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Abstract
Vocals harmonizers are powerful tools to help solo vocalists en-
rich their melodies with harmonically supportive voices. These
tools exist in various forms, from commercially available pedals
and software to custom-built systems, each employing different
methods to generate harmonies. Traditional harmonizers often re-
quire users to manually specify a key or tonal center, while others
allow pitch selection via an external keyboard–both approaches
demanding some degree of musical expertise. The AI Harmo-
nizer introduces a novel approach by autonomously generating
musically coherent four-part harmonies without requiring prior
harmonic input from the user. By integrating state-of-the-art gen-
erative AI techniques for pitch detection and voice modeling with
custom-trained symbolic music models, our system arranges any
vocal melody into rich choral textures. In this paper, we present
our methods, explore potential applications in performance and
composition, and discuss future directions for real-time imple-
mentations. While our system currently operates offline, we be-
lieve it represents a significant step toward AI-assisted vocal
performance and expressive musical augmentation. We release
our implementation on GitHub.1
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1 Introduction & Previous Work
Vocal harmonizers have long been a valuable tool for vocalists,
enabling real-time harmonization and multi-voice effects. Over
the years, various hardware solutions have been developed, with
TC-Helicon leading the commercial market in harmonization
pedals. These pedals generally require the user to set the key in
which the system can generate notes, either manually or through
another audio input (e.g., with a guitar playing chords). Vocal har-
monizers have also been developed as part of research projects. A
notable example is Jacob Collier’s vocal harmonizer, developed by
Ben Bloomberg [4], which allows him to use a keyboard to decide
the harmonic texture of the output and provide a vocal melody
as input. In parallel, the automation of melodic harmonization,
which alleviates the need for a keyboard or a manual setting of a
key, has been explored in numerous ways, with methods such as

1Our implementation is available at https://github.com/mitmedialab/ai-harmonizer-
nime2025.
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probabilistic modeling [14, 15], dynamic programming [25], and
weighted pitch context vectors [11].

In recent years, machine learning has driven significant ad-
vancement in generativemusic. Inmelody harmonization, projects
such as Google’s CoCoNet [8] and the Blob Opera [12] have
demonstrated the potential of deep learning for polyphonic mu-
sic generation, alongside many other systems [6, 13, 18, 19, 21,
24]. The application of Transformer-based models–originally
designed for natural language processing–to symbolic music
generation [9, 20] has opened new possibilities for automatic
accompaniment and real-time applications [3, 23, 26]. Addition-
ally, neural networks have shown remarkable success in voice
synthesis, with architectures such as VITS [10] and HuBERT [7]
enabling the efficient manipulation of vocal timbre and style.

However, and to the best of our knowledge, no end-to-end
Machine Learning-based system has been proposed for automatic
vocal harmonization. Through this work, we propose our archi-
tecture, enabling the harmonization of any input vocal line as a
four-part harmony chorale, and discuss our results.

2 Methodology
Our approach for automatic voice harmonization uses a few dif-
ferent existing models, and adds some important logic to connect
them together and create a powerful end-to-end framework. We
make use of three different model architectures:

• Basic Pitch [2], a model developed and trained by Spotify
that can perform automatic music transcription;

• Anticipatory Music Transformer (AMT) [20], a variant of
the Music Transformer architecture [9] that enables better
compositions through anticipation mechanisms; and

• Retrieval-based Voice Conversion (RVC)2, a model for
singing voice conversion based on the VITS architecture
that provides a toolset for fast and accurate singing voice
synthesis with pitch and speaker conditioning.

We combine these architectures to accomplish four sequential
tasks:

(1) First, we use Basic Pitch to convert our vocal melody to
MIDI;

(2) Then, we use a custom-trained AMT model to generate a
four-part harmony based on our input melody;

(3) We then extract the fundamental frequency (𝑓0) informa-
tion from our vocal melody and shift it to fit our three new
parts;

(4) Finally, we use RVC to synthesize these three new vocal
lines and add them to our input melody.

An overview of our architecture is displayed on Figure 1. We
describe each step of our process in this section.

2RVC is available at https://github.com/RVC-Project/Retrieval-based-Voice-
Conversion.
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Figure 1: The detailed architecture of our system at inference time.

2.1 Voice-to-MIDI Conversion
To integrate our vocal melody into our custom-trained AMT
model, we first need to convert the vocal line into MIDI. This
is a relatively straightforward step, accomplished using Basic
Pitch, an open-source pitch detection tool developed by Spotify.
While numerous pitch-tracking tools exist for this purpose, we
chose Basic Pitch for its robustness in handling real-world singing
inputs and its superior transcription accuracy. Extracting MIDI
from vocal melodies is particularly challenging, as human singing
often deviates from the strict 12-tone equal temperament required
forMIDI representation. In our experiments, Basic Pitch appeared
to handle vocal inputs fairly well. It is important to note that
this approach comes with inherent limitations, as it restricts
harmonization to Western tonal frameworks and favors cleanly
sung inputs.

2.2 Harmony Generation with AMT
Once the vocal melody is transcribed into MIDI, we use a custom-
trained Anticipatory Music Transformer model (AMT) to gener-
ate a four-part harmony that will be used to synthesize new vocal
lines. AMT is particularly well-suited for this type of harmonic
composition since it can anticipate future notes in the melody
and generate more thoroughly crafted harmonic lines.

2.2.1 AMT Training. In order to generate accurate harmonies
for our vocal melody, we specifically train an AMT model on the
task of four-part harmony. For this purpose, we base our training
on the pre-trained music-medium-800k3 model trained by the
authors of the original paper on the Lakh MIDI Dataset [16] for
800,000 epochs. We then choose to fine-tune our model on the
JSBChorales dataset [1, 5], a corpus of 382 four-part harmonized
chorales by J.S. Bach. Although this imposes an important genre
restriction on the harmonies that our harmonizer can generate,
this dataset is particularly interesting since all of the chorales are
written with four distinct voices: Soprano, Alto, Tenor, and Bass
(SATB). For the purpose of our training, we convert the original
dataset to distinct MIDI files, and use MIDI instruments 0, 1, 2,
and 3 to represent all four voices.4 Due to the fact that the data

3The original checkpoint is available on Huggingface at https://huggingface.co/
stanford-crfm/music-medium-800k.
4We provide our version of the dataset on GitHub: https://github.com/
lancelotblanchard/JSB-Chorales-dataset-midi.

of the JSB Chorales dataset is most likely already contained in
the Lakh MIDI Dataset, the model quickly overfits and we use
early stopping to avoid model degradation.

2.2.2 AMT Inference. Anticipatory Music Transformers intro-
duce the mechanism of anticipation, which allows for the condi-
tioning of a temporal point process on the realizations of another
correlated process. Following the AMT naming convention, the
main temporal point process is called the event process, while
the conditioning process is called the control process. To perform
this conditioning, AMT interleaves events e1:𝑁 and controls u1:𝐾
in such a way that a control u𝑘 on time 𝑠𝑘 ends up close to events
near time 𝑠𝑘 − 𝛿 , with 𝛿 being the anticipation interval. Using the
results of the original paper, we use 𝛿 = 5 seconds.

AMT’s tokenization of MIDI notes allows us to precisely con-
trol the model generation. In particular, the model encodes a
MIDI note as a triplet of time, duration, and note (t𝑖 , d𝑖 ,n𝑖 ),
which allows us to guide the model generation to ensure that
it can generate a well-founded four-part harmony. To do so, we
enforce that each voice (MIDI instruments 1, 2, and 3) can only
generate one harmony note for each note present in the input
melody. We also ensure that the onset time and duration of each
note overlap, by forcing the time token t𝑖 and duration token d𝑖
to take the value of the time and duration of the corresponding
control. We do so by manually selecting the time and duration
tokens, and by performing sampling for the note token on a re-
strained logit distribution, with the logits for notes from other
instruments set to −∞.

2.3 MIDI-to-Frequency Conversion
Once we have the MIDI information for our Alto, Tenor, and Bass
lines, we can start generating new vocal lines. To do so, we first
need to extract the pitch contour (or fundamental frequency 𝑓0)
of our input melody. Although this information is also present in
the MIDI data, the 𝑓0 is a much more fine-grained measure that
also contains the pitch fluctuations within notes, as well as the
transition between notes. RVC provides a selection of algorithms
and models for the purpose of pitch extraction. Among those,
we choose to use RMVPE [22] for its robustness and execution
speed.

Once the 𝑓0 information is extracted from our original audio,
we can start shifting it to match the pitch contour of our three
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(a) We first extract the 𝑓0 using
RVMPE.

(b) Based on our MIDI data
computed by Basic Pitch, we

segment the 𝑓0 curve by looking
at each note onset.

(c) We obtain a four-part
harmony from the Anticipatory

Music Transformer.

(d) We shift the 𝑓0 curve for each
note of every voice, and obtain

four distinct curves.

Figure 2: Segmentation and 𝑓0 shifting process for our au-
tomatic harmonization.

harmony voices. Our approach for this task is straightforward:
We first detect the onset of each note and delimit our 𝑓0 curve
based on those points, then shift the input curve.

Formally, given an input curve 𝑓 𝑖𝑛0 and a sequence of 𝑁 MIDI
notes e1:𝑁 with e𝑖 = (t𝑖 ,h𝑖 ) (where we simplify the original
AMT notation and consider that t𝑖 and h𝑖 respectively refer to
the onset time of the note and the difference in semitones between
the input note and the harmony voice), we have:

𝑓 𝑜𝑢𝑡0 =


𝑓 𝑖𝑛0 (𝑡) · 2h1/12, 𝑡1 ≤ 𝑡 < 𝑡2
𝑓 𝑖𝑛0 (𝑡) · 2h2/12, 𝑡2 ≤ 𝑡 < 𝑡3
.
.
.

𝑓 𝑖𝑛0 (𝑡) · 2h𝑁 /12, 𝑡𝑁 ≤ 𝑡

An overview of our pitch shifting approach is presented on
Figure 2.

2.4 Voice Synthesis with RVC
We finally perform voice synthesis using the new 𝑓0 curves cal-
culated as described above for each harmonic voice. For this step,
RVC requires us to use a pre-trained vocal model that contains an
index file of HuBERT embeddings, as well as weights for the fea-
ture encoder, normalizing flow, and HiFi-GAN vocoder as shown
in Figure 1. This requires us to train the user’s voice model before-
hand. Once this model is trained, we can use both the modified
𝑓 𝑜𝑢𝑡0 curve for each voice as well as the extracted HuBERT embed-
dings for the input audio to condition the synthesis of each vocal
line. With this pitch conditioning, RVC allows us to preserve
the formant and timbre of the original audio, while following
the provided pitch information, thus producing natural-sounding
harmonies that maintain the characteristics of the original singer.

Once the audio is generated for every additional vocal line, we
can add them together and retrieve the final harmonized vocal
line.

Figure 3: Comparison of inference times on machines run-
ning CUDA and MPS, with a 10-second audio input.

3 Results & Discussion
We tested our system on a variety of audio inputs and obtained
highly convincing results. While the system demonstrates sig-
nificant power, its complexity poses challenges for real-time
adaptation as a musical instrument. To facilitate future research
on adapting similar systems into real-time performance settings,
we provide the results of our experiments, focusing on inference
speed across different hardware configurations.

Our tests were conducted on two machines: An RTX 4090
GPU Machine running Ubuntu 22.04 and a M3 Max MacBook
Pro running macOS 14.5. Figure 3 presents the inference time
of each system component. Notably, our results indicate that
inference on the CUDA-powered machine is significantly faster
than on the MPS-based MacBook. This discrepancy appears to
stem from a known issue in the PyTorch library, where iterative
inferences–essential for autoregressive models like AMT–lead
to substantial memory leaks, ultimately causing performance
slowdowns.5

Despite this, our findings are encouraging: on the CUDA sys-
tem, a full iteration of the model for a 10-second audio input
completes in under six seconds on average. Achieving similar
performance on the MacBook Pro may be possible by optimizing
AMT inference times. The second most time-consuming step is
the 𝑓0 calculation, which could likely be accelerated by replacing
RMVPE with a more efficient model, like PESTO [17]. Further im-
provements could be gained by training a unified model capable
of simultaneously predicting both the 𝑓0 and a MIDI transcription
from the audio input.

Looking ahead, we envision this technology playing a crucial
role in real-time musical performance. While further optimiza-
tions are necessary, real-time pitch tracking systems and im-
provements to the Music Transformer architecture could enable
harmonization at speeds faster than real-time.

5See the open PyTorch issue on GitHub: https://github.com/pytorch/pytorch/issues/
91368.
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4 Conclusion
In this paper, we introduced the AI Harmonizer, a novel sys-
tem capable of autonomously generating four-part vocal har-
monies without user-provided harmonic input. By leveraging
state-of-the-art AI models, our framework successfully arranges
input melodies into rich choral textures. Our experimental re-
sults demonstrate the effectiveness of our approach in producing
musically coherent harmonies that preserve the vocal charac-
teristics of the original singer. Additionally, our performance
analysis across different hardware configurations highlights the
system’s potential for real-time application, particularly with
optimizations in pitch tracking and inference processes. Despite
the system currently operating offline, these advancements rep-
resent a significant step toward AI-assisted vocal performance
and expressive musical augmentation. Future work will focus on
refining the harmonization process for broader musical contexts
beyond SATB chorales and exploring interactive performance ap-
plications. We also intend to investigate the potential for machine
learning models that further bridge the gap between symbolic
and audio representations. By continuing to push the boundaries
of AI in music, we hope to empower artists with innovative tools
that expand creative possibilities in both composition and live
performance.

5 Ethical Standards
There are no observed conflicts of interest. The research was
funded using discretionary funding and used lab-owned com-
pute power for the training of the model. Consent by the vocal
performer was obtained before training a voice model and dis-
tributing the vocal audio recordings.
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