Towards the Continuous Harmonium: Replicating the
Continuous Keyboard

Travis J. West
travis.west@mail.mcgill.ca
IDMIL, CIRMMT, McGill University
Montreal, Canada
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189
CRIStAL
Lille, France

Gary Scavone
CAML, CIRMMT, McGill University
Montreal, Canada

Abstract

In our effort to develop an augmented harmonium to enable the
performance of continuous pitch ornamentation while preserv-
ing typical harmonium gestures, we have replicated the continu-
ous keyboard presented by McPherson et al. in prior work. We
present 1) our adaptations to the design of the sensing system,
2) our preliminary novel mapping design, and 3) a report on our
replication process.

Keywords

Replication, augmented keyboard, continuous keyboard, optical
sensing, harmonium, mapping

1 Introduction

The harmonium is keyboard instrument played in classical Hin-
dustani music, where it typically plays a role that supports the
vocalist. However, because of its use of the western musical key-
board, the harmonium is unable to recreate the pitch ornaments
performed by the vocalist. Harmonium players have developed
a variety of techniques that aim to mimic the vocalist, working
around the discrete pitches of their instrument[6].

We aim to develop an augmented harmonium that preserves
these idiosyncratic gestures, but enables a more faithful recre-
ation of vocal pitch ornamentation. Our initial efforts focused on
mappings based on data available from a typical MIDI keyboard,
however we quickly realized that the limited information pro-
vided by MIDI note messages would not support us in achieving
our goal. We opted to look for a low-cost method to acquire more
data about harmonium players’ gestures when performing their
instrument. Chapter 2 of Giulio Moro’s 2020 thesis [4] provides
a good overview of keyboard sensing strategies. We decided, as
a first step, to replicate the optical keyboard sensing system used
by Moro, presented in detail by McPherson in 2013 [3]. This sys-
tem continuously measures the angle of the key, or equivalently
the partial depression of the key; we hypothesized that this infor-
mation would be sufficient to achieve our goals. We present our
adaptations to McPherson’s system, our preliminary mappings,
and a report on our replication effort.

This work is licensed under a Creative Commons Attribution 4.0 International
License.

NIME °25, June 24-27, 2025, Canberra, Australia

© 2025 Copyright held by the owner/author(s).

Ninad Puranik
CAML, CIRMMT, McGill University
Montreal, Canada

Marcelo M. Wanderley
IDMIL, CIRMMT, McGill University
Montreal, Canada

2 Prior Work

Andrew McPherson’s continuous keyboard sensor comprises
the following parts: an op-amp conditioning circuit, and a mi-
crocontroller for data acquisition and communication with an
application processor such as a laptop, and an array of near-field
infrared reflection sensors each of which comprises an infrared
emitter and phototransistor in one package. Multiple phototran-
sistors can be connected in parallel to one op-amp circuit as long
as the infrared emitters can be toggled on and off sequentially;
as long as only one emitter is turned on, only its associated pho-
totransistor should be activated, and the measurement from the
output of the op-amp should correspond to distance relating to
the activated emitter/phototransistor pair.

Although it is not explicitly stated, we inferred from McPher-
son’s description of the system [3] that each infrared emitter is
driven directly from one output pin of the microcontroller, via a
switching transistor. In this way, each emitter can be switched
on independently, enabling quick scans simply by sequentially
turning the output pin connected to each switching transistor on
and off.

McPherson’s system makes use of four circuit boards, each
hosting one microcontroller and up to 25 infrared sensors. The
boards are connected to a shared serial peripheral interface (SPI)
bus. One of the boards acts as manager, polling data from the
other boards, maintaining clock synchronization, and communi-
cating with the application processor.

Each sensor is read at a sampling rate of 1 kHz, where each
sample is differential and oversampled, with eight measurements
of the analog response when no emitters are enabled and eight
measurements of the response when the emitter is switched on.

3 Our Adaptations to the Continuous
Keyboard

Our first main contribution comes from the changes made in
our version of the continuous keyboard sensor with respect to
prior implementations. Most notably, unlike previous versions,
our implementation uses a matrix configuration that reduces the
number of parts in the system. We describe the electronic and
firmware design of our implementation.

3.1 Electronic Design

Our version of the electronic design maintains McPherson’s op-
amp circuit, but otherwise departs from the prior system design.


https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

NIME °25, June 24-27, 2025, Canberra, Australia

The first substantive change we made in our implementation
was to use the QRD1114 rather than the QRE1113 used in prior
work. This change was motivated by two considerations. First,
while troubleshooting our first scaled down prototype consisting
of a single sensor, our observations suggested that all parts of
the system were working except for the phototransistor in the
QRE1113, prompting us to try switching to another part we hap-
pened to have on hand in order to confirm our hypothesis that the
QRE1113 was broken. We switched to a QRD1114 and found that
the system worked, apparently confirming our hypothesis. This
leads us to argue that the QRE1113 is not appropriate for bread-
board prototyping; we believe the phototransistor must have
become damaged when inserting the sensor into the breadboard,
whereas the QRD1114 was robust against this stress. Consider-
ing that the QRD1114 behaved appropriately with the existing
conditioning circuit and was also more readily available locally,
we opted to move forward with this part in our implementation.

We next opted to use the RP2040 microcontroller on a Rasp-
berry Pi Pico board, since this device was familiar to us as well as
being available on hand from prior projects. However, the num-
ber of output pins on the RP2040 was too small to individually
control the 34 sensors needed to measure every key of our har-
monium. This led us to connect the infrared emitters in a matrix
configuration (see Figure 2). An LED in the matrix is switched
on by driving the pin connected to the anode (long leg) high,
providing a source of current, and driving the pin connected to
the cathode low, providing a current sink; both pins are config-
ured in output mode, and a resistor in series with the cathode pin
limits current through the LED and pins, setting the brightness
of the LED and avoiding excess current through the pins.

Using a matrix configuration eliminated the need for 34 switch-
ing transistors and current limiting resistors (one each for every
infrared emitter), in exchange for requiring 6 current limiting
resistors (one for each row in the matrix). Our use of a single
microcontroller further eliminated the need for an additional
op-amp or op-amps and their associated passive components; all
of the phototransistors in our implementation are connected in
parallel to one op-amp circuit.

The main trade off of using a matrix is that, since a greater
number of sensors are connected to one microcontroller, the
overall system sampling rate is necessarily lower than if fewer
sensors were connected to multiple microcontrollers making
measurements in parallel!; we see this as an acceptable trade
off at this stage in our design, since a somewhat higher system
latency does not prevent us from exploring different mapping
strategies. A quantitative comparison of the system sampling rate
and other engineering evaluation metrics remains as future work;
for now, the system performance is heuristically "good enough"
to enable our application of the system to harmonium gesture
sensing and facilitating our exploration of different mapping
strategies.

4 Firmware Design

We implemented our firmware using Sygaldry [8] as an assembly
of four main functional components: the ADC, the sensor scan-
ner, the infrared emitter matrix driver, and the MIDI mapping.

!the best-case effective sampling rate of the system f;, where each sample is the
average of N raw measurements, taken at the maximum sampling rate of the
microcontroller fmayx, and where S sensors are read by each microcontroller is given

as f; = fmax/(SN)

Travis J. West, Ninad Puranik, Gary Scavone, and Marcelo M. Wanderley

GPIO1 GPI02
o a

2
<

GPION

GPIOA
o

&

&R

-
L

GPJOB

]
X
A

|

/\&\
\5.

=
P&

pd

GPIOM

Figure 1: Schematic of the LED matrix circuit; in our im-
plementation there are 6 rows and 6 columns, but different
sized matrices would work equally well depending on the
number of sensors to be read.

The current version of the firmware can be viewed online?; in
principle, Sygaldry’s design should facilitate future replication of
the firmware [8], although this has not yet been demonstrated.

The matrix driver receives the coordinate of the current emit-
ter from the scanner and toggles the output pins of the microcon-
troller to activate only the associated emitter. The ADC measures
the response of the currently activated sensor. The scanner then
collects the measurements, associating them with the current
key and tracking the minimum and maximum observed values
for each key before sending the matrix driver the coordinate of
the next key. The MIDI mapping connects the keyboard state to
MIDI polyphonic expression values and sends them over USB to
a connected host for further application processing, described in
the next section.

The ADC component implements a simple oversampling rou-
tine. Each output reading is derived from the average of N raw
measurements, where N is configurable using a template param-
eter. Increasing N improves the effective signal-to-noise ratio
but reduces the effective sampling rate. Unlike McPherson, we
do not measure the ambient light response of the sensors at the
time of writing. We reason that since the sensor is installed in
the unchanging darkness inside of the harmonium, rather than
above the keys as in prior implementations, it should be sufficient
to measure the minimum and maximum outputs of the sensors
once (e.g. at system start up) in order to adjust the output of
the device. Calibration of the non-linear response of the sensor
also remains as future work, since the raw output empirically
appeared to be reasonably close to linear without calibration.

5 Preliminary Mappings

Our goal is to enable the performance of continuous pitch or-
naments characteristic of classical Hindustani music on the har-
monium, using the established gestural vocabulary of skilled
performers of the instrument as described in [6]. We present

Zhttps://github.com/DocSunset/sygaldry/tree/c6080345fd40bcffo5dd1c62159¢5034a7022¢2¢/

sygaldry-instruments/continulodica_pico


https://github.com/DocSunset/sygaldry/tree/c6080345fd40bcff95dd1c62159c5034a7022e2e/sygaldry-instruments/continulodica_pico
https://github.com/DocSunset/sygaldry/tree/c6080345fd40bcff95dd1c62159c5034a7022e2e/sygaldry-instruments/continulodica_pico

Towards the Continuous Harmonium: Replicating the Continuous Keyboard

Figure 2: The sensor and microcontroller assembly fits
inside the harmonium. It can be covered with the wooden
top cover normally present in all harmoniums. This creates
a consistent dark environment for the sensors reducing the
noise from ambient light. It also maintains the aesthetic
look of an acoustic harmonium.

a preliminary mapping of the sensor data to achieve this out-
come, making use of a physically informed synthesis model of
the harmonium previously described in [5].

Each key is associated with a pitch (i.e. a MIDI note number)
and a "weight", which is simply the depth reading for that key.
When the weight of a key-press exceeds a small threshold, the
key is considered as "pressed". For consistency with an acoustic
harmonium, when a single key is pressed, a single chromatic note
with the key’s associated pitch is synthesized. The amplitude of
the synthesized note is proportional to the weight of key-press,
with the highest value for a fully pressed key.

For the case when exactly two keys are played in succession
in a legato fashion, i.e. when one key is released while another is
being pressed, the intended effect of this gesture is to perform
a continuous glide between the two notes in consideration. To
achieve this, we define a parameter w’ = min(1, wy/w;) where
w1, wy are the weights of the first pressed and the second pressed
key, with their corresponding note numbers of p; and p; respec-
tively. Using the parameter w’, the interpolated output pitch p is
derived as per the following relation.

p=(1=w)-pr+w p

As the glide progresses, W’ goes from 0 to 1. At w’ = 1, the
weight wy of the second pressed key exceeds wi, the weight of
the previously pressed key. The glide is assumed to be complete
when this happens and w’ stays at 1 while the previously pressed
key is released. Our empirical observations suggest that Hindus-
tani harmonium players rarely press more than 2 keys at the
same time. This is because the instrument’s role is generally to
mimic the monophonic vocals. Pressing of two keys happens
only to mimic a crossfade between two notes to create a sug-
gestion of pitch continuity, rather than playing a chord. Hence,

NIME ’25, June 24-27, 2025, Canberra, Australia

the preliminary mapping presented here excludes the cases with
three or more pressed keys. This mapping was coupled to a phys-
ically informed synthesis model of the harmonium developed by
some of the authors [5] to play the music samples presented as
supplementary material®.

6 Replication Report

6.1 Context

Recent discussions have highlighted the benefits of replication
[1, 7] and of engaging with old instruments more broadly [2]
towards the well-being of NIME practice and research. One major
theme in these discussions is the difficulty of documentation; it
is challenging to anticipate what information will be most useful
to later users and researchers who may wish to replicate an
instrument.

When we had finished assembling the circuit described by
McPherson [3] and found that it did not work as expected, we
were temporarily stymied and became stuck. A very brief discus-
sion with McPherson at NIME 2024 provided all the necessary
know how to get unstuck; McPherson advised a series of specific
and sequential troubleshooting steps. None of this information
was mentioned in the 2013 paper, but it turned out to be very
helpful for our successful replication. In the interest of promoting
more replication within our research community, we argue that
this kind of information, related to challenges and troubleshoot-
ing, should be valued, preserved and transmitted.

The replication proceeded through a series of sequential stages:
minimal op-amp circuit prototype, small scale sequential proto-
type, minimal matrix prototype, full-scale prototype, mounting
hardware prototypes. From experience, we note that most DMI
development work includes such stages, each with their own
purpose and procedures, but that this is rarely discussed in the
literature, which instead tends to focus solely on the final results
of the work. We structure our report to reflect this structure of
the development process.

As well as each stage above having its own development and
troubleshooting procedures, we note that at each stage we made
design choices, following one path of development where another
could have been taken. This information is sometimes evident in
the discussion of a design, but is often only implied and rarely
highlighted. As replication often involves a certain amount of
mutation, we expect that explicit presentation of alternatives
considered may be especially interesting for future replication
efforts.

6.2 Report

Minimal op-amp prototype—Purpose: Make sure you under-
stand how the op-amp circuit works, and how it is expected to
behave—Procedure: Assemble the parts shown in McPherson’s
schematic [3] on a breadboard, but replace the QRE1113 with
the QRD1114. This stage can be done without a microcontroller,
using a multimeter to read the output voltage and a fly wire
to alternately switch the LED on and off. —Problems: Credit to
McPherson for the first two troubleshooting tips. Test the op
amp circuit by replacing the phototransistor with a potentiome-
ter, enabling you to pull current through the conditioning circuit
and make sure that the output voltage varies accordingly. Test
the phototransistor by shining a bright light on it. Test the in-
frared emitter is working using a smartphone camera (most can

3https://youtu.be/iFCbIP3tDxk


https://youtu.be/iFCblP3tDxk

NIME °25, June 24-27, 2025, Canberra, Australia

faintly detect infrared light) or an infrared camera. Remember
that the long leg of the LED should be connected to the higher
voltage.—Alternative Paths: McPherson used the QRE1113. We
found that ours was broken, possibly from being inserted into
the breadboard. We chose to use the QRD1114 instead, since we
happened to have one on hand, it worked fine when we put it in
the breadboard, and we were able to get more locally.

Small scale sequential prototype—Purpose: Make sure you
know how the op-amp circuit works with multiple sensors at-
tached, and that you are able to sequentially scan sensors as
expected—Procedure: Add one or two more sensors to the previ-
ous prototype, connect everything to a microcontroller, and start
writing firmware—Problems: Standard procedure for working
out kinks.—Alternative Paths: We found we could drive the
LEDs without using switching transistors. We opted to omit these
components to reduce parts. We realized that the number of pins
on our microcontroller would not accommodate the number of
sensors needed in the full-scale prototype. We considered using
shift registers, but opted instead to use a matrix to reduce parts.

Small scale matrix prototype—Purpose: Make sure you
understand how to drive LEDs in a matrix configuration. Proce-
dure: Connect four sensors with the LEDs in a very small matrix
consisting of two rows and two columns. Write firmware (or use
the one above) to scan the matrix, oversampling by averaging
multiple measurements from each sensor before moving to the
next one.—Problems: Standard procedures as above. If writing a
new firmware, ensure that all pins connected to the matrix are
in output mode and driven appropriately. An oscilloscope and/or
debug printing can be used to sanity check the behavior of the
matrix pins. It can also be helpful to introduce a substantial delay
into the matrix scan so that each pin turning on and off can be
inspected in real time.—Alternative Paths: We accidentally im-
plemented a nonsensical oversampling strategy where the entire
matrix was scanned multiple times to produce each oversampled
measurement instead of scanning one sensor multiple times in
the course of one scan of the matrix. The latter approach is ap-
propriate, since it avoids possible issues related to the response
time of the sensors and conditioning circuit. Oversampling is
absolutely necessary, since the raw output of the conditioning
circuit is too noisy to be used directly.

7 Conclusion

We aim to develop an augmented harmonium that enables the
performance of continuous pitch ornaments while preserving
the existing gestures of harmonium players. Towards this goal,
we developed a new implementation of McPherson’s continuous
keyboard, which continuously measures the depth of each key
press, enabling the development of novel mappings while pre-
serving the traditional interface of the western musical keyboard.
In a departure from prior implementations, our implementation
makes use of a matrix configuration to scan through the infrared
sensors, reducing the number of parts and enabling use of a sin-
gle microcontroller to scan a greater quantity of sensors. The
raw signal is regulated by oversampling and min-max scaling
before transmission to the host processor over USB MIDI. Our
preliminary continuous pitch mapping is based on the extent of
glide progression as determined by the ratio of weights of the
two notes played in legato fashion.

Performing continuous pitch expressions on keyboards is chal-
lenging. Our novel mapping, combined with a continuous key-
board sensor measuring the depth of key presses, has the potential

Travis J. West, Ninad Puranik, Gary Scavone, and Marcelo M. Wanderley

to enable a faithful performance of such expressions on a key-
board, such as in Hindustani music through the natural gestures
of trained acoustic harmonium players. By keeping the mapping
simple, we hope to encourage a greater adoption of our interface
by existing harmonium players. Apart from the harmonium, the
system also opens up the possibilities of playing synthesis models
of other continuous pitch monophonic instruments in the Hin-
dustani style. The mapping may also be of interest to musicians
performing other styles of music, although our explorations to
date have focused on Hindustani music.

As well as presenting the system itself, we offer a brief report
on the process of its development based on McPherson’s prior
system. The replication report highlights the purpose of each
stage of development, and the procedures used, problems encoun-
tered, and alternative paths considered at each stage, in hopes of
aiding subsequent attempts to build a continuous keyboard.

8 Ethical Standards

This work was conducted within the ethical framework of the
author’s affiliated institutions. We acknowledge the impact on
human communities and the environment from the harvesting
of rare minerals and other resources involved in the fabrication
and movement of electronic components and their constituent
materials, as well as the impacts of the infrastructure of the global
internet. We have tried to reduce our negative impact by using
electronic components already available on hand, and by reduc-
ing the number of components required for our implementation.

Acknowledgments

Special thanks to Andrew McPherson for troubleshooting advice.
This work is supported by the CIRMMT student award.

References

[1] Filipe Calegario, Jodo Tragtenberg, Christian Frisson, Eduardo Meneses, Joseph
Malloch, Vincent Cusson, and Marcelo M. Wanderley. 2021. Documentation
and Replicability in the NIME Community. In Proceedings of the International
Conference on New Interfaces for Musical Expression.

Raul Masu, Fabio Morreale, and Alexander Refsum Jensenius. 2023. The O in

NIME: Reflecting on the Importance of Reusing and Repurposing Old Musical

Instruments. In Proceedings of the International Conference on New Interfaces

for Musical Expression.

[3] Andrew P McPherson. 2013. Portable Measurement and Mapping of Continuous
Piano Gesture. In Proceedings of the International Conference on New Interface
for Musical Expression.

[4] Giulio Moro. 2020. Beyond key velocity: continuous sensing for expressive control
on the Hammond organ and digital keyboards. Ph.D. Dissertation. Queen Mary
University of London.

[5] Ninad Puranik and Gary Scavone. 2023. Physically Inspired Signal Model for
Harmonium Sound Synthesis. In Proceedings of the 26th International Conference
on Digital Audio Effects.

[6] Ninad Puranik, Travis West, Marcelo M Wanderley, and Gary Scavone. 2025.
Thoughts on mapping and interface design of a keyboard to perform continuous
pitch ornamentations in Hindustani music.. In Proceedings of the Workshop on
Indian Music Analysis and Generative Applications, ICASSP 2025 Hyderabad,
India.

[7] Ajin Tom, Harish Venkatesan, Ivan Franco, and Marcelo M. Wanderley. 2019.
Rebuilding and Reinterpreting a Digital Musical Instrument - The Sponge.
In Proceedings of the International Conference on New Interfaces for Musical
Expression.

[8] Travis ] West, Marcelo M Wanderley, and Stéphane Huot. 2024. Sygaldry: DMI
Components First and Foremost. In Proceedings of the International Conference
on New Interface for Musical Expression.

2,



	Abstract
	1 Introduction
	2 Prior Work
	3 Our Adaptations to the Continuous Keyboard
	3.1 Electronic Design

	4 Firmware Design
	5 Preliminary Mappings
	6 Replication Report
	6.1 Context
	6.2 Report

	7 Conclusion
	8 Ethical Standards
	Acknowledgments
	References

