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ABSTRACT 
This paper presents a pipeline to integrate a fine-tuned open-source 
text-to-audio latent diffusion model into a workflow with Ableton 
Live for the improvisation of contemporary electronic music. The 
system generates audio fragments based on text prompts provided in 
real time by the performer, enabling dynamic interaction. Guided by 
Musical Metacreation as a framework, this case study reframes 
generative AI as a co-creative agent rather than a mere style imitator. 
By fine-tuning Stable Audio Open on a dataset of the first author’s 
compositions and field recordings, this approach demonstrates the 
ethical and practical benefits of open-source solutions. Beyond 
showcasing the model’s creative potential, this study highlights the 
model’s significant challenges and the need for democratized tools 
with real-world applications. 
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1. INTRODUCTION 
Recent years have seen a surge in text-to-audio and text-to-music 
research [1, 12–14, 16, 41, 45], driven by advances in machine 
learning that promise novel sonic possibilities [6, 8]. Generative AI 
(GenAI) models now cover a wide range of genres, while non-
generative AI is used to automate tasks such as mastering [28, 34]. 
Many text-to-audio models that generate polished compositions are 
reshaping traditional musical practices [37, 38], potentially devaluing 
musicians' work [29]. Moreover, many of these models are trained on 
copyrighted music [36].  
 Yet, the practical impact of AI on music-making remains 
underexamined [4, 33]. Earlier AI music research often focused on 
style replication [2], although recent work increasingly emphasizes 
originality and collaborative interaction [10, 15, 21, 27]. To explore 
these evolving priorities, we propose a pipeline that integrates a fine-
tuned text-to-audio diffusion model into live performance, thereby 
exploring GenAI’s potential in real-time improvisation. Building on 
traditions such as live coding [5, 7, 9, 26] and algorithmic composition 
[30], our approach extends prior AI-related NIME research [3, 19, 24, 
40, 43]. We emphasize diffusion-based generation over other methods 
(e.g., rule-based, symbolic) and deploy the resulting pipeline in a live 
improvisational setting. 

1.1 From Demonstration to Democratic 
Intervention  
Sturm et al. [33] , building on Wagstaff’s position [42], argue that 
demonstration-driven metrics like perplexity or human-like simulation 
often lack relevance for musicians. As Ben-Tal et al. [4] note, 

evaluating AI music models requires assessing their real-world 
usefulness in composition, collaboration, and improvisation.  
 Furthermore, Feenberg [18] argues that user appropriation can serve 
as a democratic intervention by enabling practitioners to shape 
emerging technologies rather than merely adopt them. This ethos 
resonates with practices like circuit bending and hacking [11, 20, 25], 
all of which involve retooling existing technologies to meet creative 
needs.  
 Implementing this vision towards GenAI centers on open-source, 
ethically trained models. Unlike proprietary models [1, 14, 35, 39] or 
“open” ones using privately licensed data [12], Stable Audio Open 
[17] uses only Creative Commons licensed audio, aligning with 
democratizing ideals—despite possible quality trade-offs. We, 
therefore, adopt it in our case study, prioritizing access and creative 
freedom. 

1.2 Key Challenges 
Integrating text-to-audio models into real-world musical environments 
presents several significant challenges: 
• Proprietary Models: Many leading models remain proprietary, 

limiting fine-tuning and experimentation [17, 32]. 
• Data Origin: Web-scraped audio raises licensing concerns that 

can discourage open adoption [38]. 
• Open-Model Shortcomings: Open-source models often lag in 

quality and coherence compared to commercial models 
[17]. 

• Computational Demand: Using and fine-tuning generative 
models requires substantial computational resources [23, 
44, 46], often out of reach for many. 

With these challenges outlined, we now focus on the frameworks 
informing the design of our system. 

2. MUSICAL METACREATION AS 
FRAMEWORK 
Musical Metacreation (MuMe), a subset of computational creativity, 
explores the interplay between generative autonomy and human 
adaptation, providing the conceptual foundation for this study. 
Pasquier et al. [31] describe MuMe systems as capable of generating, 
transforming, or analyzing musical content with varying degrees of 
autonomy.  
 In improvised performances, MuMe systems can supply musical 
fragments—melodic snippets or textures—that performers deploy. 
This collaborative interaction emphasizes the system’s generative 
creativity (producing novel sound artifacts) and the performer's 
adaptive creativity (integrating and reshaping artifacts within the 
performance) [31].  
 Their framework informs our approach through three key aspects: 
an autonomy continuum that balances system-driven and human-
guided processes; a distinction between corpus-based and non-corpus-
based approaches—where the latter generates outputs without being 
exposed to musical information as input, determining contextual 
novelty; and a classification of systems as operating in real time versus 
offline to guide analyses of interactive collaboration. 



Within this context, we position GenAI as a collaborative agent1. In 
our live improvisation pipeline, GenAI generates musical fragments 
from real-time prompts, shifting the focus from problem-solving 
(optimal outcomes) to "problem-seeking" [2, 22], enabling musicians 
to reshape or subvert the outputs creatively. 

3. SYSTEM DESIGN AND 
IMPLEMENTATION 
The proposed pipeline operates in three consecutive stages: (1) 
Conditioning the AI model (prompting), (2) Generating fragments 
(outputs), and (3) Integrating these fragments in Ableton. Iterating 
these steps aims to create a feedback loop between the performer and 
AI, balancing model autonomy and human creativity. The following 
subsections detail the text-to-audio model, fine-tuning process, and 
Ableton integration. 

3.1 The Fine-Tuned Latent Diffusion Model  
Stable Audio Open 1.0 is an open-source text-to-audio model trained 
on 7,300 hours of Creative Commons licensed audio and music, 
capable of generating 44.1 kHz stereo outputs up to 47 seconds. To 
further align the system with the concept of user appropriation, this 
model was fine-tuned using music and audio sourced from the first 
author’s repertoire, aiming to reflect their aesthetic preferences in the 
generated outputs. 

3.1.1 Dataset Preparation for Fine-Tuning 
A dataset of approximately 41 hours of music, improvisations, 
sketches, and field recordings was segmented into 5-second chunks 
following Evans et al.’s original method [17]. After removing silent 
and short chunks, this yielded 23,003 files (.wav), corresponding to 
roughly 32 hours of audio and music.  
 A structured metadata tagging strategy was adopted for fine-tuning: 
full compositions were manually annotated with attributes (title, genre, 
mood, tempo, key, description, name), and their individual instrument 
stems inherited these attributes, adding unique details (e.g., instrument 
names) extracted from filenames.  

3.1.2 Training the Model 
Training used the described audio dataset with metadata to strengthen 
links between text prompts and audio outputs. The pre-trained 
checkpoint available on HuggingFace2 was used with configuration 
settings from the stable-audio-tools3 library. Training was conducted 
on an NVIDIA A100 in Google Colab, and the resulting checkpoint 
functions as the fine-tuned model for our improvisational pipeline.  

3.2 Text-to-Audio Generation  
To generate audio, the model is conditioned with short natural 
language prompts entered through a simple interface featuring a text 
field and a generation button (Figure 1).  

The system loads the fine-tuned checkpoint at startup using the stable-
audio-tools library configuration and generates audio fragments when 
the Generate button is pressed. Inference time can vary depending on 

 
1 A MuMe agent is a system designed to autonomously perform 
creative musical tasks (e.g. composition or improvisation) and 
can operate both online and offline. Its level of autonomy ranges 
from fully generative systems to interactive, computer-assisted 
tools. 

the GPU e.g. 7 seconds on an RTX 4090 versus 12 minutes on a 
MacBook Pro M1 (Figure 2). 

Generated fragments are saved as .wav files in a four-file loop: 
“Fragment01.wav” to “Fragment04.wav. " New outputs overwrite the 
oldest file in a sequence of four, allowing performers to improvise with 
four simultaneous tracks after they are imported into Ableton, as 
shown in the next step. 

3.3 Integration into Ableton Live 
A custom Max for Live patch imports AI-generated fragments into 
Ableton, where each can be buffered and triggered on demand. These 
fragments serve as immediate raw material for improvisation—ready 
to be played, looped, or manipulated like any other element. Inserted 
into an Ableton track, the interface (Figure 3) lets users select from 
four fragments (1–4).  
 

Since the generated fragments are relatively short (≤47 seconds), half- 
and quarter-time-stretch functions were integrated to extend their 
duration if desired. Additionally, all interactive elements of the patch 
are MIDI-mapped through Ableton, enabling tangible, haptic control.  

3.4 Live Improvisation 
The concluding pipeline (Figure 4) includes the following steps: 

• 1. Initiation: The system loads the model checkpoint, 
• 2. Conditioning: The performer prompts the model, 
• 3. Generation: The model generates an audio fragment, 
• 4. Import: The fragment is buffered and imported into Ableton, 
• 5. Improvisation: The performer engages with the fragment,  
• 6. Iteration: Repeating the process to extend the improvisation. 

 
2 https://huggingface.co/stabilityai/stable-audio-open-1.0 
3 https://github.com/Stability-AI/stable-audio-tools 

Figure 2. Inference times using different GPUs 

Figure 1. Gradio UI to enter prompts 

 

Figure 3. Max for Live patch to buffer and play fragments 



In practice4, the performer only needs to input a prompt and trigger 
generation through the UI, while all musical actions—playback and 
manipulation—are handled in real time via a MIDI controller (Figure 
5). 

4. OBSERVATIONS FROM SYSTEM USE 
Live deployment revealed technical challenges but also substantial 
creative potential. This section summarizes key observations from 
real-world pipeline use, highlighting how a fine-tuned text-to-audio 
model can both support and challenge the performer’s creative 
process.  

4.1 Technical Challenges 
During the case study we faced numerous challenges. Training was 
resource-intensive (>33 GB VRAM; Figure 6) and unreliable in Colab 
due to automatic updates and lack of an isolated environment, leading 
to dependency issues (e.g., NumPy and PyTorch), immensely 
affecting reproducibility. We partially addressed this by manually 
installing libraries and reverting to compatible versions, though this 
was not always effective. We recommend running the process locally 
when possible. 

 
4 A video of real-time interaction with the system can be viewed 
here: https://misaghazimi.com/research/sao-improv 

In addition, some generated fragments exhibited issues such as long 
silent parts (Figure 7) and tempo variations, which could disrupt the 
musical flow when looped. Handling tempo variations—e.g. 
quantizing fragments to a strict tempo grid with low latency and no 
human intervention—was challenging and fell outside the study's 
scope. Occasional silences, however, proved manageable with a 
lightweight post-processing script5. 
  

The fine-tuning process relied on several hours of audio from the first 
author’s repertoire, introducing two further reproducibility challenges. 
Firstly, other artists or researchers will not have access to such data, 
and the impact of fine-tuning can be limited even with ample data. 
Secondly, we cannot publish the fine-tuning dataset as open-source 
due to limitations of copyright, co-ownership, and contractual 
agreements. Since this was a case study and not the training of a 
foundation model, using this dataset was considered permissible 
within the context of publishing the findings. Open-sourcing this data, 
however, raises legal concerns beyond the scope of this case study. 

4.2 Creative Potential 
Despite limitations, the system exhibits notable creative potential. 
While tempo variations challenge improvisation in genres that rely on 
steady beats (e.g., pop, EDM), the model excels at generating 
fragments suited to more experimental styles. As Evans et al. [16] 
observed,  its strength lies in sound design rather than in producing 
polished compositions—a quality that opens exciting opportunities for 
subversive use in experimental music. The model’s unexpected sonic 
outputs prompt performers to adapt and explore new musical 
directions, acting as a creative partner that provokes innovative ideas 
without undermining human agency. Additionally, the system’s high 
degree of autonomy combined with aesthetic characteristics reflective 
of the author’s musical repertoire offers a fresh approach to 
improvisation. 

5. SYSTEM EVALUATION 
The subjectivity of musical creativity makes evaluating MuMe 
systems challenging [31]. With that in mind, we evaluate our system 
using criteria proposed by Pasquier et al. [31] alongside additional 
MuMe aspects:  

• Creativity: Once conditioned, the system autonomously 
generates musical material while performers refine and 
adapt the output in real-time—demonstrating exploratory, 
generative, and adaptive forms of creativity. 

• Contextual Novelty: Trained on our work yet receiving no 
audio input during improvisation, this non-corpus-based 
system generates novel content within a defined aesthetic. 

• Quality and Reliability: The output generally showcased 
useful, unexpected, and engaging textures, although some 
were subjectively rated as unsatisfactory by the authors. 

• Robustness: The system produces output on all input prompts. 
• Interactive Collaboration: A feedback loop between prompt, 

AI output, and live manipulation supports MuMe’s vision 
of systems that inspire and respond to human creativity. 

5 https://github.com/MAz-Codes/sao-silence-remover.git 

Figure 7. Some generated fragments exhibit silent sections Figure 4. The proposed improvisation pipeline 

Figure 5. MIDI-mapped parameters for haptic interaction 

Figure 6. Computational demand during training on Colab 



By evaluating the system along these dimensions, we situate its 
contributions within the broader discourse of MuMe. 

6. CONCLUSION AND FUTURE WORK 
Our case study shows GenAI can extend musical creativity beyond 
mere imitation. Rapid, responsive sound generation enables AI to 
catalyze new ideas and open fresh improvisational pathways. Yet 
despite this potential, high computational and data demands may 
hinder broader adoption. 
 Future work will include evaluations with audiences and artists to 
assess artistic impact and guide improvements. Additionally, fine-
tuning more effectively with smaller datasets can reduce data needs 
and expand accessibility. Developing optimized pipelines that run on 
local hardware with limited resources will also be crucial.  
 As this technology evolves and opens new possibilities for Musical 
Metacreation, our research aims to lay the groundwork for deeper 
human-AI collaboration in live improvisation. 
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10. Appendix 
A video demonstrating the system's real-time utilization alongside 
some audio examples of improvisation sessions can be found here:  
https://misaghazimi.com/research/sao-improv

 


