
Tapping Into a New Paradigm: A Synthetic Strategy for
Automatic Drum TapScription

André C. Santos
andresantos@dei.uc.pt

CISUC - University of Coimbra
Coimbra, Portugal

Amílcar Cardoso
amilcar@dei.uc.pt

CISUC - University of Coimbra
Coimbra, Portugal

Matthew E. P. Davies
Independent Researcher

Portugal

Roger B. Dannenberg
rbd@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Figure 1: Desk drumming, a form of tapping or drumming on a surface, often using the hands to create rhythmic sounds, is
typically seen in informal, creative contexts.

Abstract
We introduce Automatic Drum TapScription (ADTS), a novel
paradigm for rhythmic interaction consisting of transcribing
arbitrarily-timbred taps into drum representations. Our approach
targets taps produced on a variety of surfaces without other
controlled timbral characteristics other than playing style. Our
long-term goal is to enable more accessible and creative percus-
sive exploration, but this presents significant challenges due to
the minimal timbre variation between taps intended to repre-
sent different drum classes. To address these challenges, we take
the first steps toward achieving ADTS by designing an effective
dataset synthesis strategy. This strategy enables new opportuni-
ties for musical expression by considering drumming at a more
semantic or functional level as opposed to a simple collection of
timbres.We present initial results, comparing three different mod-
els: one trained on drum data, another trained on a small dataset
of quasi-aligned tapped performances, and another trained on
our synthetic dataset. Our synthetic approach shows promise,
demonstrating progress in this untapped domain.
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1 Introduction
Among the many ways of interacting with music, rhythm-based
interactions - such as feeling the beat by nodding, clapping, or tap-
ping - are arguably themost instinctive [19]. This is not surprising
- we are inherently rhythmic beings. Our heartbeat, breathing,
and walking pace, three essential and omnipresent aspects of our
lives, are all rhythmic [9, 13, 17, 18]. Among rhythmic interac-
tions, a more complex form is the replication or improvisation of
rhythmic patterns or grooves via finger tapping, desk drumming
(see Figure 1) or even air drumming. Indeed, any solid surface is
capable of serving as a percussive vehicle for conveying rhythmic
ideas.

However, very little work has been done to study or capitalize
on this common rhythmic expression form. Given the signifi-
cant recent advancements in deep audio and rhythmic modelling
techniques [3, 16] we consider rhythm-based interaction to be a
promising area for exploration. For example, O’Reilly et al. [22]
demonstrate this type of interaction by taking advantage of De-
script Audio Codec (DAC)’s [16] modeling capabilities and lever-
age a masked token training approach to present The Rhythm
in Anything (TRIA), “a system for mapping arbitrary percussive
sound gestures to high-fidelity drum recordings”. However, it
still is a preliminary approach and as such has limitations that
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may hinder user experience, namely the controllability, repeata-
bility and editability aspect of the system. In previous work, we
showed that off-the-shelf drum timbre transfer does not work
well for every type of percussive timbres [25]. To make the most
of this interaction, we argue for a hybrid combination of symbolic
and audio approaches. Symbolic representations are much easier
to represent, manipulate and control but may lack expressivity
when compared to raw audio recordings. Audio representations,
by contrast, capture expressive subtleties of performance but are
much more challenging to manipulate while preserving audio
quality.

In this work, we focus on the symbolic aspect of this inter-
action and propose a new task, Automatic Drum TapScription
(ADTS), to lay the foundation for the study of this kind of rhyth-
mic interaction. ADTS is similar to Automatic Drum Trancription
(ADT), however it is not a direct transcription because the dif-
ferent input sounds (e.g., taps on a desk) are not expected to
be perceptually similar to the target drum sounds (e.g., a snare
drum). Furthermore, a practical motivation for initially focusing
on transcription rather than direct audio-to-audio transformation
is the availability of data. Audio-to-audio models typically require
vast amounts of training data, and, to our knowledge, there are
no existing paired datasets of arbitrarily timbred tapped rhythms
and their corresponding drum patterns. So we first establish a
robust data synthesis strategy to tackle ADTS which can then
serve as a foundation that facilitates the future extension of our
approach to audio-to-audio models. Our data synthesis strategy
is used to extrapolate upon an initial dataset of just 22 minutes
of tapped audio recordings.

The paper is structured as follows: in Section 2 we review ADT
and other relevant work in the field of symbolic drum generation;
then, in Section 3 we formally define ADTS, address some of
its challenges and particularities, and outline some potential
applications. In Section 4, we introduce our synthetic strategy to
address the lack of data: from obtaining a collection of one-shot
tap sounds to the actual synthesis process itself. We then present
our results in section 5 where we explain how we trained three
Temporal Convolutional Network (TCN) models on different
datasets and compare their performances. Finally, in Section 6 we
discuss our results, present conclusions, and identify promising
future work.

2 Related Work
2.1 Automatic Drum Transcription (ADT)
Automatic Music Transcription (AMT) consists in transcribing a
musical piece based on its audio. It can be thought of as reverse
engineering a musical performance, i.e., instead of having a score
and producing an audio output, transcription transforms an audio
recording into some symbolic representation (not necessarily a
traditional musical score).

ADT is then the machine learning task of transcribing drum
instruments. It was first introduced at MIREX 2005 as Audio
Drum Detection [30] and refined to its modern definition at
MIREX 2017 [23], advancing the SOTA with more recent Deep
Learning (DL) techniques.

Wu et al. [35] made a comprehensive review of ADT sys-
tems, arranging them into four categories: Segmentation-Based
approaches, Classification-based approaches, Language-Model-
based approaches, and finally Activation-based approaches. Here
we focus only on the latter group as it showed the highest overall
performance.

The rationale behind activation-based methods is to produce
an activation function that indicates the likelihood of a drum in-
strument being present along the duration of the recording. Given
this activation function, detecting events for each instrument
can be performed with simple peak-picking strategies, similar to
Onset Detection (OD) [1]. This approach can be further divided
into two different subcategories: matrix factorisation approaches
and DL. In general, Machine Learning (ML) approaches are data-
centric and seldom rely on any other previous information or
knowledge, other than the correct labelling of data. This also
makes their usability and overall performance dependent on the
training data which can lead to overfitting and hence poor gen-
eralization to unseen data. Nevertheless, they have proven to
be reliable at performing ADT, particularly Recurrent Neural
Networks (RNNs) [28, 31] and Convolutional Recurrent Neural
Networks (CRNNs) [32], which are apt at modelling time series
data. Other architectures like Convolutional Neural Networks
(CNNs) have also been employed successfully [14, 29], as well as
transformers and self-attention mechanisms [12]. Finally, TCNs
have also been gaining popularity in rhythm related tasks [6]
due to their efficiency and relatively high performance.

Recent developments have been made regarding unsupervised
learning approaches to try to circumvent the absence of large
enough labelled datasets required by supervised approaches.
Wang et al. [34] used a semi-supervised approach called few-
shot learning that can recognise previously unseen instrument
classes with minimal input from humans. Choi and Cho [5] were
able to compete with current SOTA systems using a completely
unsupervised approach. Another way to cope with the lack of
data is use data augmentation [20]. Rohit M A et al. [24] used
transfer learning techniques on current ADT models and relied
heavily on data augmentation to build a Tabla transcription sys-
tem. Efforts have also been made recently by building new large
datasets [4] which have been studied and data engineered to try
to build more robust and reliable ADT systems [11].

2.2 Symbolic Drum Generation
Within the field of symbolic drum generation, Gillick et al. [8]
pioneered a self-supervised approach to train Seq2Seq models.
They proposed and tackled novel tasks such as Humanization,
Infilling, and Tap2Drum. They also recorded a drum dataset, the
Groove MIDI Dataset (GMD), consisting of “over 13 hours of
recordings by professional drummers aligned with fine-grained
timing and dynamics information”. The dataset includes both
audio and symbolic files with velocity information across several
music genres, rhythmic patterns and drum fills. Tap2Drum in
particular can be considered the symbolic equivalent of ADTS:
a model is trained to infer a drum pattern and groove from a
monophonic sequence of note hits. This is not trivial because of
sound superposition and absence of timbral information.

The work by Gillick et al. allowed for exciting further explo-
rations in terms of symbolic drum generation, namely in terms of
generation and continuation [21], as well as infilling and variation
[10]. In [21], the authors explored transformers for generating
and continuing symbolic drum patterns. The results are compa-
rable to human drummers. Then, in [10], Haki et al. provided a
creative use of this approach by iteratively generating variations
of a given drum pattern via infilling. This allows for creative
exploration of several rhythmic patterns by users.
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3 Automatic Drum TapScription (ADTS)
Inspired by [33, 35], we now define the task of ADTS, its chal-
lenges and particularities, and some application scenarios in
subsections 3.1, 3.2 and 3.3, respectively.

3.1 Task Definition
Following [33], the task of Automatic Drum Trancription (ADT)
is defined as follows:

Drum transcription is the task of detecting the
positions in time and labelling the drum class of
drum instrument onsets in polyphonic music.

Adapting that definition, we can then define the task of ADTS as:
Drum TapScription is the task of detecting the
positions in time and labelling the drum class of
arbitrarily-timbered tapped onsets in percus-
sive inputs, assuming an underlying drum pat-
tern.

As with early work in ADT, we consider only Kick Drum (KD),
Snare Drum (SD) and Hi-Hat (HH), but more drum classes can
be added in the future.

Evaluation: The primary evaluation metric is the F-measure
[26], computed separately for each drum type (KD, SD, and HH)
and as a total F-measure across all instrument classes. The F-
measure is the harmonic mean of precision and recall, with 𝛽 = 1,
meaning equal importance is given to both. Onset deviations (be-
tween estimated note position and ground truth) are considered
correct if they fall within a ±20 ms tolerance window.

3.2 Challenges and Particularities
Desk drumming or finger tapping is a subtle skill. For one, em-
ulating a drumkit with only two hands is inherently limited,
so conveying the idea of a groove requires some learning. Indi-
vidual taps may sound similar in isolation, but when executed
with musical skill, a groove emerges when considered in context.
This subtlety is one of the greatest challenges of ADTS: intra-
pattern timbre differences can be negligible, whereas in a real
drum kit, each class is generally timbrically distinct. In other
words, a regular KD sounds much more different from a regular
SD than a “tap” KD from a “tap” SD. Figure 2 highlights how
much clearer the frequency activations are for an original drum
recording compared to its tapped performance, underscoring the
difficulty of classifying hits. This challenge is inherently linked to
the tapper’s performance and the temporal structure of a tapping
pattern. This makes incorporating temporal structure into ADTS
models crucial in our opinion. That is why we use a TCN, hoping
that this type of architecture is able to capture longer temporal
dependencies than other architectures (e.g. CNNs).

Conversely, and somewhat paradoxically, considering the nearly
limitless combinations of playable surfaces, recording conditions,
user playing styles, or props used (e.g. drumsticks, pens, specific
different timbred objects such as a glass), inter-pattern timbre
differences may be much larger for ADTS than for ADT. In other
words, two different tapping surfaces might be much more dif-
ferent than two different drumkits. Pairing that with accommo-
dating both proficient tappers and beginners, generalizability
becomes a serious challenge. This evokes a need for robustness
in ADTS systems. We believe that considering relative timbre
differences is paramount to address this challenge in ADTS.

Finally, there is no perfectly aligned, large-scale dataset of
tapped performances and corresponding drum patterns. This

makes it difficult to apply traditional DL strategies, even though
we know this type of approach yields the best results in ADT
and other music analysis tasks like Source Separation (SS) [7, 35].
One can always record an aligned dataset of tapped patterns and
drum patterns, but given the meticulousness with which such
a dataset needs to be created (e.g., near-perfect-time alignment,
recording conditions, different playing styles), recording a dataset
like this seems to be an extremely arduous task. One solution is
to automatically synthesize a dataset from a smaller set of tapped
recordings. In Section 4, we detail our strategy for synthesizing
a paired tapped dataset to enable traditional supervised learning
approaches.

3.3 Interaction Potential and Application
Scenarios

While it is true that one can reliably and accurately go from
tapping to MIDI drums via drum pads (an interaction known as
finger drumming; not to be confused with finger tapping nor
desk drumming), we argue that ADTS can complement or even
surpass this form of interaction - especially when paired with
further timbre transfer techniques - for the following reasons:
accessibility, expressivity, creativity, and innovation in musical
education.

First, by decoupling the interaction from specialized hard-
ware such as drum pads, conveying rhythmic ideas using only
a smartphone’s or computer’s microphone becomes accessible
to almost anyone - like having a plug-and-play virtual drumkit
in your pocket at all times; a “drummer’s sketchbook”, if you
will, allowing drummers to tap out preliminary ideas for drum
patterns, which can later be refined in a DAW or recorded with a
traditional drum kit.

Second, by not being limited by physical buttons or touch
surfaces, users can enhance their expressivity with subtleties
via their playing style. Furthermore, one can also explore every
kind of surface as a potential percussive vehicle, leading to ex-
perimentation in the timbre space of the surfaces used and how
they are struck. This experimentation and subtleties can later be
captured as well by timbre transfer audio models [3]. A method
for accurate ADTS would enable more precise control of similar
models.

Third, this new paradigm might elicit new creative mediums,
input sounds, playing styles, recording conditions, or collabo-
rations. For example, after achieving ADTS, it is not hard to
imagine a system that can assist in rhythmic pattern variation or
continuation in the symbolic domain [10, 21].

Finally, by pairing an ADTS system with musical notation, we
can see the potential a tool like this can have in teaching rhythm
and drumming concepts to students.

4 Dataset Synthesis
The goal of this section is to describe the synthesis of our dataset
by detailing the motivation behind our approach, the methods
employed to classify and extract one-shot tap sounds, and the syn-
thesis process used to generate natural-sounding tap sequences.
The purpose of the dataset creation step is to produce a large
amount of synthetic tapped rhythmic patterns that can be used
to train a supervised model for ADTS. A particular challenge is
to produce "natural-sounding" synthetic tap sequences that are
perceptually similar to real recordings of tapped rhythms.
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Figure 2: Intra-pattern similarity. Top row: Original drum recording from GMD; Middle row: quasi-aligned tapped recording
of the same pattern; Bottom row: Corresponding MIDI file - The colour code is as follows: KD in red, SD in green, and HH
in blue.

Peak Amplitude Loudness Sound Pressure Level (SPL) Spectral Centroid Temporal Centroid Spectral Flatness

KD 55.70 55.88 27.41 1189.70 55.84 55.92
SD 67.73 67.89 16.14 1201.75 67.87 67.94
HH 67.41 67.55 19.07 1150.99 67.53 67.59

Table 1: Wasserstein-1 distances (EMD) between predicted and ground-truth distributions for each normalized audio feature
across three drum classes: kick drum (KD), snare drum (SD), and hi-hat (HH). Since all features and velocity values were
normalized prior to distance computation, the reported EMD values are unitless. SPL consistently achieves the lowest EMD,
indicating it is the most effective feature to map to the MIDI notes’ velocity.

4.1 Core Idea
The GMD [8] provides not only raw drum recordings but also
corresponding MIDI files. Our objective is to synthesize these
MIDI files using appropriate - i.e. with the correct drum class
- one-shot tap sounds, creating a dataset of corresponding tap
sequences. However, a fundamental challenge arises: how to
classify tap sounds accurately when the very model we aim to
train requires labeled taps to begin with — creating a circular
problem.

4.2 Obtaining Labeled Tap One-Shots
We explored two different approaches to obtain labeled one-shot
samples: One method involved recording a continuous stream
of tap performances, then manually listening to each tap and
labeling it as KD, SD, or HH. However, this approach proved to be
time-consuming, highly subjective, and prone to errors, making
it impractical for large-scale dataset creation. A more efficient
approach involved the first author (an experienced drummer)
recording a small set of tapped performances while listening to
the corresponding audio drum tracks from the GMD dataset. This
method of learning and playing by ear is common among drum-
mers. By doing so, we obtained a paired dataset of 22 minutes
with each tap sound aligned with its corresponding labelled MIDI
event.

To expand this dataset further, we extracted individual one-
shot samples from the recordings. Since each tap was performed
while listening to a drum track, the classification of each one-shot
was inherently known. However, real-world recordings intro-
duce imperfections, such as timing mismatches and variability
in performance. To refine our dataset, we employed a systematic
method:

(1) Calculate the onset times of all recorded taps using Onset
Detection techniques from the madmom library [2].

(2) Match each onset to its nearest MIDI note and discard any
onset that does not align with a MIDI note, assuming it
results from a performance mismatch.

(3) Retain onsets that fall within a MIDI note’s duration.
(4) Resolve cases where multiple onsets overlap a single MIDI

note using a hierarchical priority: KD > SD > HH because
it is the instrument class hierarchy present in the GMD
dataset.

In the end, we ended up with a total of 9124 tap one-shots, of
which 2273 were labeled as KD, 3883 as SD, and 2968 as HH.

4.3 Synthesis Process
4.3.1 Incorporating Velocity Information. Directly applying one-
shot samples without incorporating velocity variation can result
in monotonous and unrealistic drum sequences. However, one
of the major advantages of the GMD dataset is the inclusion of
MIDI velocity data (because the dataset was recorded directly
by drummers on an electronic drum kit), which provides infor-
mation about the intensity of each drum hit. To improve the
realism of our synthetic examples, we mapped MIDI velocity
values to a set of audio features extracted from our one-shot sam-
ples. Inspired by [27], we analyzed several features, including
Peak Amplitude, Loudness, Sound Pressure Level (SPL), Spectral
Centroid, Temporal Centroid and Spectral Flatness.

To determine which audio feature best mapped to velocity,
we analyzed the distribution of MIDI velocities across all drum
classes and computed each candidate feature for all one-shot
samples, categorized by class. In order to compare velocity and
feature distributions, we normalized the velocity values as well
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as those of each feature to a range between [0, 1]. We then cal-
culated the Wassertein-1 distance (or Earth Mover’s Distance)
between the MIDI velocity histograms and the corresponding
feature distributions to assess their alignment. A total of 249737
MIDI notes were analyzed (KD: 158407, SD: 47194, HH: 44136) as
well as all of the one-shots we recorded. The results are shown
in Table 1.

As can be seen, we found that SPL offered the best mapping,
preserving the dynamic range. SPL quantifies the perceived loud-
ness of a sound, expressed in decibels (dB), by comparing the root
mean square (RMS) pressure of the sound wave to a standard
reference pressure. It can be mathematically defined as:

SPL = 20 log10
©«
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where 𝑥𝑖 denotes the audio samples, 𝑁 is the total number of
samples, and 𝑝ref = 20 × 10−6 Pa represents the reference sound
pressure level in air (20 µPa), corresponding approximately to the
threshold of human hearing. This ensures that higher-velocity
MIDI notes correspond to louder, more forceful taps, preserving
the intended dynamics of the performance.

We omit the other histograms for the sake of brevity, but in Fig-
ure 3 we can see the overlapping histograms for the normalized
velocity and SPL values for the three classes.

4.3.2 Final Mapping Strategy. To work towards a natural and re-
alistic tap sequence, we employed a systematic mapping strategy.
First, both MIDI velocity values and SPL values were normalized
to a range of [0,1], ensuring comparability. Then, for each MIDI
event, we selected the one-shot sample whose SPL value was clos-
est to the corresponding MIDI velocity, effectively performing a
linear mapping between the two. To prevent unnatural silences
that could manifest as gaps in the spectrogram, we ensured that
the selected one-shot sample had a duration at least as long as
the MIDI note it represented.

5 Evaluation
This section evaluates our proposed approach, focusing on model
training and a comparison between different trained models. We
assess how well our prototypical ADTS learns from the synthe-
sized dataset and analyze its performance against an ADT model
we trained on the GMD dataset, and another model trained on
the small set of recorded tapped performances. Since there is
no other ADTS system against which we can evaluate our own,
conducting a standard evaluation process is challenging.

5.1 Model Training
5.1.1 Dataset Preparation. The resulting dataset consists of 315
examples, totaling 11.2 GB of data and approximately 8 hours
and 47 minutes of audio. All audio files are uncompressed WAV
format, 44.1 kHz sample rate, 64-bit resolution, mono. The dataset
was split into training (80%), validation (10%), and test (10%) sets.
For the Synthesized-GMD (S-GMD) dataset, we excluded all ‘fill’
examples as they were too short and did not align with our
hypothesis that the structure of drum patterns plays a crucial
role.

5.1.2 Training Procedure. We chose a TCN [6] architecture due
to its efficiency, parallelizability, and ability to account for tem-
poral context. We used [15]’s pytorch implementation.

The input features were extracted using the madmom’s
LogarithmicFilteredSpectrogram with the following param-
eters:

• Frame rate: 100 fps
• Minimum frequency: 30 Hz
• Maximum frequency: 15000 Hz
• Frame size: 2048
• Sample rate: 44100 Hz
• Bands per octave: 12
• Channels: mono
• Normalized filters: True

The model architecture consists of a TCN. The specifications
were manually fine-tuned when training the model for ADT:

• Input channels: 79
• Hidden layers: [69, 59, 49, 39, 29, 19, 9, 3]
• Kernel size: 5
• Custom dilations: 1, 3, 9, 27, 81, 243, 729, 2187
• Dropout rate: 0.15
• Activation function: ELU
• Output projection: 3 (one per drum class)
• Output activation: Sigmoid
• Causal: False
• Input shape: NLC

Finally, for peak-picking, we used madmom’s implementation
with the following parameters:

• Threshold: 0.05
• Smoothing: 0.0
• Pre-average window: 0.01s
• Post-average window: 0.01s
• Pre-max window: 0.02s
• Post-max window: 0.02s
• Combine window: 0.02s
• Frame rate: 100 fps

The dataset split ensured that the test set remained held out for
final evaluation. We also applied early-stopping, with a patience
of 10 epochs. The model training was conducted on an NVIDIA
GA104M [GeForce RTX 3080Mobile /Max-Q] (8GB/16GBVRAM),
with an average training time of approximately one hour.

5.2 Results
In total, we trained the same TCN model (with the specifica-
tions above) on three different datasets: the original drums GMD
dataset; our small collection of paired tapped recordings which
we call our Quasi-Aligned (Q-A) dataset because of timing mis-
matches between the playing and the original drum patterns,
and objective limitations of using only two hands while emulat-
ing a drumkit; and our S-GMD dataset, obtained by employing
our strategy of section 4. In table 2, we can see how each of the
trained models fares across datasets.

As expected, the models trained on tapped datasets fare poorly
when trying to performADT and themodel trained on GMD fares
pretty well (F-Measure = 0.824). However, our results show that
a model trained on a standard drums dataset cannot solve ADTS
when applied directly to a tapped dataset, neither the live record-
ings nor the synthesized dataset. We can also see that the model
trained on the S-GMD achieved good results on synthesized
tapped sequences, achieving an F-Measure of 0.711. However,
when considering real-world tap recordings, scores drop signifi-
cantly. This attests to the difficulty of ADTS. The model trained
on the Q-A performs poorly across the board, demonstrating that
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Figure 3: Overlapping histograms of the normalized velocity and SPL values for the three classes. We can see how SPL can
be suitable for mapping velocity information.

Test dataset GMD Q-A S-GMD
Training dataset GMD Q-A S-GMD GMD Q-A S-GMD GMD Q-A S-GMD

Precision 0.862 0.352 0.119 0.324 0.390 0.192 0.403 0.270 0.657
Recall 0.868 0.283 0.401 0.142 0.238 0.439 0.291 0.163 0.908

F-Measure 0.824 0.108 0.125 0.093 0.198 0.206 0.245 0.056 0.711
Table 2: Evaluation results for the TCN model using different dataset combinations. Q-A stands for “quasi-aligned dataset".

access to a large dataset is needed. This is evidenced when we
directly compare the S-GMD model to the Q-A model: the Q-A
model performs very poorly on the S-GMD dataset, whereas the
S-GMD model performs adequately in this scenario. Conversely,
even though the Q-A dataset improves performance on its own
dataset, our model trained on only synthetic examples is on par
and even surpasses the model that was trained specifically for
that dataset, achieving the best F-Measure = 0.206. Considering
we did not use any data augmentation techniques, which can
help with the overall generalization of our model, these results
show promise and warrant further research in our opinion.

6 Discussion and Conclusions
In this paper, we have introduced a new music analysis task:
Automatic Drum TapScription (ADTS). It consists in obtaining a
drum symbolic representation from arbitrarily-timbred percus-
sive sounds. It is a novel and yet to be solved task, mainly because
relative timbre differences are less noticeable than in traditional
ADT and because of the shortage of data. To address this, we de-
veloped a strategy to synthesize a paired dataset between tapped
versions of drum patterns and their symbolic counterparts from
a collection of labeled one-shot taps, obtained by processing a
small dataset of paired tapped recordings. The drums dataset
used for the recordings and the synthesis was the GMD. Finally,
we trained three TCN models, all with the same specifications,
on three different datasets: the original GMD dataset, the small
quasi-aligned tap recordings, and our synthetic tapped sequences
(which we called S-GMD).

From the results, we can conclude that: 1) The model trained
on the GMD (i.e. trained to solve the task of ADT) is ineffective for
ADTS; 2) the model trained on our synthetic dataset has a much
better performance on synthetic tapped pattern examples; 3) All
models have poor performance on real-world tapped recordings,
however, the model trained on the synthetic dataset exhibits the
best performance. Essentially, each model overfits to the type of
data it was trained on, reinforcing the challenge of generalizing
to out-of-dataset tap timbres, as discussed in subsection 3.2. As

for the reasons why this is so, we suspect that, since the one-
shots used were directly processed from the same recordings,
the synthesis process might still be producing hardly perceptible
artifacts which might affect out-of-distribution inference.

In that sense, we believe that a great deal of improvements can
be made, both to the dataset synthesis and the model definition
and training process itself. First and foremost, data augmentation
techniques such as reverb augmentation, consisting of simulat-
ing different acoustic environments; noise injection consisting
of adding background noise to enhance generalization; pitch
shifting consisting of introducing slight variations in pitch to
mimic natural drum resonance; and temporal jittering consisting
of slightly varying onset times to emulate human performance
nuances may improve performance on in-the-wild examples. A
percentile-based mapping between velocity and SPL can also
improve dataset synthesis. Furthermore, performing hyperpa-
rameter fine-tuning should also help with generalizability. In
addition to that, tweaking peak-picking thresholds and param-
eters, a crucial part of activation-based ADT systems, should
enable more balanced scores between precision and recall. Fi-
nally, studying and applying data representations other than
frames, such as beats, might help reduce the sparsity of the data
and in turn improve the balance between recall and precision.

Beyond these improvements, we believe that further work is
warranted, namely testing other DL architectures such as CNNs
and comparing them with TCN models. Doing so would be able
to test the hypothesis of the need for a larger temporal context
for ADTS vs ADT. It could also be interesting to test how fast
the inference can be and see if an ADTS model can be applied to
real-time applications. Finally, having a reliable ADTS system can
allow more precise and controllable percussive timbre transfer
downstream.

7 Ethical Standards
This research did not involve human or animal experimentation.
The tapped drum pattern recordings used in this study were per-
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