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Figure 1: An abstract, symmetrical representation of a drummachine capable of generating audiowaveforms from sequencer
parameters and inferring sequencer parameters from audio waveforms.

Abstract
The Drum Machine of Tao (Tao) is a machine learning–based
system that reverse-engineers sequencer parameters and one-
shot percussive samples from drum loops, restoring low-level
editability to sampled loops that would otherwise be frozen in
audio waveforms. The philosophy behind this system is inspired
from Taoism: that which returns to its primal state is the great
Way of Tao. In this paper, we present the system design of Tao,
which includes a state-of-the-art drum source separation model,
a sequencer parameter estimation model, and a bespoke one-shot
sample extraction algorithm that leverages differentiable audio
synthesis. Results from a prototype are available for listening1.
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1 Introduction
Sample-based drummachines and sequencers (e.g. AkaiMPC3000
[7], Elektron Digitakt[5], etc. ) have been instrumental to elec-
tronic and hip-hop genres music production for decades. These
systems allow musicians to craft intricate rhythms by program-
ming multiple tracks of sequences (e.g. three tracks of sequences
for kick, snare and hihats respectively), and triggering the corre-
sponding one-shot percussive samples in time with the running
sequencer, providing accessible and creative music control. How-
ever, once a drum loop is bounced or sampled into an audio
waveform file, the inherent flexibility for further low-level ma-
nipulation, such as hot-swapping the one-shot kick sample or

1https://red-x-silver.github.io/the-drum-machine-of-tao/
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changing the sequencer patterns while keeping the same one-
shot samples, is often lost. Musicians may find themselves con-
strained by the limitations of static, frozen loops, which lack the
fine-grained editability required for more nuanced or evolving
rhythm structures. On another note, the concept of making new
developments on static music samples has always been impor-
tant in electronic music, as artists seek to transform pre-existing
material into something uniquely their own. In some cases, the
use of unmodified samples is viewed as uncreative or unoriginal.
Pioneering artists have mentioned that the sense of ownership
of a music sample only occurs when it is deconstructed and re-
configured into something new [10]. The limitations of static,
pre-sampled drum loops could impede the controllability required
to personalize the original source material.

We propose the Drum Machine of Tao (Tao) to address this
challenge by adopting machine learning techniques and reverse
engineering the original representation (i.e. multitrack sequencer
parameters and one-shot percussive waveforms) of a sampled
drum loop. Sequencer parameters for a single track (e.g. the kick
track) of 8 steps could, in its simplest form, be represented as a
one-dimensional list of binary numbers (e.g. [1, 0, 0, 0, 1, 0, 0, 0] ),
where each number indicates the triggering state of the one-shot
sample at each step. We refer to these lists as sequence activation
steps, and together with tempo, they form the parameter space of
a basic sequencer. Sequencer parameters and one-shot samples
can also be viewed as disentangled representations of a drum
loop - the former contains rhythmic information and the latter
captures timbral characteristics. Drawing inspiration from Taoist
philosophy, which emphasizes on returning to a primal state as a
path toward fullness, Tao restores the low-level music interaction
with sampled drum loops by estimating and extracting their
elemental programmable sequences and percussive components.
In the following sections, we discuss related works on drum loops
information retrieval, followed by presenting our system design,
implementation, and reflections with proposed future works.
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2 Related work
Research areas relevant to drum loop sequencer parameter es-
timation include Drum Transcription of Drum-only recordings
(DTD) and Beat Detection (BD), both of which aim to extract
rhythmic information from drums-only recordings. DTD focuses
on transcribing a drum-only recording into a sequence of times-
tamps marking when each percussive component is struck. Its
primary goal is to extract onsets and classify them into specific
percussive component categories [6, 14, 16]. Beat Detection (BD),
on the other hand, aims to detect beats, the evenly spaced basic
rhythmic units, within music recordings. The difference between
DTD and BD is that BD focuses on detecting beats, which are
not always onsets, while DTD detects onsets, which do not nec-
essarily coincide with the beats [4].

Works related to one-shot percussive sample extraction in-
clude Drum Source Separation, a sub-category of music source
separation that takes a drums-only recording as input and out-
puts separated stems for each predefined percussive component.
State-of-the-art drum source separation systems include Demucs
[11] and LarsNet [8], both of which utilize deep learning tech-
niques and provide publicly available pre-trained models.

Other non-generative applications involving drum loops, such
as loop compatibility modeling, typically derive latent codes
learned through neural networks as a compact representation
for downstream tasks [2, 3, 15]. These compact representations
of drum samples are computationally efficient, but they offer
limited interpretability.

There is existing software that offers drum loop slicing func-
tionality, including ReCycle[13] and Regroover[12]. ReCycle ap-
plies transient detection directly to sampled drum mixes and
creates slices that may contain overlapping percussive elements.
Regroover (now discontinued) applies source separation to the
mix and enables user-controlled slicing. Their source separa-
tion algorithm produces different "layers," but without assigning
specific percussive roles to each layer.

3 System design
3.1 Overview
During inference, Tao consists of four key components: a drum
source separationmodel, a sequencer parameter estimationmodel,
a differentiable rendering module, and a one-shot sample extrac-
tion module. As shown in Fig. 2, processing begins with the first
two models in parallel, followed by one-shot sample extraction
using the rendering module. See below for details on each com-
ponent.

• A drum source separation model that demixes the drum
loop into single percussive stems (e.g. kick stem, snare
stem, hihats stem, etc.).

• A sequencer parameter estimation model that takes the
drum loop mix as input and predicts the tempo as well as
the onset times for each percussive track. The estimated
onset times are then quantized into step vectors, according
to the estimated tempo.

• A differentiable rendering module that takes tempo, step
vectors, and one-shot percussive samples as input, and
synthesizes percussive stems in audio waveform using
differentiable 1𝐷 convolution.

• A one-shot sample extraction algorithm that operates per
stem by first listing candidate one-shot percussive samples
based on the estimated activation steps and the separated

stem, then reconstructing the stem via the differentiable
rendering module, and finally selecting the one that best
reconstructs the separated stem according to a given cri-
terion.

The final output of Tao consists of an estimated tempo, an esti-
mated step vector and extracted one-shot sample for each percus-
sive track. The proposed interface of Tao would be similar to any
sample-based drum machine with a sequencer (e.g. a web-based
TR-8082 as shown in Fig. 3) — the estimated tempo, activation
steps and extracted one-shot samples can be loaded back into the
drum machine, and the sequencer is ready to run. This allows
users to gain low-level editability, enabling them to transform the
input drum loop (e.g. changing the rhythmic patterns while re-
taining the original one-shot samples, hot-swapping the one-shot
samples, etc. ) with full accessibility.

Figure 2: System diagram of Tao, depicting the pipeline
with four key components. Note that during inference, the
output from the differentiable rendering module is not the
final system output; it is used solely to inform the one-shot
sample extraction process.

3.2 Implementation
Our current Tao implementation is python-based and uses li-
braries including PyTorch3and Madmom4.

3.2.1 Drum source separation. For the drum source separation
model, we adopt the publicly available Drumsep model trained
by Jarredou and Aufr335. It is a Demucs model [11] trained on a
customized drums dataset curated by Jarredou6. The Drumsep
model takes two-channel audio at a 44100 Hz sample rate as input
and outputs 6 audio stems of the same length as the input. We
include the Resample API from Torchaudio7 as a pre-processing
step for input drum loops with sample rates different from 44100
Hz. As for mono input, we convert it into a two-channel signal
by duplicating the single channel. The 6 output stems correspond
to kick, snare, tom, hihats, ride, and crash respectively. We imple-
ment a simple post-processing step where we sum the hihats, ride
and crash stems into a single stem that represents the broader
range of cymbals.

2https://roland50.studio/
3https://pytorch.org/
4https://github.com/CPJKU/madmom
5https://github.com/jarredou/models/releases/tag/aufr33-jarredou_MDX23C_
DrumSep_model_v0.1
6https://rigaudio.fr/datasets/DrumsDatasetv2.zip
7https://pytorch.org/audio/main/generated/torchaudio.transforms.Resample.html
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Figure 3: A screenshot of the interface of a web-based TR-
808 drummachine, showing sequencer parameters such as
tempo and step vectors, but excluding one-shot percussive
samples.

3.2.2 Sequencer parameter estimation. Our experiment begins
with a standard 8-step sequencer featuring three percussive
tracks: kick, snare, and hi-hats, a common configuration in elec-
tronic music production. The global tempo range is [60, 200].

Model. We adopt a CRNN architecture similar to that of the
ADTOF [16] drum transcription model consisting of a Convolu-
tional Neural Network (CNN) and a Recurrent Neural Network
(RNN) with Gated Recurrent Unit (GRU) layers. The input to the
CNN is a spectrogram of a drum loop mix, which has 512 samples
per frame and 100 frames per second. The frequency bins are
transformed to a logarithmic with 12 triangular filters per octave
between 20 and 8000 Hz. The input is forwarded to 4 convolu-
tional blocks followed by 3 bi-directional GRU layers with 60
hidden units each. A final fully connected layer maps the feature
dimension into the number of tracks (i.e. 3 in our Tao sequencer).
The frame dimension remains unchanged throughout the CRNN
forward pass. The immediate output from the CRNN is the pre-
dicted level of confidence in individual track’s onset presence
in each frame (an onset envelop in the frame dimension), which
does not tell the exact discrete onset times. A post-processing
step is applied after training the model to threshold the onset en-
velops into onset activation vectors, for which we adopt a simple
peak-picking algorithm (with Madmom implementation) used in
previous works [1, 16].

Additionally, we customize the CRNN for tempo estimation
by attaching an extra fully connected layer with 141 neurons
to the last GRU layer’s output. The 141 neurons correspond to
the 141 possible integer tempo values ranging from 60 to 200, as
we cast the tempo estimation into a classification task. Two loss
terms are computed - we use binary cross entropy loss for the

estimated onset envelops and cross entropy loss for the tempo
estimation. The sum of the losses are used for optimization.

Dataset. To the best of our knowledge, no sequencer-info an-
notated drum loops dataset is available in the public domain.
One public dataset that is relevant to our study is the Freesound
One-Shot Percussive Sounds ([9]) which contains 10254 one-shot
percussive samples at a 16000 Hz sample rate for kick, snare and
hihats among other percussive elements. To tackle this limited
availability of datasets for training a sequencer parameter esti-
mation model, we design an original data synthesis pipeline in
Tao utilizing the publicly available one-shot sample dataset and
the abovementioned differentiable rendering module as shown
in Fig. 4. For synthesizing one drum loop, we randomly sample
an integer within the range [60, 200] to represent the tempo, 3
binary vectors of length 8 for activations over 8 steps, and 3
one-shot samples. A 1D convolution is then applied between the
one-shot samples and the activation steps leveraging the differ-
entiable rendering module for synthesizing the drum loop. The
randomly sampled tempo and step vectors are used as training
targets for each synthesized loop. All drum loops are zero-padded
to a length of 64000 samples which have 4 seconds of audio con-
tent at a 16000 Hz sample rate. This length ensures that even at
the slowest tempo of 60 bpm in our dataset, there will still be 4
beats of content in the drum loop.

This data synthesis pipeline allows for data synthesis on-the-
fly during training thanks to the parallelizability of the 1D con-
volution operation in the differentiable rendering module. It can
also theoretically create infinitely many annotated drum loops
as a means of data augmentation.

Figure 4: A diagram of Tao’s training data synthesis
pipeline.

Training. We train the CRNN on a NVIDIA 4080 Super GPU
for 50000 steps with a batch size of 64 and a learning rate of
0.0005, using ADAM optimizer. We use the abovementioned data
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synthesis pipeline for synthesizing a new data batch on-the-fly
at each training step.

3.2.3 One-shot sample extraction. Following the output (esti-
mated tempo and 3-track activation steps) from the previous
component, we convert the activated steps into a list of 𝐾 indices
in the sample space:

[𝑜𝑛𝑠𝑒𝑡0, 𝑜𝑛𝑠𝑒𝑡1, ..., 𝑜𝑛𝑠𝑒𝑡𝑖 , ..., 𝑜𝑛𝑠𝑒𝑡𝐾 ]. We form a candidate set
of one-shot samples by slicing the source-separated stem with
[𝑜𝑛𝑠𝑒𝑡𝑖 : 𝑜𝑛𝑠𝑒𝑡𝑖 +𝑁 ] where N is a pre-defined length for one-shot
samples. We use 𝑁 = 16000 in our preliminary implementation.
The candidate one-shot samples are then convoluted with the
activation step vector to reconstruct a stem, utilizing the differen-
tiable rendering module. We then compute the cosine similarity
between the reconstructed stem and the source-separated stem
in the MFCC audio feature space. Based on the similarity ranking,
we select the one-shot sample that most closely reconstructs the
source-separated stem.

4 Results and Future Works
Tao is a prototype system that reverse-engineers tempo, per-stem
step vectors, and one-shot percussive samples from drum loops.
Evaluation results on the synthesized testing set for each key
component, along with audio samples and estimated sequencer
parameters, are available online8. We are finalizing the interface
and preparing to release the code9. We acknowledge that drum
machine sequencers typically involve more nuanced parameters
than binary activation vectors, including velocity, swing, and
audio effects modulation. Following the initial release, we plan
to extend the system to estimate parameters such as per-step
velocities and swing amount.

5 Ethical Standards
This paper does not involve experiments with human or animal
participants. Datasets used for training machine learning models
in this paper are acquired from open access datasets.
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