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Abstract
With the variety and rapid pace of developments in Artificial In-
telligence (AI), musicians can face difficulty when working with
AI-based interfaces for musical expression as understanding and
adaptation to AI behaviors takes time. In this paper, we explore
the use of AI in an interactive music system designed to adapt
to users as they learn to perform with it. We present GestAlt,
an AI-based interactive music system that collaborates with a
performer by analyzing their gestures and motion to generate
audio changes. It uses computer vision, online machine learning,
and reinforcement learning to adapt to a user’s hand motion
patterns and allow a user to communicate their musical goals
to the system. It communicates its decision-making to the user
through visualizations and its musical output. We conducted a
study in which five musicians performed using this software over
multiple sessions. Participants discussed how their preferences
for the system’s behavior were influenced by their experiences
as musicians, how adaptive reinforcement learning affected their
expectations for the system’s autonomy, and how their percep-
tions of the system as a creatively autonomous, collaborative
partner evolved as they learned how to perform with the system.

Keywords
InteractiveMusic, Artificial Intelligence,Machine Learning, Human-
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1 Introduction
Artificial intelligence (AI) has long been sought as a way to allow
computers to assist with musical composition, performance, and
theory [53]. Algorithmic composition is used to create unique
sounds [40, 62], leading to the study of musical systems as au-
tonomous composers and performers [56]. Composition and mu-
sic generation systems [1, 7] have allowed AI to become part
of a changing music creation landscape, but these tools present
challenges to musicians unfamiliar with how to use and adapt to
them. This paper explores how interactive AI-based systems can
support a user’s understanding by adapting to users.

Perception can deeply affect a user’s satisfaction with an AI-
based system. The user can reflect on whether or not they see
the system exhibit creative autonomy [34], the act of indepen-
dent decision-making that exhibits the AI’s creativity rather than
an extension of the musician’s. Boden describes perception as
an element of creativity alongside memory, conceptual think-
ing, and self-reflection for both humans and computers [4]. This
work highlights two techniques that directly impact how users
interact with an AI-based system and how they perceive that
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interaction: explanation and adaptive machine learning behav-
iors. Explainability [29] promotes users’ understanding of the
decisions made by an AI, allowing them to form a mental model
of what the system maps to their actions [9]. Online machine
learning (OML) is the paradigm of a machine learning system
in which a model is updated with new data over time [25], and
reinforcement learning (RL) is the use of a reward signal such as
user feedback to train a model [12]. Tools such as these enable
AI-based interactive systems to adjust to their users over time.

Gill [28] describes an ideal human-machine interaction as a
collaboration that combines “the computational capacity of the
machine and the knowledge of the human” in a “symbiotic and
interactive relationship that valorizes human knowledge and
computational resources.” These symbiotic relationships form
from complementary but independent decision-making, another
aspect of creative autonomy [34]. Evaluating the AI components
of AI-based interactive music systems in their ability to sup-
port symbiotic relationships with human performers is critical to
inform AI-based systems that foster human creativity.

Gesture-controlled systems for music and dance connect hu-
man input motion to generated music through the exploration of
latent spaces, or semantic representations of audio and visual con-
cepts [47]. Interactive, dance-based performance systems explore
the augmentations and limitations imposed by communication
between performer and system [16, 17]. The ability for gesture-
controlled systems to non-verbally communicate and react to
decision-making is especially relevant to modern concerns about
supporting users creatively using Large Language Models (LLMs)
[37, 44] and generative audio models [36]. This paper explores
how systems can display an understanding of a user’s input
through the creation of an AI-based interactive music system
that recognizes and interprets gestures.

This paper introduces GestAlt, an AI-based interactive gen-
erative music system. GestAlt is designed for live musical per-
formance as an improvisational tool that creates music along-
side a user’s motion and gestures while visualizing its decision-
making. Users communicate with it through interactive training
and demonstration non-verbally. GestAlt combines gesture recog-
nition with adaptive musical changes to explore how users and
an AI form a shared mental model during a creative performance
task. AI predictions can be used to model behavior in real-time
performance [45]. Continuous learning can act as an analog to
the self-awareness of an AI system in a musical performance [54].
GestAlt is designed to demonstrate autonomy through continu-
ous adaptations to user feedback.

2 Related Work
This work draws from frameworks as well as existing new inter-
faces for musical expression (NIMEs) in evaluating a system’s
agency in music-making. We also examine tools such as adaptive
machine learning, sensors, and using visual programming for
improvisatory performance with interactive music systems.
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Figure 1: The user view of GestAlt, with key commands
(left) andmotion (center) and gesture (right) visualizations.

2.1 Frameworks for Creativity and
Understanding

Creative autonomy is the ability of a system to demonstrate in-
dependent decision-making [34]. This work focuses on perceived
creative autonomy, or how users form an interpretation of a sys-
tem’s level of creative autonomy and role in the creative process,
rather than actual creative autonomy to account for the limited
scope of autonomous behaviors by systems such as GestAlt.

Theory of Mind represents the ability to read signals and un-
derstand expectations [41]. Mutual Theory ofMind is foundwhen
multiple parties build shared expectations, such as the shared
goals between performers to create music. Interactions between
users and a conversational agent were studied to obtain a sense of
a community’s perception through perceived anthropomorphism,
intelligence, and likeability of the system [68].

Synchrony between humans is the psychological effect that
shared movement can lead to greater cooperation between mem-
bers of a group [71]. Synchronous movement has been attributed
to increased senses of “altruism” and “friendship” toward artificial
agents [8, 26]. Despite a minimal impact on the output of their
task, these adoptions allow users to “recognize themselves in the
actions of the AI” and establish trust in the AI’s decisions [48].
An example of this interaction in AI-powered music is Shimon,
the robotic marimba player, which performs head movements
to match those of a human player to increase Synchrony when
engaging with live improvisation [32, 58].

2.2 Musical Agents
A performer and a computer operate with a recurrent feedback
loop with various modalities given the physical aspects of the
system [5]. Machine learning can be integrated into “tools” and
AI agents can function as “actors” in musical performance, due
to the variety of human-AI controller paradigms and technical
aspects of the learning algorithm [11, 57]. Musical agents are
autonomous systems that can perform alongside a user [65].
These can range from “reactive,” rule-based systems that display
some autonomous behaviors, such as George Lewis’s Voyager
[40], to “completely autonomous agents” employing statistical
sequence modeling and cognitive modeling [43]. Systems such
as Somax2 reactively improvise using cognitive memory [2].

Rowe presents a paradigm of interactive music systems as
“instruments” that analyze gestures to create musical outputs and
“players” that act as separate performers that follow the user to
varying degrees [55]. This dichotomy, as well as the role of AI
in musical improvisation, is further explored by Fiorini in a case

study [23] using the Somax2 [2] system. Fiorini relates the use
of AI-supported improvisational tools to the contrast between
composition to improvisation in terms of musical creativity [6]
as well as a continuum of a spectrum of musical interactions
based on cognitive models [50].

2.3 Adaptive Machine Learning
Online machine learning (OML) systems update a model with
new data over time [25]. Interactive modeling training has been
used to great effect in musical applications that allow a performer
to incorporate the process as part of a live performance [20], but
automated machine learning for doing so is relatively new [11].

Reinforcement learning (RL) is a learning paradigm in which
an agent performs actions based on a reward, usually derived
from its perception of its environment [12]. Learning fromDemon-
stration is the process in which agents mimic the behavior demon-
strated by an expert [51], with users demonstrating a task and
approving the system when it imitates the task correctly. An
example of this is the TAMER framework, or Training Agents
Manually via Evaluative Reinforcement [39]. RL has been used in
musical applications, such as Co-Explorer, a system for interactive
exploration of musical parameters by sound designers [59].

2.4 Sensors and Visual Programming
The laptop computer contains a variety of sensors that make it a
suitable platform for expressive musical performances [22], such
as the camera. Achieving expressiveness in computer musical
performance is possible through understanding mappings, visual
feedback, the development of virtuosity through practice, and
critical discourse of the system [15]. Participants in a study using
a constrained musical instrument displayed various techniques in
creating musical variety through problem-solving or exploratory
mindsets [30]. Interactive machine learning can allow users of
digital musical instruments to use (digital) mappings to create
control paradigms, with many-to-many mappings and nondeter-
ministic processes increasing the control users have over complex
interactions with the system, promoting “partnerships” between
user and system through the act of creating those mappings [20].
There are many modes of input in such a system, but gesture is
linked to the user’s intention in musical performance [3].

Visual programming languages have a long history in the field
of interactive music and the development of NIMEs [21]. Hartley
[31] provides a collection of Max/MSP1 objects designed to help
with prototyping musical interfaces and augmenting physical
instruments, further illustrating the software’s use in multimodal
and modular approaches. Additionally, the use of visualization
has supported tools for analyzing input to musical systems [49],
as well as physical interfaces such as the Reactable that respond
to physical interactions with audiovisual output [35].

3 System Design
GestAlt2 is an interactive software-based generative music sys-
tem that uses a laptop camera to capture a performer’s motion
for improvisatory musical performance. It is hosted in a modified
application that demonstrates Google’s MediaPipe gesture detec-
tion library [64, 73], combined with a musical output patch in
the visual programming language Max/MSP. It uses MediaPipe
to measure the position and orientation of a user’s hands.

1https://cycling74.com/products/max
2Video demonstration: https://bit.ly/gestalt-demo

https://bit.ly/gestalt-demo
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Figure 2: System flow of GestAlt. User input is processed
by the MediaPipe model and the user’s gesture is classified
alongside keyboard commands for online machine learn-
ing (OML). The system has two configurations: “RL”, which
uses the TAMER reinforcement learning agent alongside
the user’s second hand to alter musical mappings, and
“non-RL”, which uses predefined musical mappings.

GestAlt then uses two separate neural networks to determine
a gesture in the form of a hand sign (a static depiction of the
shape of the hand) and a motion (a pattern of the user’s positions
throughout multiple frames). GestAlt generates visualizations of
the user’s input gesture, including classification labels, a bound-
ing box, and a trail representing a user’s motion (see Figure 1).

Figure 2 depicts the flow of information between user input
and audiovisual output. The motion description model is a clas-
sification model trained on clockwise, counterclockwise, and
straight motions. GestAlt contrasts previous interactive music
systems by the authors [60, 61] through the use of Mediapipe for
hand sign classification and the addition of adaptive behaviors in
the form of online machine learning and reinforcement learning.

3.1 Online Machine Learning
GestAlt uses Online Machine Learning (OML) to allow user cus-
tomization by adding new gestures to a hand sign classification
model [64] and retraining the model during a performance. These
changes embody direct communication between the user and
AI as the user initiates them through keyboard commands on
a dimension they can easily control (choice of gesture). GestAlt
begins already trained to recognize an open hand, a pointed in-
dex finger, and a fist. Users can register new hand signs with a
number and text label using the “L” key, pressing “K” to enable
recording and holding the number key associated with the hand
sign while performing it with their other hand before using the
“R” key to retrain the gesture detection model (see Table 1). These
keys were visible to users, as shown in Figure 1.

Hand detection (through MediaPipe) and hand sign classifica-
tion (using OML) are directly mapped to filter parameters in a
looping Max/MSP patch (see Figure 3). These parameters include
low-pass filter cutoffs on looping drum and bass samples (“bass
filter” and “drum filter”), the resonance and cutoff of a band-pass

Key Function Explanation

L Label Gestures Opens Terminal to
name/number a gesture.

K Log Keypoints Allows users to hold 1-9
and record gestures.

R Retrain Model Retrains model and turns
off gesture recording.

N Return Disables gesture recording
without retraining.

Table 1: Keyboard commands for online machine learning
with GestAlt.

filter (“roughness”), and the rate of a randomly-pitched synthe-
sized melody (“rate”) (see Figure 4). To maintain the system’s
performance for continuous gestural capture, the gestural recog-
nition model is retrained in a separate Python thread. This allows
users to continue performing gestures and those gestures to be
transmitted to the musical output in the Max/MSP patch while
the system retrains. As the user trains new gestures using OML,
they are mapped to new melodic patterns (the “rate” parameter).

3.2 Reinforcement Learning
RL can allow users to directly communicate their desired be-
havioral changes to the system while maintaining system au-
tonomy when implementing those changes. As collaborative
music-making is open-ended and subjective, exploration-focused
models that rely on human feedback over an environmental re-
ward signal are most appropriate for GestAlt.

GestAlt uses RL to map motion patterns to changes in mu-
sical parameters. The model can be re-trained using the con-
stant stream-of-motion classification outputs collected during
a session and user feedback. Similar adaptation is used in sys-
tems for interactive audio parameter [59] and sound [67] design.
GestAlt uses Deep TAMER, designed to allow rapid training of
low-dimensional tasks using deep learning [69]. A two-layer, lin-
ear neural network takes in a representation of the current ges-
ture and current musical output and evaluates possible changes
the system can cause against the potential for user approval.

Inputs Output
Gesture (1 - 9)

User
Feedback
(-1 - 1)

Hand Position ([0 - 0.99, 0 - 0.99])
Hand Size/Distance (0 - 0.99)

Motion (1 - 4)
Musical Parameter (0 - 3)

Parameter Value (0.00 - 0.99)
Table 2: Inputs and Output of the Deep TAMER reinforce-
ment learning model used in GestAlt. The system conducts
actions (Musical Parameter, Parameter Value) to maximize
a predicted User Feedback output variable by training the
above Inputs as a state variable.

The mappings are defined by two variables. The first, “slider,”
represents major Musical Parameter mappings (see Figure 4):
“rate” of a pitched droplet melody (0), the “roughness” caused by
band-pass filters throughout the audio loops (1), and the “bass
filter” (2) and the “drum filter” (3) that are linear in the accompa-
nying Max/MSP patch as well as a second number that correlates
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Figure 3: Mappings between model output and musical pa-
rameters in GestAlt. These mappings are altered during
a performance using GestAlt’s Online Machine Learning
functionality, or performed by a separate model using Re-
inforcement Learning functionality.

to the Parameter Value of a “slider”. This model outputs a value
that represents user feedback, ranging from −1 to 1. With rein-
forcement learning enabled, the user provides feedback to the
model by giving a “thumbs up” (1) or “thumbs down” gesture
(-1) with their “non-dominant” hand, which is determined by the
system as whichever hand is physically lower. The weights of the
neural network continuously adjust to optimize positive feedback
for a given motion-music state. The model retrains itself every
15 frames (roughly once per second), as long as any positive or
negative feedback has been received within that window. Table
2 shows the inputs and outputs of the state variable representing
performance with GestAlt.

After the model trains, GestAlt simulates the actions it could
take by comparing the predicted user feedback for changing each
Musical Parameter option in the model’s input state variable. The
combination of musical parameters and values that resulted in
the model predicting the highest user feedback is then saved as
the agent’s action. Like the rule-based mappings, the values are
sent to Max/MSP via an Open Sound Control (OSC) protocol.

4 Methodology
To evaluate GestAlt as an adaptive and interactive music system
and to explore the role of perceived creative autonomy in inter-
action dynamics between human performers and an AI-based
system, we designed a study to answer the following question:

• How can the perceived ability of an interactive generative
music system to adapt to a user increase user ratings for
anthropomorphism, perceived intelligence, and creative
autonomy? How do these perceptions and ratings change
across multiple usage sessions?

This study is designed to have participants interact withGestAlt
in a way that supports reflection on the co-creative dynamics
they share with the system. Subjects answered questions about
how they perceived the AI component of the system’s creative
autonomy, which was analyzed alongside interviews and their
interactions with the system.

4.1 Participant Information
This study adopted the model of a case study [18, 24] to focus on
the perceptions of the participants while using GestAlt in depth.
Case studies have often been used to assess interactive music
systems and NIMEs [30, 38, 72].

Figure 4: Mappings between musical parameter values and
filter effects in GestAlt’s Max/MSP patch.

This study has five participants (two women and three men,
ages 24 to 70) with a minimum requirement of self-reported musi-
cal performance experience (a minimum of two years) and under-
standing of computer science, but a variety of skill levels among
them. Participants completed a questionnaire before using the
software to assess their level of musical experience, preconceived
notions of human-AI musical interaction, and understanding
of machine learning concepts. The responses encompassed the
full range of 7-point Likert scale in experience performing with
AI and the ability to understand the development of machine
learning models. All participants reported at least 4 out of 7 re-
garding their interest in performing with AI. Table 3 lists the five
participants and their self-reported experiences.

Primary
Instrument

Musical
Experience

Experience
Performing
with AI

CS
Experience

A Synthesizer High (6) Low (1) Medium (4)
B Flute High (7) Low (1) Low (1)
C Percussion High (7) High (6) Medium (4)
D Percussion High (7) High (7) Low (1)
E Brass Medium (5) Low (1) High (6)

Table 3: The five participants’ experience levels related to
music, performance with AI, and computer science.

4.2 Study Procedures
In this study, participants answered a series of Likert-scaled sur-
vey and open-ended interview questions as they completed a
performance task with GestAlt (see Table 4 in the Appendix).

4.2.1 Pre-Questionnaire. Participants answered questions about
their musical experience, including their experience with AI in
music and their familiarity with AI and machine learning (see
Appendix A). In repeated trials, we compared the participants’
responses to these questions with their previous responses to
detect a change in their interest in performing with AI.

4.2.2 Performance. Participants were randomly assigned to use
one of the two versions of GestAlt first in the three sessions:
one with (RL) or without reinforcement learning (non-RL). They
practiced by improvising with GestAlt for five minutes while
thinking aloud and talking freely. They then completed a two-
minute recorded improvisatory performance and repeated the
above steps for the other version.
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Figure 5: Expectations for participant interpretations of
System Autonomy and System Control ratings.

Afterward, the participants and the researcher watched the
recordings of their performances. They identified any musical
interactions they saw as notable and rated GestAlt on whether
they were leading the creative process or the system was, re-
flecting Rowe’s “instrument” and “player” paradigms [55]. They
rated the system by answering two questions on a 7-point Likert
Scale while watching recordings of themselves playing with it
(see Section C in the Appendix). The first, System Autonomy,
asked participants to rate the system’s independence on a scale
of “instrument” (low) to “agent” (high) in how it responds to
their gestures. The second, System Control, asked whether they
felt the system was following them (low) or leading them (high)
in the creative process. Figure 5 depicts expectations for how
the participants might interpret combinations of low and high
System Autonomy and System Control ratings based on how
they perceive the system’s level of autonomy and control.

4.2.3 Post-Questionnaire. After performances, participants com-
pared the two versions of GestAlt in creativity support, satisfac-
tion with visualizations as explanations, and trust [13, 33, 46]
(Appendix B.1, B.2, B.3). Interview questions included how users
perceived the system’s ability to communicate with and under-
stand their own musical goals (known as Mutual Theory of Mind
[68]) as well as a sense of shared movement or “synchronization”
with the system [71] (see Appendix D). Participants completed
the study once every two weeks for four weeks throughout Fall
2023, and in subsequent sessions, compared their results to mea-
sure changes in perceptions over time.

4.3 Analysis Methods
This case study is designed to observe how participants’ per-
ceptions of GestAlt as a creatively autonomous creative partner
develop over time. By performing a thorough qualitative analysis
of a small number of participants, we compared their experiences
and accounts with previous sessions.

4.3.1 Qualitative Data. Although participant ratings were mea-
sured as quantitative data, their main purpose was to facilitate
discussion. From this experience, participants produced data
from interview questions that can be analyzed qualitatively. This
choice of qualitative analysis was motivated by a focus on partici-
pants’ experiences recorded through verbal responses, and a case
study’s inclusion of only five participants would be insufficient
for statistical tests. Creativity support ratings have also been
used to contextualize interview responses in other Co-Creative
AI studies [52] such as the evaluation of Co-Explorer, an RL-based
tool for audio parameter manipulation [59].

4.3.2 Thematic Analysis. We performed deductive thematic anal-
ysis on participants’ experiences to group them with specific ar-
eas of interest, such as perceived autonomy, changes in creative
goals as a result of system behavior, or the effects of specific
visual or auditory cues [19, 27, 66]. First, we recorded statements
made by participants and combined them with their numerical
ratings (for example, a participant’s verbal comparison of the
two systems’ behaviors was paired with their preference for one
version in terms of Explanation Satisfaction ratings). We grouped
this data into themes related to our research question such as
anthropomorphism and perceived adaptation. We further cat-
egorized participant data into frameworks such as expectancy
violation [10], mutual theory of mind [68], or synchrony [71]
(see Section 2.1). We also analyzed participant recordings to find
performance-related patterns, such as variation in the density
of effect parameter changes over time and whether or not these
changes match the experiences or goals of participants.

5 Findings
System ratings, recorded performances, and interview responses
share themes: First, participant preferences for behavior by an
AI-based interactive music system were influenced by their expe-
riences and changed through interaction with the AI. In addition,
participants evaluated the versions of the system in terms of
how their adaptive behaviors relate to anthropomorphism and
changes in expectations. Finally, participants’ perceptions about
the system’s actions relative to their own changed over time.

5.1 Preferences for AI Behavior
Participants reported preferences for AI behavior in a music
system based on their previous music and computer science
experience, and their preferences changed throughout the trials
as they adapted to using GestAlt.

Participant A first indicated that they would prefer a mostly
autonomous system that shows “response, not control.” This pref-
erence was based on their experience using synthesizers, where
they could fully control when sound starts and stops. When they
could not force the RL version to return to a previously learned
state, they perceived the system’s autonomy as negatively im-
pacting collaboration. However, once they understood the system
better, they felt the “possibility of a conversation” and reported
increased trust for the more autonomous RL. Participant B, an
experienced instrumentalist with limited CS knowledge, initially
expected AI systems to act fully as instruments. After their trials,
they desired systems to display the “full spectrum” of auton-
omy in performance. Participant E, with the highest reported CS
knowledge, stated that their preferred AI-based music system
would be very autonomous but receptive to communication and
to avoid “stubbornness,” a display of autonomy that acts inde-
pendently of the user in terms of creative leadership. As the RL
version periodically surprised them, they stated that stubborn-
ness should remain “low, but not zero,” contrary to their initial
negative description of stubbornness.

Changes in perception of GestAlt’s creative autonomy de-
pended on the participants’ stated preferences for AI behavior
in music performance. Participant C increased their evaluation
of the system after it showed autonomy and control levels they
expected to dislike: it changed “rate” mapping based on changes
set by the retrained gestural classification model (see Figure 3),
adjusting the melody in a fashion the participant rated highly in
terms of the system taking control in the improvisatory process.
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5.2 Reinforcement Learning:
Anthropomorphism and Expectancy
Violation

The act of adding gestures in the non-RL or RL version greatly
affected user perceptions of the system: for non-RL, participants
were able to identifymappings by observing themappings changed
by new gestures, which increased their understanding and trust
in the system; for RL, participants were able to create specific
motion patterns that resulted in distinct musical decisions by the
system, increasing their ratings of the AI’s autonomy.

Adding a second adaptive behavior, reinforcement learning,
affected the anthropomorphism participants applied to the sys-
tem. When describing changes in their perception, participants
referred to non-RL primarily with things they learned about
the mappings created by the system. The addition of reinforce-
ment learning influenced how the participants described their
adaptation, using anthropomorphic language such as “musician”
(Participants A, C, and D) and “duet” (Participant C).

The RL version proved to be more capable of surprising users.
While this reduced trust for some users, it increased participants’
sense of reward for exploratory behavior. For example, when
Participant A adjusted to reinforcement learning with GestAlt,
they stated that they would “want to be surprised” by future
AI interactions. Participant B was surprised that AI was taking
on the role of a “performer” rather than just an “instrument.”
Participant D was surprised when the system did not recognize
their crossed-hand motion - they later attributed an increase
in their rating of how well they understood the system to this
experience, as it exposed a limit to the system’s abilities. When-
ever some behavior change was noticed, such as RL causing a
new mapping between motion and a filter parameter for drums
or bass (see Figure 4), the participants’ perceptions of system
autonomy increased. This represents a positive example of ex-
pectancy violation [10]. This also reflects the “dialogic creative
process, emblematic of an improviser’s way of working” caused
by “momentary inspiration” and “immediate sonic realization,”
the goals of George Lewis’ Voyager [40].

Participants’ understanding of the RL version was based on
learning how to control when reinforcement learning occurs.
Participants A, B, and C provided sparse feedback to reward
specific sonic combinations, ceasing their feedback once they
heard a filter parameter mapping change make the drums, bass,
or melody more prominent in the system’s musical output. Par-
ticipants D and E provided continuous feedback to force change
at varying rates. Seeing a change caused by their input to the
reinforcement learning agent allowed participants to learn when
and how the agent manipulated the audio parameters. For exam-
ple, Participants B, D, and E heard parts of the sound they had
not noticed before filtered, such as the harmonic string loop, only
heard during combinations of high “roughness” settings and low
filter cutoffs for the bass and drum loops.

5.3 Evolving Perceptions: Mutual Theory of
Mind and Synchrony

Participants increasingly relied on visualizations over time. For
Participants A B and D, visualizations began as distractions but
were eventually seen as necessary components to understand
and perceive the system as autonomous. These visualizations
impacted participants’ actions while using the system, such as by
encouraging Participant B to make circular motions to expand
the area represented by a captured gesture or Participant D to

avoid areas of the screen less likely to be accurately recognized.
While participants adjusted to using GestAlt and learned how it
adjusted to them, they developed creative goals and reflected on
the system’s behavior related to their movement.

In this study, participants’ evolving perceptions of the system’s
autonomy reflected a sense of perceived Mutual Theory of Mind
[68] with GestAlt, despite it lacking a model of the user’s behav-
ior or goals. For example, Participant E stated that the non-RL
system version was an “instrument” lacking creative input: they
felt fully in control creatively, as the system made predictable
musical changes in response to gestures and only changed those
mappings when they retrained the gesture classifier. RL was an
AI they initially did not acknowledge the decision-making of,
with Participants A, B, and E perceiving the actions of RL as
random. Once they understood RL, Participants A and E had a
“conversation” or “negotiation” with the system. Participant B
stated that, after practicing with the system and reviewing their
performance, their understanding and trust in it increased. They
stated that the system is “trustworthy by definition because it
is a machine... I trust that if I do it right, it will do what I ask it
to do.” In addition to these descriptions of dialogic interaction
with the system, participants evaluated how well the system built
an understanding of their motions through OML and RL. These
factors demonstrate a developing mental model of the AI’s be-
havior and “goals” (through practice with the system) alongside
the user’s increasing sense that the AI understands their goals
(through adaptive machine learning).

As participants were improvising with GestAlt, they evaluated
synchronization between their input motion, visualizations by
the system, and the equivalent changes in musical parameters.
This perceived sense of Synchrony [71] with the AI increased
as the participants reflected on their actions, especially as they
watched recordings of their motions and the musical results of
those motions. A sense of synchronization with either version of
GestAlt increased their trust and satisfaction with the system.

6 Discussion
This paper evaluates the interactive generative music system
GestAlt as an AI-based creativity support tool. Musicians evalu-
ated the system in terms of their preferences and expectations of
AI behavior. Their sense of anthropomorphism was influenced
by system adaptations and instances of surprise, and their per-
ceptions of a system as a creative partner evolved alongside their
understanding of the system and how to perform with it. These
findings, while subject to several limitations due to system and
study design, represent aspects that may be used to guide fu-
ture research in designing AI-based music systems. We present
the following observations as design considerations for creating
music systems that support human-AI collaboration [14]. Future
research exploring human perceptions during other, more varied
forms of human-AI music-making may be able to develop more
concrete principles for AI-based interactive music system design.

6.1 Moments of surprise can build trust and
understanding in a musical AI.

The five participants each reported some positive surprise with
the system or an experience that subverted their expectations
while providing insight into how the systemworked. For example,
participants A and D both reported that they momentarily came
to "some sort of understanding" with the systemwhen it exhibited
a sudden change in response to their feedback. Participants B,
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D, and E specifically noticed new parts of GestAlt’s audio output
when their RL feedback resulted in sudden filter changes that
they had not triggered when using the non-RL version.

Furthermore, participant preferences for AI behavior were
altered by these surprises. Participant B initially reported a pref-
erence for low System Control. Later, they articulated that they
want systems that display autonomy and periodically take con-
trol creatively. They appreciated taking less of a “leadership” role
over time. Similarly, participant C reacted positively to behav-
iors that contradicted their preference ratings. AI-based music
systems can be designed to facilitate positive surprises, using
constant change to differentiate themselves from static systems
while teaching the user how to interact with them.

6.2 Visualizations can teach musicians how to
watch and listen to an AI.

Depending on their backgrounds or creative goals, the partici-
pants behaved differently with information from visualizations
either to learn more about the AI or learn how to perform with
it. As with participants in a past study comparing the effects of
visualizations on users’ perceptions of creative autonomy [61],
participants formed expectations for system behavior that cor-
related with their background and used visualizations to find
methods of interacting with the system that matched those ex-
pectations. Participants with musical backgrounds used the pose
recognition visualization to find stable, linear mappings that they
could use expressively, and participants with computer science
expertise used the motion description output to determine the
limits of the system’s ability to respond to them, allowing it to
create output freely.

Participants’ reactions to the visualizations changed over time.
Participants A and B, the least experienced with AI, initially
referred to visualizations as distracting but grew to rely on them.
Watching their performance videos led them to reflect on the
relationship between visuals and music. Participants B and E
began to develop a pattern of training the system, reflecting on
the visualizations, then using new movements to expand the
musical output further. These changes brought about by learning
through visualization demonstrate how visual explanation [29]
can promote expression with an AI-based system.

6.3 Communication can support a musical
system being treated co-creatively.

Although the two versions of GestAlt contained interactive adap-
tive behaviors, participants referred to the RL version that en-
abled constant real-time feedback with a higher degree of anthro-
pomorphic language. The participants mainly referred to non-RL
as an “instrument.” Their descriptions of RL were more varied
but consisted of comparisons to human-to-human collaboration
with terms such as “musician” and “duet.”

In particular, these terms changed as participants developed an
understanding of the goals of the system or a perceived Mutual
Theory of Mind with the agent, even though the system does
not contain any internal modeling of goals. For non-RL, they
noted between trials the mappings they had learned, but with RL,
they noted what they felt the system had learned from them. The
increased anthropomorphism did not lead to universally higher
ratings for creativity support, satisfaction, or trust, but the RL
version saw a more positive change in trust ratings between
sessions than the non-RL version.

Participants were asked how “synchronized” they felt with
GestAlt in open-ended interview questions.When discussing how
“synchronized” with it they were, participants measured non-
RL in terms of musical synchronization through reliability and
latency.When talking about RL, they noted the “common ground”
they came to with the AI regarding the intent of their gestures
and the system’s visualizations or musical output, relating to
Synchrony [71]. By forming a sense of shared musical goals and
movement, AI can provide tools with evolving creative decision-
making and musical expression alongside a user.

7 Conclusion and Future Work
This paper investigated how adaptive AI behaviors, when built
into an interactive generative music system, allow users to form
an understanding of the system as an autonomous creative part-
ner. Participants were more able to identify preferred behaviors
as their understanding and trust of the system grewwith repeated
usage, and training and system adaptation allowed them to find
unexpected behaviors that changed their initial perceptions. Par-
ticipants assigned more anthropomorphism to the system with
additional adaptive behaviors, but their creative goals did not
universally align with the desire for a more autonomous system.

The participants in this study come from a limited group of
people who are proficient musically and aware of basic computer
science principles. As part of its case study design, this study
had only five participants, representing only a specific, knowl-
edgeable population. By analyzing trends in larger groups, or
participants with more variety in experience, future research can
determine more generalizable information about how musicians
interact with an AI that exhibits adaptive behaviors.

Additionally, GestAlt represents a single kind of human-AI mu-
sical interaction: a sequential “wheelbarrow” topology in which
the human musician performs gestures that are interpreted and
transformed into musical output by the AI [70]. The findings and
observations from using these systems may differ from those that
use other models of interaction, such as compositional systems
[42] and those that support symmetrical interactions with mu-
sical input and output [40]. Other performance scenarios, such
as using GestAlt alongside another human musician, may reveal
different insights about the AI component’s role in facilitating
human-to-human collaboration [63].

Non-improvisatory performance tasks, such as writing a piece
for GestAlt performance, may demonstrate more effects of con-
strained AI behavior due to the system’s limited variety in musi-
cal output changes by the AI. GestAlt’s limited number of map-
pings to parameters and use of looping samples (see Figure 4)
may also contribute to the ease with which participants iden-
tified system behavior, and more elaborate mappings or audio
generation [1, 7] may reveal more about how adaptive behaviors
or explanations affect users’ learning how to interact with an
AI-based music system.

8 Ethical Standards
This material is based upon work supported by the National
Science Foundation Award No. 2300633. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation. Informed consent was received
from all human participants compliant with Institutional Review
Board requirements.
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Question Appendix Scale
Music Experience A.1

Likert scale
(1-7)

ML Experience A.2
Autonomy Ratings CControl Ratings

Creativity Support Index B.1
Explanation Satisfaction Scale B.2

Trust B.3
Change in Perception

D

Open-
ended

Surprises (pos/neg)
Suggestions for Improvements

Mutual Theory of Mind
Synchronization

Changes since prev. trial
Table 4: Survey and interview questions asked during the
study evaluating GestAlt.

A Pre-Questionnaire
A.1 Music Experience

• I have listened/been exposed to live electronicmusic (Mus1).
• I have performed live electronic music (Mus2).
• I have performed live electronic music collaboratively
(Mus3).

• I have performed live electronic music with an artificial
agent collaboratively (Mus4).

• I am interested in performing live electronic music with
an artificial agent collaboratively (Mus5).

• I actively listen to music, and regularly try to find new
music to listen to (Mus6).

• I am able to understand music well by listening to it, in-
cluding mistakes in a performance (Mus7).

• I consider myself a trained musician (Mus8).
• Listening tomusic can evokememories, emotions, or “shiv-
ers” in me (Mus9).

A.2 Machine Learning Experience
• I feel confident in my ability to remember machine learn-
ing concepts from my computer science education (ML1).

• I feel confident in my ability to describe machine learning
concepts (ML2).

• I feel confident in my ability to compare machine learning
models (ML3).

• I feel confident inmy ability to evaluate amachine learning
model (ML4).

• I feel confident in my ability to create a machine learning
model (ML5).

• I am familiar with the use ofmachine learning in a live/interactive
music context (ML6).

B Post-Questionnaire
B.1 Modified Creativity Support Index

• I was able to collaborate musically with the system (CS1).
• I enjoyed using this system (CS2).
• I was able to be expressive while using this system (CS3).
• I would be happy to use this system on a regular basis
(CS4).

• The musical output of the system is of a high standard
(CS5).

• The musical output of the system is like that of a human
(CS6).

B.2 Modified Explainability Satisfaction Scale
• From the visualization, I understand how the systemworks
(Ex1).

• This visualization of how the system works is satisfying
(Ex2).

• This visualization has sufficient detail (Ex3).
• This visualization is complete (Ex4).
• This visualization tells me how to use the system (Ex5).
• This visualization is useful to my goals (Ex6).
• This visualization tells me how accurate the system is
(Ex7).

• This visualization lets me judge when to trust the system
(Ex8).

B.3 Affective Trust Survey
• I believe the system is a competent performer (T1).
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• I trust the system (T2).
• I have confidence in the advice given by the system (T3).
• I can depend on the system (T4).
• I can rely on the system to behave in consistent ways (T5).
• I can rely on the system to do its best every time (T6).

C Creative Autonomy Ratings
• Autonomy: For each musical interaction in the recording,
please indicate how much the musical output felt of an
instrument that you were controlling or an autonomous
collaborator (1: Instrument, 7: Autonomous agent).

• Control: For each musical interaction in the recording,
please indicate how much you felt like you were influenc-
ing the system or the system was influencing you (1: I was
in control, 7: The system was in control).

D Interview Questions
D.1 On all trials

• Did this trial change your perception about performing
with an artificial agent collaboratively?

• Were there any behaviors or musical interactions you
found unexpected or surprising, and were they positive
or negative surprises?

• Do you have any suggestions for improvements to the
system?

• How would you describe your process of coming to un-
derstand the system while performing with it?

• Were there any actions that you performed specifically
due to the system’s visualizations or musical output?

• How “synchronized” or “in sync” were you and the AI?
• What would your preferred levels of creative autonomy
and control in an interactive music system be?

D.2 On repeat trials
• How have you adjusted to using the system?
• X rating has changed since your last trial. Why do you
feel differently now?
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