaheed and Ge Wang

CCRMA. At the time, it was a small coalition of two or three
people making infrequent updates to the core language. I came
into the project with software engineering experience, a healthy
interest in programming languages, and as a composer who has
worked enough with the language to compile a mental list of
features I wanted as part of my own compositional work and
that I thought could make the language better in general.

“Why is it so hard to reuse code?”, I found myself wondering
on many occasions. Beyond the limited examples included in the
distribution, it was difficult to find existing code, even as I had the
vague sense that ChucK is being used in many places. The code
was out there, but also out of reach. When I did happen to find
code that looked useful, a familiar pattern emerged: I would copy
and paste it into my giant ChucK file that represented whatever
piece I was working on. Hundreds and sometimes thousands
of lines were scattered around a chaotic soup of text where it
would become increasingly impossible to find anything. This
was not helped by the fact that miniAudicle–ChucK’s official
IDE, a 15-year old piece of software–did not have basic search
functionality on Windows. This was symptomatic of a broader
disease, as many areas of ChucK have needed attention since
the mid-2010s. At the time, ChucK lacked everything from class
constructors to a compile-time import system to even up-to-
date API documentation. Multiple reasons contributed to the
stagnation of ChucK’s development, including Author 2—the
chief architect of the language–devoting his efforts elsewhere
during that time: as a tenure-track professor in a mobile music
startup company who also ended up writing a comic book on
designing tools such as ChucK. There was some irony in the
latter.

Meanwhile, I was jealously eyeing the ecosystems ofMax/MSP,
and not-specifically-audio environments such as Processing and
Python. Each of these had their own package manager, and ac-
companying websites and documentation, that drastically in-
creased the discoverability and access to vast libraries of plugins
and libraries. Yet, I was not ready to give up on ChucK, a text-
based computer music language that also offered unique (and
sometimes wacky) language features such as strongly-timed con-
currency. And so I kept on ChucKin’.

The precursor project to ChuMP was not a package man-
ager, but an effort by Author 1 and Author 2 in 2022 to add a
compile-time import system into the language. This functionality
would allow a ChucK program to statically import the contents
of another, a feature that was shockingly absent in the language.
Having this would enable ChucK code to be shared modularly
and from which a package manager would benefit. Unfortunately,
this project quickly failed as we realized the undertaking would
entail sweeping updates to the compiler and type system. The
ChucK core codebase at the time was quite the hot mess. We
were not ready.

But soon, everything changed in ChucK development.

2.2 The ChucK Renaissance
The formation of the ChucK Kitchen Cabinet (CKC) took place
organically over the next year. This group of ChucK developers
at CCRMA (and remotely) form the core of ChucK development.
Independent efforts to improve ChucK coalesced into regular
meetings, sprints, and development “hackathons”. Today ChucK
development is an active research initiative with over a dozen
members at CCRMA alone. In less than two years, the CKC
has drastically “resurrected” ChucK, ushering in a new era of

expansion, experimentation, and tool-building in what has been
dubbed the “ChucK Renaissance.”[14]

During this period of renewal, the ChucK ecosystem grew:
WebChucK[9] andWebChucK IDE[3], ChuGL (ChucK graphics)[17],
ChAI (interactive AI)[5], Chunity (ChucK in Unity)[1], SMucK
(Symbolic Music in ChucK)[4], and more. Significant additions
to the core language were introduced: class constructors and
an import system (finally), an overhaul of the compiler, type,
and runtime systems, proper API documentations5—all of which
drastically expanded the ability to create reusable code libraries
and plugins. ChucK development was accelerating at a rate not
seen in over a decade.6

An intangible outcome of the CKC was a sense of shared
purpose and community: “...the CKC is a group of individuals
each with their skills and interests to bring to bear on various
aspects of the language. In this setting, there is both structure
and freedom for all the members, providing a balance of function
and fun. This is perhaps the closest ChucK development has
come to a formal and centralized development process and is
certainly the largest by group size.” [14] Meanwhile, the renewed
and sustained development has spurred a growth of the ChucK
user community.7 Truly, “if you build it, they will come.”

With all of these advancements and expansions, it seemed that
the stars had aligned—for a package manager.

2.3 A Thing That Everyone Wanted but No
One Wanted To Build

On the last day of the inaugural weekend-long ChucK-a-Thon,
during our future planning meeting, the topic of package man-
agement resurfaced. There was plenty of enthusiasm for having
a package manager, and as a group we came up with a rough list
of features we wanted to see. But, after all this discussion and
enthusiasm, the big questions was dropped: Who was going to
make the thing? An awkward silence overtook the room. As we
looked at each other expectantly, the unspoken sentiment was
clear, a package manager for ChucK was a thing that everyone
wanted but no one wanted to build. It sure sounded like a time-
consuming project that would take away from our composing,
our classes, and research we were actually excited to do. But still,
it would be such a great thing to have. For reasons I can no longer
recall, I tepidly spoke up and agreed to do it, as if saying, “I’ll
take the ring to Mordor!” People were quick to latch onto my
“initiative” with enthusiasm, as the realization dawned that I had
just committed to making a package manager.

2.4 Who is the Real Chump?
(Answer: Author 1)

As established, I did not really want to make this package
manager, same as everyone else. But I pressed forward and tried
to plan out what exactly this package manager was going to
be. I was suddenly faced with a barrage of design questions:
What even was a package? How do I design this so that it can
work with command-line interface (CLI) ChucK, miniAudicle,
WebChucK, etc? What language features are needed to get this
working? What about dependencies? Versions?! How am I going
to coordinate developers to submit packages? Due to decision
paralysis and my general lack of enthusiasm for the project, I
began procrastinating. This part was easy. There are always
5https://chuck.stanford.edu/doc/reference/
6despite this, to date miniAudicle still does not support search on Windows
7join the ChucK community Discord server! https://discord.gg/Np5Z7ReesD

https://chuck.stanford.edu/doc/reference/
https://discord.gg/Np5Z7ReesD

ChuMP and the Zen of Package Management NIME ’25, June 24–27, 2025, Canberra, Australia

Figure 1: The ChuMP logo. Made in Microsoft Paint, in-
tended to mimic drawing with a crayon.

other deadlines, and plenty of work that was more interesting,
and more fun to do. So progress was slow. The time that I did
dedicate to working on this project was mostly spent fretting
over an endless series of what-ifs. There was a lot of thinking and
planning, but very little doing. I was stuck, in desperate need of
something, anything that would get me coding.

2.5 What is in a Name?
As 2023 was nearing a close, Author 1 and Author 2 met to discuss
requirements for the package manager. Eventually, we turned to
the topic of what to name this theoretical package manager. Al-
most instinctively, we were leaning towards a questionable pun,
as is the style of most ChucK projects (Chunity, ChAI, chugins,
ChuGL, etc.). Mostly, we were trying to move around “Ch”, “P”
(for Package), and “M” (for Manager) in various combinations.
Soon enough, the name “ChuMP” was proposed, and then im-
mediately we applied a hamfisted backronym to it: the ChucK
Manager of Packages. There was something I found immensely
charming about this silly, mildly crass name: the cludgy acronym,
the question of “who is the chump here?” (see Section 2.4). All
of it was wonderfully ridiculous when attached to something as
seemingly dull as a package manager. The coining of ChuMP
filled me with motivation I had not felt since committing to the
project. Quickly afterwards, we created a Github repo titled sim-
ply “chump,”8 a logo was made (Figure 1) and development finally
began in earnest.

2.6 Crouching Tiger, Hidden Motivations
This burst ofmotivation coming from something ridiculous and/or
unrelated to the immediate task at hand became a trend in ChuMP
development. As part of an effort to improve the appearance of
ChuMP (dubbed Operation: ChuMP Vanity), we experimented
with ANSI codes to colorize—among other things—the down-
load progress bar and the help page. With these practical visual
improvements, things were becoming easier to navigate; it also
looked nice. Like a kid suddenly given a bag of fireworks with
no adult supervision, my mind began to wonder, “What can I do
with all these colors?”

8https://github.com/ccrma/chump

Figure 2: chump logo river - a frame from one of four
animations based on the ChuMP logo.

I spent the rest of the day and part of the next day putting
together a series of terminal animations based off of an ASCII-fied
version of the ChuMP logo (Figure 2). Nobody asked for these. Of
course I immediately stuck them in the main branch, and added
the subcommand chump logo with a menu of animation styles
(breakfast|cereal|river|dim). As I admired my handiwork,
I was confronted by a truth that I had known but did not want
to admit to myself: creating a package manager is tedious work;
any joy from this thankless task will depend on my ability to
distract myself from the required work, in new and increasingly
elaborate ways.

Over time, the sum of these “useless” “distractions” did make
development easier. There was the terrible idea of embedding
a full ChucK virtual machine inside ChuMP to sonify package
management; or ways to map a package download to a ever-
descending Shepard-Risset Tone. We didn’t go through with all
of them, but they filled me with imagination and a strange sense
of motivation. After two months of sustained development, I
could see the light at the end of the tunnel. And one day, I looked
over what I had done and found myself saying, “This is ChuMP.”

3 The Way of ChuMP (A User Manual)
ChuMP is a CLI tool available for Windows, Mac, and Linux. It
supports a set of obligatory actions often associated with pack-
age managers: install, uninstall, update, list, and info, which are
invoked by calling chump <subcommand>.

chump install <Package>, unsurprisingly, downloads and
installs a package. ChuMP will automatically identify the latest
version of the package that is compatible with your operating
system and ChucK version. Many brain cells died in order to bring
this feature into the world. If you want to install a specific version
of a package call chump install <Package>=<VersionNo>.

chump uninstall <Package> does the opposite. It uninstalls
a package.

chump update <Package> will update an installed package
to the latest version.

chump list will list all available packages.
chump list -i will list only currently installed packages.
chump info <Package> will list detailed information about a

specific package.

NIME ’25, June 24–27, 2025, Canberra, Australia Nicholas Shaheed and Ge Wang

∼/.chuck/packages/Line/

Line.chug

version.json

_examples/

basic.ck

multi_ramp.ck

_deps/

libLine.dylib

demo/

LineDemo.ck

Figure 3: An example of the directory structure of a pack-
age

chump logo <Mode> will play a logo animation. Try these,
they are fun and they gave Author 1’s life meaning during ChuMP
development.

chump help for more info on ChuMP.

Say that you want to install the Line package, which includes
the Line UGen. First you would call chump install Line. Now
you can import Line from any ChucK file on your system:

// import Line.chug from the Line package folder
@import "Line"

// Line is now in the type system and can be instantiated
SinOsc foo(880) => Line bar(5::second) => dac;

4 What is a Package?
A ChuMP package can contain any combination of ChucK code,
chugins, and data files (e.g., audio, text, images, models). Once
installed, a ChuMP package is located as a folder inside a desig-
nated package directory. OnMacOS and Linux, this is ∼/.chuck/
packages, onWindows it is C:/Users/%USERNAME%/Documents/
ChucK/packages. This folder houses version.json, containing
metadata about the package, and any number of files and direc-
tories.

There are several reserved package subfolders: _data/, _examp
les/, _docs/, and _deps/. These are mostly used for documen-
tation generation purposes or are being reserved for future use.
However, _deps/ is specifically for including dynamic library
dependencies (i.e. .dylib or .dll files) for chugins (a ChucK-
plugin, a compiled binary written in C++). If a chugin is loaded
from a package’s directory, then ChucK will load any dynamic li-
braries found in the _deps/ folder. This addresses a long-standing
issue of managing libraries in a portable and distributable way
being quite cumbersome. Particularly in Windows, where any
.dll dependencies not explicitly loaded in the executable have
to be placed in the same directory as chuck.exe, which requires
admin permission to do. What used to be a tedious process of
diagnosing runtime errors and manage system dependencies
is now handled with a simple chump install and @import in
ChucK code.

4.1 Defining Packages
ChuMP was designed such that packages can be created and
submitted by anyone in the user community, subject to testing
and approval by a ChuMP authority (probably Author 1). In
order to create a new package to be managed by ChuMP, one
can use chumpinate, a developer-facing library that lets you
define and generate packages inside of ChucK (that can alos
be installed using ChuMP). This will generate the necessary
metadata that resides inside a package. For details on how this
works, see Subsection 5.1.

5 Technical Stuff No One Cares About
5.1 A Deep Dive into Defining Packages
All ChuMP package metadata is stored in a manifest.json file
that is fetched from a centralized server. Package listings are
managed in a GitHub repository,9 and the manifest.json is
automatically generated from this repository. Each package con-
sists of a JSON file defining metadata about the package—name,
authors, description, etc. Every package has one or more releases.
A release is a specific package version with a specific set of files
that are downloaded and installed when chump install is called.
If a release does not include any compiled binaries, such as one
that only has Chuck files, then a new package version will only
have a single release associated with it. If a package includes com-
piled code that is OS and CPU-architecture specific (i.e. a chugin
compiled for x86-64 Windows), then a package version will have
multiple releases associate with it—one for each OS/architecture
combination. For MacOS, universal binaries are supported so
potentially only one release is needed for MacOS, rather than
two.

A declarative API is provided for defining packages and re-
leases in ChuMP. It is available under the package Chumpinate
(chump install Chumpinate). This lets package developers de-
fine packages, and create a release. The script will then output
three artifacts: a package.json, defining the top-level package
metadata, a release.json, defining the specific release, and a
Package.zip, a zip file containing all the files of the release that
is structure in a way that ChuMP can handle automatically when
installing. The two JSON files are then added to the package
repository, and the ZIP file is uploaded to a server to be accessi-
ble at the URL specified in the Chumpinate script. An example
script can be found in Appendix A.

5.2 Versioning
ChuMP package releases must have a defined version, which
follows the Major.Minor.Patch semantic versioning scheme
(i.e. v1.2.3). When a user attempts to install a package, ChuMP
uses this system to automatically determine the newest package
that is compatible with the user’s system and installed ChucK
version.

5.3 ChuMP Implementation
ChuMP was mostly implemented in C++17 and assembled using
the Meson build system. It consists of the core ChuMP library
(which handles the core logic of package installation, updating,
etc.), a CLI wrapper around this core, the Chumpinate chugin
which adds the capability of writing ChuMP package definitions
inside of ChucK, and several helper scripts, including one to injest
the package repository, and generate a new manifest file. There
9https://github.com/ccrma/chump-packages

https://github.com/ccrma/chump-packages

ChuMP and the Zen of Package Management NIME ’25, June 24–27, 2025, Canberra, Australia

are also provisions for automatically generating a web-based
front-end for the database of packages.

ChuMP relies on several libraries, including libcurl (for down-
loading files), minizip-ng (for zipping and unzipping packages),
nlohmann_json (to read JSON files), and OpenSSL (to perform
file hashing). It uses Catch2 for testing, and there are a suite of
continuous integration tests built using GitHub Actions.

(The terseness of this subsection is not proportional to the
amount of boredom and consternation it has inflicted.)

5.4 The Journey of a Package
When a user calls chump install Pkg, the manifest.json file
is read, and parsed into a structured list of Packages, each of
which contain a list of releases. ChuMP then tries to find Pkg
in the Package list. If it does, it then tries to find the highest-
versioned release that is compatible with the user’s operating
system, CPU architecture, and ChucK version. If this succeeds,
then ChuMP will proceed to go through the list of files in that
release, download them, validate their checksums, and then move
them into the proper directory.

When a user calls chump uninstall Pkg, ChuMP validates
that the package is currently installed. If it is, it will delete all
files associated with the package. If the Pkg/ directory is empty
after this, it will be deleted as well. If it is not (i.e. there are files
in the directory not associated with the package), ChuMP will
leave those files there.

chump update Pkg is similar to chump install. But, before
an update is applied, all files associated with the old package
release will be removed from the user’s system.

5.5 Design Considerations
Max/MSP and Pure Data both have GUI-based package managers.
SuperCollider has the Quark system, which takes advantage of
the language’s dynamic typing and object-oriented design: pack-
ages are objects that are installed and managed in-language (with
an optional GUI). ChuMP’s interface instead takes inspiration
from more general-purpose package managers such as apt-get,
DNF, and pip, which are command line programs. This is both
a practical decision—CLIs are easier to implement, generally
more portable, and are more easily scriptable than their GUI
counterparts—a reflection of the preferences of Author 1, and a
strategic architectural choice: from the outset ChuMP was de-
signed with the various ChucK IDEs in mind (miniAudicle and
the WebChucK IDE). A core ChuMP libraray wraps all the inter-
nal logic and data structures, and an interface is built as a wrapper
around that library. The CLI tool was the first wrapper, but fu-
ture plans include implementing a GUI package manager (likely
similar to Max/MSP’s) inside miniAudicle and the WebChucK
IDE.

Two distinct advantages of GUI-based package managers com-
pared to CLI tools is ease of use and discoverability—no knowl-
edge of how to use a terminal is needed and, i.e. with Max/MSP’s
package manager, browsing and discovering new packages is
straightforward and installation is a single button click. In or-
der to help bridge this gap, the package listing website10 takes
inspiration from the Homebrew online package browser11 and
provides both an accessible way to browse available packages and
gives users the proper installation command which can simply
be copy and pasted into the terminal.

10Available ChuMP Packages: https://chuck.stanford.edu/release/chump/
11https://formulae.brew.sh/

5.6 Storage and Distribution
As of ChucK version 1.5.5.0, ChuMP is now packaged as a stan-
dard tool in the main language distribution for macOS and Win-
dows (Linux users will need to build from source). Currently, all
packages and related files are hosted at, and distributed from,
CCRMA’s web servers, along with the rest of the ChucK web-
site. Initial packages include a mixture of C++ chugins (e.g., Flu-
idSynth and Rave) and native ChucK libraries (e.g., SMucK, a new
symbolic music framework for ChucK). A full list of available
packages at the time of publication is given below:
• FluidSynth: A UGen for loading and rendering soundfonts
• SMucK: A framework for symbolic music notation and play-
back in ChucK

• Rave: A UGen to load and synthesize real-time audio from vari-
ational autoencoder models. Based on IRCAM’s RAVE (Real-
time Audio Variational autoEncoder) by Caillon and Esling[2].

• PlinkyRev: A stereo reverb UGen ported from the Plinky
synth12

• Rec: Helper functions for recording to audio files. Supports
recording from dac, UGens, and arrays of UGens.

• WarpBuf: A UGen for high-quality time-stretching and pitch-
shifting of audio files; also supports Ableton .asd files

• Hydra: A wrapper for the Python configuration framework
Hydra

• Line: A UGen for creating envelopes of arbitrary ramps (ala
Max/PD’s line object)

• Patch: A tool for updating control values from UGens
• Chumpinate: Two classes (Package and PackageVersion) to
faciliate creating new packages for ChuMP

6 Reflections
The true package manager will package Man.

—Absolutely no one

6.1 Community
Through the process of making ChuMP, what began as a purely
technical project that was addressing an obvious need, had mor-
phed into a social one as well. In hindsight this was rather in-
evitable, having committed to this project in a communal space—
the CKC hackathon. But, as Author 1 emerged from the solitude
of development, with a partially functioning package manager,
another issue arose. A package manager needs packages! In a
quest to make this software useful in practice, Author 1 began
reaching out, first to others in the ChucK Team, and eventually
to people in the broader ChucK community. By necessity, Author
1 connected with people and their work that spread across the
far-flung corners of the ChucK world. From creating a universal
binary in order to more easily distribute the notoriously finicky
FluidSynth chugin that had been in regular use by the Stanford
Laptop Orchestra (SLOrk), to bundling dozens of Faust effects
compiled down to chugins, to projects from the broader ChucK
community, such as the impressively comprehensive LiCK library
by Michael Heuer.13

These social interactions were refreshing, mostly. It was good
to talk to people now that ChuMP actually exists and functions—
and to work together towards common aims, even if some of the
short-term aims include deciphering mysterious CMake depen-
dencies in order to get a package to build, or updating hundreds of

12https://plinkysynth.com/
13https://github.com/heuermh/lick

https://chuck.stanford.edu/release/chump/
https://formulae.brew.sh/
https://plinkysynth.com/
https://github.com/heuermh/lick

NIME ’25, June 24–27, 2025, Canberra, Australia Nicholas Shaheed and Ge Wang

older ChucK files for a single package in order to take advantage
of the latest language features.

At the time of writing, another ChucK Hackathon had recently
taken place. It was during this weekend, filled with XXtra Flam-
min’ Hot Cheetos and Chinese takeout, that these communal
interactions permeated this event with excitement and antici-
pation. No one quite talked about it, but it had been during a
ChucK Hackathon some two years earlier that Author 1 begrudg-
ingly agreed to making a package manager. ChuMP had come
full circle.

6.2 Who Cares? On The Question of Audience
Upon reflection, it seems the target audience of ChuMP is really
the ChucK community, which can be further distilled into three
roles. Candidly, the initial impetus for ChuMP came from our-
selves, the centralized ChucK development team at CCRMA, and
our need to practically manage a rapidly growing set of tools
and components within the ChucK software ecosystem. Secondly
and more obviously, ChuMP intends to benefit potentially any
ChucK user by allowing them to incrementally incorporating
new tools into their work. Thirdly, ChuMP was created as a tool
for third-party developers within the community to distribute
their work. For a computer music language ecosystem with a
strong emphasis on open-source software, ChuMP serves as both
glue and hub.

6.3 Hard-hitting ChuMP Testimonials
Firstly, we have a user testimonial from Celeste Betancur, com-
poser, performer, long-time ChucK user. When asked how did that
make you feel, chump-wise?, she replied “Hahahaha chumpifyed
in the most satisfactory possible way.” (She had recently used
ChuMP to prepare for a live coding performance.)

Another testimonial comes from Kelly Cochran, a member
of the teaching team of the Stanford Laptop Orchestra (which
undergoes software updates regularly). “...FluidSynth installed
on all the [SLOrk laptops] :) chump is amazing.” This sentiment
is perhaps warranted, given that in the past, finding, building,
and installing the finicky FluidSynth chugin was no small feat.
Here was the typical process: we would realize we’d want to
use FluidSynth for a new piece. We track down the source code,
fighting with temperamental build systems, updated compiler
versions, and new operating systems idiosyncrasies—only to
give up hours later. After a resurgence of optimism and caffeine,
we would manage to produce a macOS build, but only when
linked against non-portable Homebrew libraries. Installing the
FluidSynth chugin entailed creating a shell-script that copied both
the chugin as well as all runtime dynamic library dependencies
onto each machine. While this brittle setup worked in practice,
no one was quite confident this would not break if anything were
changed on these machines, and we knew in our hearts that we
would need to repeat the process in the future. Now, all of that
has been simplified to just typing chump install FluidSynth.

Sometimes, the availability of a tool can directly change, in
practice, what people create and learn. RAVE (a controllable real-
time variational autoencoder for audio synthesis) was used by
the Stanford Laptop Orchestra in its exploratory first assignment,
including some on-the-fly chump installs of RAVE when mov-
ing between laptops. This would not have happened without
ChuMP (the students would have simply used another available
tool, which would have been fine, too).

6.4 Service and the Zen of Toolbuilding
Service may be defined as an intentional act that results in direct
benefits more for the community than for the individual doing
the service. In other words, building a thing that everyone wanted
but that no one wanted to build. Author 1 has noted that the time
spent developing ChuMP is likely to far outweigh the cumulative
time-saved in using ChuMP over his lifetime. Author 2 tends to
feel similarly about ChucK as a whole. And yet, we did it, and
mostly do not regret it. Why is that?

Perhaps it has to do with craft, which the ancients more or
less defined as a practice (e.g., flute-playing) that 1) you care
to get better at for intrinsic reasons (“I want to know I can do
it!”) and 2) can get better at doing only through practice (e.g.,
reading 1000 books on flute playing is no substitute for actually
picking up the flute and playing it). Furthermore, there is a joy
in the making and perhaps even in the maintenance of tools.
These notions reflect the ethos with which ChucK—yet another
computer music programming language that nobody quite asked
for—has been developed for the past 20 years. And while we
genuinely endeavor for ChucK to be useful, there has always
been the hidden, if sometimes deferred, satisfaction of working
on a tool that we know inside-out, down to its nuts and bolts.

ChuMP, in a sense, may be a pure product of this ethos. It is a
tool that we knew to be a thankless job—in other words, a service.
It is also a tool that we (correctly) assumed would be tedious in
its implementation. And in undertaking this task anyway, we
have extended a tradition of craft, one that speaks to some inner
need to build tools not only to have tools, but to improve our
capacities for such endeavors. To borrow a sentiment from Artful
Design, “what we make, makes us.” [15] Despite the often boring
and probably-unpublishable nature of a package manager, we
intrinsically cared about the quality of the tool. We wanted to
make ChuMP “good”, starting with considering what “good” even
means for a package manager.

A chump has worked thanklessly, and now we have a working
ChuMP. Strangely, there is a feeling of satisfaction (it comes and
goes). The ChucK ecosystem has been improved by ChuMP, with
the possibility that before long, ChuMP could well become an
everyday part of any ChucK user’s workflow, however briefly.
There is also a satisfaction in knowing that we won’t have to
ever write a packager manager for ChucK again. Hopefully.

If we take a step back, there resides the possibility, hidden
among all the unglamorous details, for a virtuous cycle in which
community and tool-building reinforce one another. ChuMP was
born out of the ChucK Team—and now it has created new con-
texts and interactions within the group. As for the larger ChucK
user community, the hope is ChuMP becomes a tool that people
use and that also stays out of their way and allow them to do
the work they want to do (this would imply ChuMP is doing its
job—a “good” ChuMP).

The name of this paper is adapted from Robert Persig’s book
Zen and the Art of Motorcycle Maintenance: An Inquiry Into Values
[11], which meditates not only on the notions of craft and quality,
but on the value of all components that comprise a complex
system; even a thing seemingly as mundane and insignificant
as a single screw in a motorcycle, in the right contexts, can be
critical to the functioning of the whole system. Maybe a package
manager is a kind of screw, or something that manages screws.

ChuMP and the Zen of Package Management NIME ’25, June 24–27, 2025, Canberra, Australia

6.5 Academic Paper Writing
What is the academic value of building tools that serve an obvious
practical need, but that are of questionable novelty? And is it
novelty we are truly after in our work? At the same time, it
seems good to at least recognize that tools like package managers
support (and can even influence) our research and the art we
make. How do we compass that?

In the constellation of computer music fields, we do encounter
papers that mention package managers. For example, “Disperf: A
Platform for Telematic Music Concert Production”, discusses the
potential benefits of a package manager as part of its FutureWork
[10]. At the same time, and as far we can tell, there are no papers
specifically on computer music package managers; the closest
seems to be publications on large-scale software distributions
such as PlanetCCRMA[6] and CARL[7].

Somewhat surprisingly, our literature review has unearthed
academic publications on packagemanagers outside our “immedi-
ate orbit,” some of which argue for the role of package managers.
The authors of LuaRocks write, “While sometimes dismissed as
an operating systems issue, or even a matter of systems adminis-
tration, module management is deeply linked to programming
language design.” and “language-specific package managers have
risen as a solution to these problems, as they can perform module
management portably and in a manner suited to the overall de-
sign of the language[8].” In this view, creating language-specific
package managers that are cognizant of the “ways of thinking
and doing” associated with a specific language amounts to more
than a standalone tool, but also becomes a part of the language,
its ecosystem, and community.

So, in writing what may be the very first paper on a package
manager in our field, are we advocating for a world brimming
with academic publications on package management?

Maybe?
Or, at least, why not? What if such papers are capable of ad-

dressing aesthetic, craft-based, and/or communal implications of
package managers (or similarly thankless but useful tools)? This
line of questioning extends an argument made in Ramsay and
Rockwell’s widely read article, “Developing Things: Notes To-
ward an Epistemology of Building in the Digital Humanities[12]”,
a rumination on the scholarly value of building tools. One of its
takeaways is that scholarship of a work should transcend its for-
mat (e.g., peer-reviewed journal articles) and be evaluated also on
the authors’ willingness and effectiveness to critically consider
their work (whatever the format, including software tools) with
respect to broader contexts in rich and provocative and entangled
ways. And if such connections can be drawn between a package
manager and its implications for process, craft, and community,
should we not—for all intents and purposes—consider building
such tools to be research?

https://chuck.stanford.edu/chump/

7 Acknowledgments
The authors would like to thank/blame the ChucK Team for
causing this work to happen, in particular Mike Mulshine, Kelly
Cochran, Celeste Betancur, Alex Han, and Kiran Bhat. Thanks
to Walker Smith for encouraging us to write (too) honestly. We
thank the ChucK User Community and the Stanford Laptop Or-
chestra for being early adopters of ChuMP. We are thankful and
relieved that the reviewers saw something in this paper, even
when we might not have. We would also like to acknowledge

that throughout this paper, the word “chump” appears 137 times,
including this appearance, and accounts for 2.3% of its words.
Thank you for reading this far.

8 Ethical Standards
ChuMP has been developed with the support of CCRMA’s de-
partmental funding, curricular student research, and volunteer
contributions. The authors are aware of no potential conflicts of
interest.

References
[1] Jack Atherton and Ge Wang. 2018. Chunity: Integrated Audiovisual Program-

ming in Unity.. In NIME. 102–107.
[2] Antoine Caillon and Philippe Esling. 2022. Streamable neural audio synthesis

with non-causal convolutions. arXiv preprint arXiv:2204.07064 (2022).
[3] Terry Feng, Celeste Betancur, Michael R Mulshine, Chris Chafe, and Ge Wang.

2023. WebChucK IDE: A Web-Based Programming Sandbox for ChucK. pro-
ceedins of Sound and Music Computing (2023).

[4] Alex Han, Kiran Bhat, and Ge Wang. 2025. SMucK: Symbolic Music in ChucK.
In Proceedings of the International Conference on New Interfaces for Musical
Expression.

[5] Yikai Li and Ge Wang. 2024. ChAI: Interactive AI Tools in ChucK. In New
Interfaces for Musical Expression.

[6] Fernando Lopez-Lezcano. 2002. The Planet CCRMA software collection. In
ICMC.

[7] Gareth Loy. 2002. The carl system: Premises, history, and fate. Computer
Music Journal 26, 4 (2002), 52–60.

[8] Hisham Muhammad, Fabio Mascarenhas, and Roberto Ierusalimschy. 2013.
LuaRocks-a declarative and extensible package management system for Lua.
In Programming Languages: 17th Brazilian Symposium, SBLP 2013, Brasília,
Brazil, October 3-4, 2013. Proceedings 17. Springer, 16–30.

[9] Michael R Mulshine, Ge Wang, Jack Atherton, Chris Chafe, Terry Feng, and
Celeste Betancur. 2023. Webchuck: Computer music programming on the
web. In New Interfaces for Musical Expression.

[10] Michael Palumbo, Doug Van Nort, and Rory Hoy. 2020. Disperf: A Platform for
Telematic Music Concert Production. In Proceedings of the 2020 International
Computer Music Conference. Santiago, Chile.

[11] Robert M. Persig. 1974. Zen and the Art of Motocycle Maintenance: An Inquiry
Into Values. William Morrow and Company.

[12] Stephen Ramsay and Geoffrey Rockwell. 2012. Developing things: Notes
toward an epistemology of building in the digital humanities. Debates in the
digital humanities (2012), 75–84.

[13] Babak Razavi, Pooya Ehsani, Maryam Kamrava, Leonid Pekelis, Vaibhav Nan-
gia, Chris Chafe, and Josef Parvizi. 2015. The brain stethoscope: a device that
turns brain activity into sound. Epilepsy & Behavior 46 (2015), 53–54.

[14] Marise van Zyl and Ge Wang. 2024. What’s up ChucK? Development Update
2024. In Proceedings of the International Conference on New Interfaces forMusical
Expression. 549–552.

[15] Ge Wang. 2018. Artful Design: Technology in Search of the Sublime. Stanford
University Press.

[16] Ge Wang, Perry R Cook, and Spencer Salazar. 2015. Chuck: A strongly timed
computer music language. Computer Music Journal 39, 4 (2015), 10–29.

[17] Andrew Zhu and Ge Wang. 2024. ChuGL: Unified Audiovisual Programming
in ChucK. In Proceedings of the International Conference on New Interfaces for
Musical Expression. 351–358.

https://chuck.stanford.edu/chump/

NIME ’25, June 24–27, 2025, Canberra, Australia Nicholas Shaheed and Ge Wang

A Appendix: Creating a ChuMP Package
Here is an example ChucK program that constructs a MacOS
release of the Chumpinate package. The release can then be gen-
erated by calling chuck make_release.ck

// Import the Chumpinate package, which adds both
// "Package" and "PackageVersion" to the type system
@import "Chumpinate"

// instantiate a Chumpinate package
Package pkg("Chumpinate");

// Add our package metadata...
"Author 1" => pkg.authors;
"https://github.com/chump/chumpinate" => pkg.repository;
"https://chump.com" => pkg.homepage;
"MIT" => pkg.license;
"Two classes (Package & PackageVersion) to help create
packages to be used with ChuMP (the ChucK Manager
of Packages)" => pkg.description;
["util", "chump", "packages"] => pkg.keywords;

// generate a package-definition.json
// This will be writte to "Chumpinate/package.json"
"./" => pkg.generatePackageDefinition;

// Now we need to define a specific release of chumpinate
PackageVersion rel("Chumpinate", version);

// The current version of the package
"0.1.0" => string version;

// Because this is a chugin, it is compiled against
// specific chugin API headers. The chugin API Version
// must match the API version of installed ChucK
"10.2" => rel.apiVersion;

// There must be a minimum compatible language verison.
// Optionally, you can also set languageVersionMax.
"1.5.4.0" => rel.languageVersionMin;

// Specify which version and architecture this
// release is compatible with
"mac" => rel.os;
"universal" => rel.arch;

// The PackageRelease.addFile(...) and related methods
// compile a list of files that will be zipped up in the
// final Release.zip file.

// The chugin file. This goes in the top-level
// directory of the package
rel.addFile("../Chumpinate.chug");

// These build files are examples as well. These
// go in the _examples/ directory.
rel.addExampleFile("build-pkg-win.ck");
rel.addExampleFile("build-pkg-mac.ck");
rel.addExampleFile("build-pkg-linux.ck");

// Documentation files. These go in the _docs/

// directory
rel.addDocsFile("./index.html");
rel.addDocsFile("./chumpinate.html");
rel.addDocsFile("./ckdoc.css");

// wrap up all our files into a zip file,
// and tell Chumpinate what URL
// this zip file will be located at.
rel.generateRelease("./", "Chumpinate_mac",
"https://chump.com/Chumpinate/" + rel.version() + path);

// Generate a version definition JSON file, to
// be added to the package listing repo.
rel.generateReleaseDefinition("Chumpinate_mac", "./");

	Abstract
	1 Introduction
	1.1 What is ChuMP?

	2 Origins of a ChuMP
	2.1 Original Sin; or, Temptations of Package Management
	2.2 The ChucK Renaissance
	2.3 A Thing That Everyone Wanted but No One Wanted To Build
	2.4 Who is the Real Chump?
	2.5 What is in a Name?
	2.6 Crouching Tiger, Hidden Motivations

	3 The Way of ChuMP (A User Manual)
	4 What is a Package?
	4.1 Defining Packages

	5 Technical Stuff No One Cares About
	5.1 A Deep Dive into Defining Packages
	5.2 Versioning
	5.3 ChuMP Implementation
	5.4 The Journey of a Package
	5.5 Design Considerations
	5.6 Storage and Distribution

	6 Reflections
	6.1 Community
	6.2 Who Cares? On The Question of Audience
	6.3 Hard-hitting ChuMP Testimonials
	6.4 Service and the Zen of Toolbuilding
	6.5 Academic Paper Writing

	7 Acknowledgments
	8 Ethical Standards
	References
	A Appendix: Creating a ChuMP Package

