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Abstract
In this work, we explore the musical interface potential of the
MindCube, an interactive device designed to study emotions.
Embedding diverse sensors and input devices, this interface re-
sembles a fidget cube toy commonly used to help users relieve
their stress and anxiety. As such, it is a particularly well-suited
controller for musical systems that aim to help with emotion
regulation. In this regard, we present two different mappings for
the MindCube, with and without AI. With our generative AI map-
ping, we propose a way to infuse meaning within a latent space
and techniques to navigate through it with an external controller.
We discuss our results and propose directions for future work.
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1 Introduction and Previous Work
Miniature and handheld music controllers can provide intuitive
and expressive means for musical interaction [5, 23], often lever-
aging innovative designs.

The "Kibo" [1] is a MIDI controller featuring a simplified tangi-
ble user interface, designed entirely fromwood. It comprises eight
geometric extractable solids that users can manipulate to trigger
note events and control various musical parameters. The device
is an intuitive and tactile learning tool, aiming for enhanced
music education. The "Accordiatron" [16] is another novel MIDI
controller inspired by the traditional concertina. It translates the
performer’s gestures into MIDI data, allowing for flexible map-
ping to various musical parameters. The combination of discrete
and continuous sensory outputs provides the subtle expressive-
ness necessary for interactive music performance. The "AirSticks"
[24] is another gestural musical instrument that integrates Iner-
tial Measurement Units (IMUs) to enable performers to trigger
and manipulate sound events in real-time through expressive
gestures. This wireless device captures both discrete actions, such
as striking motions, and continuous movements, allowing for nu-
anced control over various musical parameters. The "AirSticks"
successfully showed the power of commercial IMU for captur-
ing striking and fluid motions in real time. With modern IMUs
getting smaller, lower-noise, and lower power consumption, we
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can design more compact and efficient music controllers without
sacrificing the fidelity of the captured motion data. The "CD-
synth" [10] is a compact, wireless digital synthesizer designed
for expressive musical performance. Its disc-shaped form allows
performers to freely rotate and reorient the instrument, utiliz-
ing non-contact light sensing to modulate sound parameters.
Equipped with sensors that detect rotation, orientation, touch,
and proximity, the CD-Synth manipulates audio filters and effects
applied to preset wavetables.

Some research uses off-the-shelf interactive systems to cre-
ate musical interaction. Wong, Yuen & Choy [25], for example,
use the Nintendo Wii Controller to develop an interactive mu-
sic performance system. By employing analytical techniques to
study motion data captured by the controller, the system maps
detected gestures to musical expression. This approach leverages
a low-cost and readily available game controller to create an
engaging musical interface. Most of these interfaces, due to the
large amount of data they produce through their sensors, are
also interesting candidates to control and manipulate Machine
Learning (ML) models and generative systems. ML has been ex-
tensively used to design music interfaces, mostly through the
learning of explicit mappings between controls and sound char-
acteristics [13–15, 18]. To enable further sonic exploration, latent
space exploration has been proposed as a way to create an implicit
or explicit mapping between the internal representation of an ML
model and a set of chosen sound characteristics. Previous work
[8, 9, 21, 22] has been mostly focused on the unconditional ex-
ploration of latent spaces for sound generation. To enable better
control, some work has focused on guiding the latent space ex-
ploration with a given set of conditioning signals. Bitton et al. [4],
for example, enable the sampling of a 3-dimensional latent space
learnt by an Adversarial Auto-Encoder (AAE) to generate new
musical samples that comply with a set of given characteristics
(e.g., timbre or playing technique). Bretan et al. [6] use nearest
neighbor search to automatically continue the musical input of a
live performer. Only limited work has focused on real-time latent
space exploration with strict conditioning for audio generation
as we do here.

In this paper, we propose a way for the MindCube, a device
we designed in previous work [19], to be used as an interactive
music controller. Resembling a fidget cube toy commonly used
for stress and anxiety relief, the MindCube offers a more com-
pact form factor compared with the above-mentioned work–only
3.3𝑐𝑚 × 3.3𝑐𝑚 × 3.3𝑐𝑚, which is significantly smaller than many
existing controllers. Its design allows it to be comfortably held
and operated with one hand, enhancing its portability and user-
friendliness. Despite its small size, theMindCube is equippedwith
various interactive inputs, including tactile buttons, a rolling disk,
a joystick, and a 9 DoF IMU, which can detect the controller’s
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attitude in hand, providing a rich set of controls for musical
expression.

2 Instrument Design
2.1 Hardware
The MindCube design resembles a fidget cube toy commonly
used for stress and anxiety relief [2, 3, 11, 12]. A MindCube is a
miniature (3.3cm × 3.3cm × 3.3cm) cubic interactive device that
is easy to hold with one hand, which makes it ideal for playful
interaction. Each side of the MindCube has various interactive
inputs, including four tactile buttons, a small rolling disk, and a
joystick, as shown in Figure 1.

Figure 1: (a) A MindCube in hand and configurations of
each side: (b) a joystick, (c) a rolling disk, (d) the charging
indicator and programming port, (e) the power switch and
linear vibration motor (on the inside), (f) tactile switches,
(g) an LED indicator

The rolling disk is connected to a mouse scroll wheel encoder,
and the SoC measures the pulses from it to detect rolling distance
and directions. The inside of a MindCube is shown in the Figure.
2.

Figure 2: Three PCBs inside a MindCube.

The MindCube contains three PCB boards, each dedicated to
a specific function. The main control board manages all control
and communication processes. It is equipped with an nRF52832
(ARM Cortex-M4, Nordic) Bluetooth Low Energy (BLE) system-
on-chip (SoC). Additionally, the board includes an ICM-20498
9-DoF IMU, which captures 3-axis accelerometer, gyroscope, and
magnetometer data. This data enables real-time tracking of the

MindCube’s orientation while in the user’s hand. Mounted on
the opposite side of the main control board, the button board
features four tactile buttons with debounce circuits to eliminate
mechanical switch bouncing. The connector board serves as a
bridge between the button board and the main control board. It
also integrates a programming port for flashing firmware onto
the SoC, a charging port for the Li-Po battery, and a slide switch
to turn the MindCube on or off. To prevent accidental power-off,
the switch handle is lower than the surface of the MindCube body.
The system diagram in Figure 5 details the MindCube system
structure.

Figure 3: The system diagram of the MindCube.

The MindCube is powered by a 100 mAh Li-Po battery, pro-
viding up to more than three hours of battery life during contin-
uous data transmission. Additionally, a linear vibration motor
is mounted inside, which can be programmed to deliver various
haptic feedback patterns. The motor is controlled via pulse-width
modulation (PWM).

2.2 Firmware and communication
The MindCube firmware is developed using the Arduino frame-
work. The SoC continuously reads sensor measurements, pack-
ages the data into MindCube packets, and transmits them via
Bluetooth Low Energy (BLE) at a rate of 20 Hz. To ensure re-
liable and unambiguous packet framing, each packet is COBS
(Consistent Overhead Byte Stuffing) encoded. A Python-based
front-end application running on a MacBook receives the data
over BLE, decodes the packets, and processes the information for
various applications. One potential use case is analyzing the data
to study users’ real-time emotional states [26]. In this paper, we
explore the data sonification applications.

In the following sections, we describe two musical mapping
approaches utilizing the MindCube, with and without generative
AI. The AI-driven approach explores the potential of using the
MindCube’s data to estimate the user’s current emotional state
and generates music as a proxy for emotion regulation. Although
we do not formally prove here that data from the MindCube can
detect a user’s emotional status, our working hypothesis is that
increased interaction with the MindCube may indicate height-
ened stress levels, while decreased interaction could suggest a
more relaxed state. In response, our AI model generates calming
music when high activity is detected and stimulating music to
engage the user when low activity is detected. We aim to prove
the MindCube’s potential to accurately detect users’ emotions
in future work. To contrast with our AI approach, we also offer
a non-AI musical mapping, where the MindCube facilitates ex-
pressive musical performances through a handcrafted modular
synthesizer mapping.
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3 AI-generated Music Mapping
In this AI-powered musical mapping, we collect the sensor data
and generate loud, high-energy music when the user activity
is low, and quiet, low-energy music when the user activity is
high. This experimental mapping aims to engage the user con-
tinuously and hopes to be able to regulate the user’s emotional
state over time. An implementation of this mapping can be found
on GitHub1.

3.1 Model Architecture
To create an AI-based musical mapping for the MindCube, we
make use of the RAVE (Realtime Audio Variational autoEncoder)
model architecture [7]. RAVE is based on a Variational Auto En-
coder (VAE) trained on accurately reconstructing audio files by
encoding them to a latent distribution, before decoding them into
audio files. The appeal of using this architecture within musical
instruments stems from its capabilities to perform this autoen-
coding faster than real time. Following the VAE mathematical
notation, we consider music as a continuous signal 𝑥 sampled
from an underlying data distribution 𝑝data (𝑥). The RAVE model
allows us to learn a latent representation of dimension 4 (𝑧 ∈ R4)
that captures meaningful musical features while allowing for
efficient reconstruction. The encoder and decoder of our VAE are
neural networks that are modeled by 𝑞𝜙 (𝑧 |𝑥) and 𝑝𝜃 (𝑥 |𝑧).

The diverse sensors and input devices of the MindCube offer
us the opportunity to explore the latent space of the model in a
fun and interactive way. In order to explore this latent space in
real time, we use Latent Diffusion [20] to generate latent codes
that are then passed through the RAVE decoder to reconstruct
audio2. Specifically, we model the latent space traversal as a sto-
chastic process, where a latent variable 𝑧𝑇 ∼ N(0, 𝐼 ) undergoes a
sequence of denoising steps following a learned reverse diffusion
process. Our denoising process is denoted as 𝑧𝑡−1 = 𝑧𝑡 +𝜖𝜓 (𝑧𝑡 , 𝑡),
where 𝜖𝜓 is a neural network trained to predict and remove noise
at each step 𝑡 . The final latent code 𝑧0 is then decoded using
𝑝𝜃 (𝑥 |𝑧0) to synthesize the corresponding audio. This approach
enables smooth and structured navigation of the latent space,
allowing the MindCube to generate expressive musical transfor-
mations in real time.

3.2 Model Mapping
We then have to generate latent codes that align with the in-
puts of the musical instrument, in order to create an enjoyable
and coherent mapping. To do so, we make use of Classifier-Free
Guidance (CFG) [17], a technique that allows us to modulate the
generation process by conditioning on specific features. In our
case, we train the model with CFG using the Root-Mean-Square
(RMS) value as a conditioning signal, which serves as a proxy for
the perceived loudness and energy of the generated audio. We
use RMS as our main metric to generate contrasting high-energy
and low-energy music, since loud, high-energy music generally
exhibits a high RMS while quieter, low-energy music typically
has a low RMS. We condition the Latent Diffusion Model with
this RMS signal using cross attention layers.

During training, the model uses conditional dropout to learn
both an unconditional distribution and a joint distribution over
latent variables and their corresponding RMS values. At inference

1https://github.com/mitmedialab/mindcube-rave
2RAVE Latent Diffusion is implemented at https://github.com/moiseshorta/RAVE-
Latent-Diffusion

time, we can then use the following conditional score function:

∇𝑧 log𝑝𝜃 (𝑧 |𝑐) = (1 − 𝛾)∇𝑧 log 𝑝𝜃 (𝑧) + 𝛾∇𝑧 log𝑝𝜃 (𝑧 |𝑐)
where 𝑐 represents the RMS conditioning and𝛾 is the guidance

weight that controls the strength of the conditioning. When
inferring latents, we compute a real-time RMS value from the
sensor input and normalize it to a range between 0 and 1. This
value is then used as the conditioning variable 𝑐 in the CFG
process, guiding the latent code generation towards outputs that
match the desired spectral characteristics. The final latent code,
as previously described, is passed through the RAVE decoder to
synthesize audio, allowing for expressive and dynamic control
over the instrument’s sonic output.

An overview of our architecture can be seen in Figure 4.

Figure 4: The architecture of the AI Music mapping for the
MindCube.

3.3 Training
We train our RAVE model on the Free Music Archive (FMA)
dataset, in particular the “small” subset, which contains 8,000
tracks of 30s of 8 balanced genres. On this subset of the dataset,
the RMS value ranges between 0 and 0.8724. We train the model
over 177 epochs until we observe the validation score going up.
We use this RAVE model to encode our same dataset into latent
codes with length 512 and use these latents to train our Latent
Diffusion model. We then train our Latent Diffusion model with
RMS as the embedding for CFG, for a total of 700 epochs.

3.4 Real-time Generation
We then need to embed our model into a real-time system to
enable continuous music generation. This is a crucial but difficult
step since both the latent diffusion and latent decoding processes
are lengthy and introduce latency. To reduce this latency, we
diffuse latents with a small length of 512, which, at a sampling
rate of 44,100 Hz, gives us around 23 seconds of audio. Addition-
ally, we only use 30 diffusion steps. On the M3 Max Macbook
Pro that we used in our testing, the latent diffusion step took
around 0.90 seconds while the latent decoding step took less
than 0.15 seconds, giving us a total of around 1.05 seconds per
generation. Our latency of 1.05 seconds for music generation
means that we are forced to read the sensor input at a rate lower
than 1/1.05 ≈ 0.9524 Hz. Although not optimal, this latency still
enables a responsive interface since it allows for the user input
to be considered in under a second on average.
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Our real-time generation system therefore reads the data from
the input sensors every second and adds it into a buffer. Every
1.05 seconds on average, we diffuse a new latent sequence of
length 512 and perform Classifier-Free Guidance to condition the
diffusion on the last sensor readings. To create an effective RMS
condition, we use the following formula:

𝑅𝑀𝑆𝑐𝑜𝑛𝑑 =
1
𝑅
·
16∑︁
𝑖=1

𝑤𝑖 · 𝜎𝑖 ,

where 𝜎𝑖 refers to the standard deviation of sensor 𝑖 ,𝑤𝑖 is the
weight for the reading of that sensor, and 𝑅 is a normalization
factor. In other terms, this calculates the weighted standard devi-
ation of every sensor value over a moving window, normalized
to fit between the conditioning values used during training. This
allows us to get a sense of the recent activity of the MindCube,
and calculate an adequate RMS value. Empirically, we observe
that the accelerometer, the joystick, the buttons, and the encoder
are the best indicators for manual activity. As such, we design a
weight vector that favors these sensors over the others.

The latent diffusion model is also not designed to generate
continuous music by default. To enable the generated music to
flow naturally, we implement outpainting to enable the latent
diffusion model to generate an adequate continuation for the
previous piece of music. For every generation, we use the last
few latent codes played to kickstart the diffusion and diffuse
only the continuation, which we decode and play. This allows
for smooth transitions between every diffused latent.

4 Music Mapping for expressive performance
We also explore another musical mapping by using the sensor
data stream from theMindCubewith VCVRack, and this is accom-
plished through a structured pipeline. This pipeline comprises
a Python-based TCP server for real-time data parsing, sensor
fusion techniques to process raw IMU data, and the mapping of
computed values to control virtual voltages within the modular
synthesis environment. The goal is to develop a robust system
that enables real-time, motion-driven modulation of synthesis
parameters.

The MindCube streams sensor data—including accelerom-
eter, gyroscope, magnetometer, joystick, encoder, and button
states—via BLE to a Python TCP server implemented using the
bleak library. This server listens for incoming byte data from
the MindCube, parses it, and transmits the structured sensor data
over a TCP socket to a custom-designed VCV Rack module, as
shown in Figure 5. To derive meaningful control signals from the
raw IMU data, a sensor fusion algorithm computes pitch and roll
angles by combining accelerometer and gyroscope readings. The
TCP communication follows a local server-client model, ensur-
ing low-latency data transmission. Data packets are formatted as
comma-separated values (CSV), containing all sensor readings in
a predefined order, facilitating efficient parsing and utilization
within the VCV Rack environment.

The custom-designed VCV Rack module, developed in C++,
interfaces seamlessly with a Python server to control the syn-
thesizer. Operating within a dedicated thread, it continuously
reads the incoming data stream, parses the received CSV strings,
and converts them into floating-point values representing sensor
readings. This threading approach ensures smooth integration
with VCV Rack’s real-time processing engine. All sensor data
is normalized to fit within the modular synthesis voltage range.
Various mapping strategies have been explored. For instance,

Figure 5: Live VCV Rack Patch that connects to the Mind-
Cube custom virtual module.

computed pitch and roll values are assigned to parameters such
as filter cutoff frequency and LFO rate. Joystick inputs control
stereo panning and modulation index, while button states are
converted into gate signals to trigger envelope generators. Addi-
tionally, encoder inputs manage step sequencing and parameter
selection. This system allows users to control modular synthe-
sis in real time by converting natural movements into dynamic
sound parameters.

As AI-driven music tools continue to evolve, integrating them
within established modular synthesis environments becomes in-
creasingly relevant. Our interface, built around the BLE-enabled
MindCube and mapped into VCV Rack, exemplifies how embod-
ied interaction can extend the patching paradigm. By blending
real-time sensor input with the modular workflow, we envision
future systems where AI-generated modulation and user-driven
control coexist fluidly–bridging algorithmic composition with
the hands-on ethos of modular synthesis and patchinwg.

5 Conclusion
In this paper, we explore the data sonification capabilities of
the MindCube, a compact, handheld interactive device designed
for expressive musical performance. Its small size and various
sensing modalities make it a portable and user-friendly tool. Ad-
ditionally, resembling a traditional fidget cube toy, the MindCube
holds a potential for real-time emotion detection. By integrating
generative AI-powered real-time music generation, we aim to fa-
cilitate emotion regulation, providing different musical responses
based on user interaction patterns. In the future, we will utilize
the MindCube for user studies, aiming to develop an accurate
model that maps its data to various emotional states. This will
enhance the ground truth for our generative AI-based musical
emotion regulation system. We also aim to explore sonification
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methodologies that can use both generative AI and modular syn-
thesis.

6 Ethical Standards
There are no observed conflicts of interest. This research was
conducted using discretionary funding for the hardware require-
ments and used lab-owned compute power for the training of
the model. The Free Music Archive dataset used is distributed
under the permissive CC BY 4.0 license, allowing us to use it for
training and redistribution purposes.
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