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Abstract
This study presents a framework for mapping audio information
into simulated neural signals and dynamic control maps. The
system is based on a biologically-inspired architecture that traces
the sound pathway from the cochlea to the auditory cortex. The
system transforms acoustic features into neural representations
by integrating Meddis’s Inner Hair-Cell (IHC) model with spiking
neural networks (SNN).

The mapping process occurs in three phases: the IHC model
converts sound waves into neural impulses, simulating hair cell
mechano-electrical transduction. These impulses are then en-
coded into spatio-temporal patterns through an Izhikevich-based
neural network, where spike-timing-dependent plasticity (STDP)
mechanisms enable the emergence of activation structures reflect-
ing the acoustic information’s complexity. Finally, these patterns
are mapped into both EEG-like signals and continuous control
maps for real-time interactive performance control.

This approach bridges neural dynamics and signal processing,
offering a new paradigm for sound information representation.
The generated control maps provide a natural interface between
acoustic and parametric domains, enabling applications from
generative sound design to adaptive performance control, where
neuromorphological sound translation explores new forms of
audio-driven interaction.

Keywords
Inner Hair-Cell Model (IHC), Spiking Neural Network (SNN), s-
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1 INTRODUCTION
1.1 Integrating Neuroscience and DSP in

Audio Research
While common artificial neural networks (ANNs) are based on
mathematical abstractions that simplify the behavior of biological
neurons [17, 28], these are primarily designed to perform specific
tasks such as speech recognition, audio classification, or text
generation.

In contrast, this research adopts an alternative paradigmwithin
the field of ANNs. Instead of focusing on developing models op-
timized for specific tasks, it aims to simulate a neurally plausi-
ble and biologically inspired system designed to more faithfully
replicate real neural structures and processes. This approach fo-
cuses on analyzing how these systems respond to various stimuli.
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Specifically, it examines changes in the system’s state in response
to input signals, generating biologically compatible signals that
can be mapped to observable outputs.

In the field of DSP, similar approaches exist in the literature.
However, these approaches mainly focus on the analysis of data
collected by monitoring brain activity in the laboratory. They use
sophisticated instrumentation such as electroencephalograms
(EEG), positron emission tomography (PET), functional magnetic
resonance imaging (fMRI), and other brain imaging methods.
These approaches tend to emphasize the understanding of neural
activation patterns and observed mental or behavioral processes,
using empirical data to deduce general principles [2, 15, 34].

1.2 Historical Overview of Experiments
The history of the integration between neuroscience and audio
begins in 1934, when Adrian first translated an EEG into sound
material [1].

In 1965, Alvin Lucier composedMusic for Solo Performer, using
EEG to vibrate percussion instruments through loudspeakers
that amplified low-frequency signals generated by electrodes on
the performer’s scalp [29].

In the 1970s, D. Rosenboom explored the use of EEG to create
works of art and music [29], and in 1990 he presented a system
that correlated EEG components with changes in the performer’s
selective attention [30].

In 2003, Miranda and collaborators published a study on the
use of EEG to identify patterns associated with various musical
cognitive tasks, using spectral analysis. In 2006, E. R. Miranda de-
scribed an innovative brain-computer interface (BCI) system for
musical composition that used artificial intelligence algorithms
to interpret brain patterns and generate music in real time, based
on Augmented Transition Networks (ATN) [22].

1.3 Recent Advances
Recent developments in the integration of neuroscience and dig-
ital audio signal processing have led to significant discoveries
about musical perception in the brain.

Sanyal et al. demonstrated a correlation between sound stimuli
and brain activity by sonifying EEG data from 10 participants
while they listened to a tanpura drone, showing how stimuli acti-
vate different brain regions at varying times [32]. Daly combined
EEG and fMRI to improve music decoding, achieving 71.8% accu-
racy with a biLSTM network, outperforming the 59.2% accuracy
of EEG alone, and identifying brain regions involved in music
listening [6].

Bellier et al. reconstructed a complete song (Another Brick in
the Wall, Part 1 by Pink Floyd) using intracranial EEG data from
29 patients, showing that nonlinear models improve accuracy by
32% and that high-quality reconstructions are achievable even
with a reduced number of electrodes [4].
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Although these advances, Spiking Neural Networks (SNNs)
remain underutilized. Studies such as those by Fujii and Oozeki
on melody recognition [10] and Liang et al. on music composition
have highlighted the potential of SNNs. Liang et al. developed a
system based on STDP capable of encoding musical notes and
generating melodies in various styles, simulating the behavior of
biological neurons [14].

1.4 Research Objectives
In the context of Digital Signal Processing (DSP) and Computer
Music, current literature does not document the use of biologi-
cally plausible computational models that utilize spiking neural
networks (SNNs), either in isolation or in combination with other
biologically inspired models, for the processing of complex au-
dio signals. In particular, no studies have been reported that
exploit such models for a detailed analysis of the signal process-
ing performed by bio-inspired mechanisms, for instance the use
of simulated electroencephalograms (s-EEG), for the generation
of control maps.

This study aims to address this gap by integrating two bio-
logically inspired models: SNNs and the inner hair cell (IHC)
model proposed by Meddis, Hewitt, and Shackleton [21]. The ob-
jective is to develop a system in which the IHC model simulates
the transformation of the auditory stimulus, replicating the pro-
cesses occurring in the inner ear, before this stimulus is further
processed by the SNN, which operates analogously to a small
brain. The simulation of an EEG will finally allow the analysis
of the SNN activity. This final stage of transformation should
be understood as the nonlinear translation of a dataset into a
different domain, system, or format, preserving and highlighting
structural relationships and significant features. Specifically, it
involves converting an audio signal into an analytical representa-
tion that enables the identification of patterns or the generation
of control signals. These outputs can be employed in interactive,
artistic, or technological applications.

2 BIO-INSPIRED NEURAL SIMULATION
The model is designed to simulate the pathway an audio signal
traverses from the moment it enters the ear until its processing
by the brain. The model consists of two principal blocks: the
first block replicates the transfer function of the inner hair cells,
which perform the crucial role of mechano-electrical transduc-
tion of acoustic signals; the second block consists of a spiking
neural network, which simulates the complex spatio-temporal
processing of the signal within the central nervous system.

Although the existence of numerous studies and computa-
tional models for inner hair cells (IHC), such as [16, 24, 31, 35],
which introduced improvements in modeling spike dynamics
and adaptation, the implementation proposed by Meddis, Hewitt,
and Shackleton has been chosen as the basis for this study. This
choice is based on several key factors that make the model partic-
ularly suitable for the research in question. The model provides
a detailed representation of the physiological processes of IHCs,
including mechano-electrical transduction and neurotransmitter
release, thus offering an accurate and functional description of
the conversion of the auditory signal in the early stages of neural
processing. Its mathematical formulation is relatively simple, yet
effective, allowing for easy implementation and manipulation.
This feature, combined with the model’s modular structure, fa-
cilitates integration with other neural models, making it ideal
for more complex simulations of the auditory system. Another

strength of the Meddis model is its extensive experimental val-
idation. The model has been extensively tested [3, 18–20] and
has proven reliable in replicating the responses of IHCs under
various conditions, adding robustness to the results obtained.

Furthermore, despite its accuracy, the model remains compu-
tationally efficient, an important aspect when considering imple-
mentations in more complex systems or practical applications.

2.1 Meddis Model for IHC
Meddis [19, 20] proposes a probabilistic model of mechano-neural
transduction in auditory receptors, structured into three compo-
nents: neurotransmitter release from hair cells, excitatory post-
synaptic potentials (EPSPs) in auditory neurons, and discharge
models.

In his work, Meddis presents two models, with the second
(Model B) representing a significant improvement over the first
through the implementation of a more sophisticated neurotrans-
mitter recycling mechanism.

It is assumed that hair cells contain a certain amount of free
neurotransmitter, which leaks into the synaptic cleft through a
permeable membrane. The permeability of the membrane fluc-
tuates according to the instantaneous amplitude of the acoustic
stimulus, as described in Equation (1),

𝑘 (𝑡) =
{
𝑔[𝑠 (𝑡 )+𝐴]
𝑠 (𝑡 )+𝐴+𝐵 , for 𝑠 (𝑡) +𝐴 > 0,
0, for 𝑠 (𝑡) +𝐴 ≤ 0.

(1)

where𝐴 and 𝐵 are positive constants with 𝐵 > 𝐴, 𝑘 (𝑡) represents
the permeability that oscillates between 0 and 𝑔, and 𝑠 (𝑡) is the
acoustic stimulus.

𝑑𝑞(𝑡)
𝑑𝑡

= 𝑦 [1 − 𝑞(𝑡)] + 𝑥𝑤 (𝑡) − 𝑘 (𝑡)𝑞(𝑡), (2)

𝑑𝑤 (𝑡)
𝑑𝑡

= 𝑟𝑐 (𝑡) − 𝑥𝑤 (𝑡), (3)

𝑑𝑐 (𝑡)
𝑑𝑡

= 𝑘 (𝑡)𝑞(𝑡) − 𝜆𝑐 (𝑡) − 𝑟𝑐 (𝑡) (4)

Equations (2), (3), and (4) fully describe the model. 𝑞(𝑡) is the
level of free neurotransmitter in the cell, and 𝑦 is a constant
representing the neurotransmitter production rate (the rate at
which neurotransmitter is produced and added to the free neuro-
transmitter pool). The variable 𝑥 represents the rate of transfer
of neurotransmitter from the reservoir to the pool, while 𝑤 (𝑡)
indicates the amount of neurotransmitter in the reprocessing
reservoir. The term [1 − 𝑞(𝑡)] represents the remaining capac-
ity fraction of the pool, which is inversely proportional to 𝑞(𝑡):
when 𝑞(𝑡) is high, this term becomes low, and vice versa. In Equa-
tion (3), 𝑟 represents the rate of neurotransmitter reabsorption
from the synaptic cleft back into the hair cell, and 𝑐 (𝑡) denotes
the amount of neurotransmitter present in the synaptic cleft at a
given time.

Finally, Equation (4) describes the time variation of the neu-
rotransmitter quantity in the synaptic cleft 𝑐 (𝑡), where 𝑘 (𝑡)𝑞(𝑡)
represents the rate of neurotransmitter release into the cleft, and
𝜆 is the irreversible loss rate of neurotransmitter from the cleft.

The probability of an event, as given by an Equation (5), is
proportional to 𝑐 (𝑡), multiplied by a small-time interval 𝑑𝑡 , and
ℎ is a costant in a model.

𝑠𝑝𝑖𝑘𝑒 = ℎ𝑐 (𝑡)𝑑𝑡 (5)

In summary, the model takes the instantaneous amplitude of
the acoustic signal as input and produces an excitation function
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that represents the instantaneous fluctuating probability of a
spike. It thus generates a signal that reflects the electrical activity
in response to the acoustic stimulus.

2.2 Izhikevich Spiking Neuron
Spiking neurons are mathematical models that simulate the elec-
trical activity of biological neurons, focusing on the generation
and timing of action potentials. These models aim to capture the
discrete and temporal nature of neuronal communication.

The Izhikevich model [13] represents a significant advance-
ment in simulating the activity of cortical neurons, offering an op-
timal balance between the computational simplicity of integrate-
and-fire models and the dynamic richness of Hodgkin and Huxley
models [12]. It is a biologically plausible model capable of repro-
ducing a wide range of spiking patterns observed in real neurons
using only two differential equations (6) and (7) and four param-
eters 𝑎, 𝑏, 𝑐, 𝑑 [13].

𝑣 ′ = 0.042𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (6)
𝑢′ = 𝑎(𝑏𝑣 − 𝑢) (7)

𝑣 , the neuron’s membrane potential (in millivolts, 𝑚𝑉 ), de-
scribes the electrical potential difference between the inside and
outside of the neuronal cell and 𝑢, the membrane recovery vari-
able (dimensionless), accounts for the activation of ionic K+ cur-
rents and the inactivation of Na+ currents. The variable 𝐼 is an
external current injected into the neuron which can vary over
time (synaptic input). Parameter 𝑎 control the speed of𝑢 response
to changes in 𝑣 . b determines the influence of 𝑣 variation on 𝑢.
The term [0.042𝑣2+5𝑣+140−𝑢+𝐼 ], in Equation (6), approximates
the spike initiation dynamics of cortical neurons.

When the membrane potential 𝑣 reaches and exceeds the spike
threshold (𝑉𝑠𝑝𝑖𝑘𝑒 = +30𝑚𝑉 ) the neuron generates a spike and 𝑣
and 𝑢 are reset according to Equation (8).

if 𝑣 ≥ 30𝑚𝑉, 𝑡ℎ𝑒𝑛

{
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
(8)

In conclusion, the Izhikevich model stands out for its ability to
capture a wide range of essential features of biological neuronal
activity and its computational efficiency, enabling the real-time
simulation of large-scale neural networks on standard computers.

3 PROPOSED MODEL
The proposed model (see Figure 1) is structured as a single non-
linear operator that transforms digital audio signal (auditory
stimulus) through a temporal sequence of events inspired by
biological processes.

This transformation occurs in three distinct phases:
(1) Cochlear simulation. The first phase emulates the con-

version (based on [21]) of the auditory stimulus into an
electrical signal;

(2) Neural processing. The second phase processes the elec-
trical signal using spiking neurons interconnected in a
3D space. The network implements a behavioral learning
model based on Hebb’s rule [11], a fundamental principle
of neuroplasticity describing how synaptic strength (con-
nections) can be modified in response to neural activity;

(3) Analysis of neural activity. The final phase involves
capturing and analyzing the neural activity generated by
the network. This is achieved through the s-EEG.

We can express the entire computational framework by defin-
ing the nonlinear operator𝐶𝑁𝐴() (an acronym for Cochlea Simu-
lation, Neural Signal Processing, and Activity Analysis) as follows:

𝐶𝑁𝐴(𝑠) = 𝐴(𝑁 (𝐶 (𝑠))) (9)
with 𝑠 representing the input frame, 𝐴() denotes the neural ac-
tivity analisys operator (s-EEG), 𝑁 () represents the neural signal
processing stage and 𝐶 () corresponds to the transformation per-
formed by the inner ear.

3.1 Adaptive Neural Processing of IHC Model
Outputs

Consider an acquisition system that captures individual audio
frames 𝑓 of length 𝑁 (in samples).

𝑘 (𝑡) =
{
𝑔 ( | 𝑓 [𝑡 ] |+𝐴)
| 𝑓 [𝑡 ]+𝐴+𝐵 | , for |𝑓 [𝑡] | +𝐴 > 0,
0, for |𝑓 [𝑡] | +𝐴 ≤ 0.

(10)

𝑑𝑞 [𝑡] = 𝑦 [𝑀 − 𝑞 [𝑡]] + 𝑥𝑤 [𝑡] − 𝑘 [𝑡]𝑞 [𝑡], (11)
𝑑𝑐 [𝑡] = 𝑘 [𝑡]𝑞 [𝑡] − 𝜆𝑐 [𝑡] − 𝑟𝑐 [𝑡], (12)
𝑑𝑤 [𝑡] = 𝑟𝑐 [𝑡] − 𝑥𝑤 [𝑡], (13)
𝑞 [𝑡] = 𝑞 [𝑡 − 1]𝑑𝑞Δ𝑡, (14)
𝑐 [𝑡] = 𝑐 [𝑡 − 1]𝑑𝑐Δ𝑡, (15)
𝑤 [𝑡] =𝑤 [𝑡 − 1]𝑑𝑤Δ𝑡 (16)

Each frame 𝑓 is processed using the model described in [21],
suitably adapted for this purpose, as in (10)–(16) (see variables
in Table 1).

The transformation is defined as a function that maps each
frame 𝑓 to a signal 𝑓𝐶 , represented as a sequence of events such
that, based on (5).

𝑓𝐶 [𝑡] =
{
|𝑓 [𝑡] | · 𝛾, if condition,
0.0, otherwise.

(17)

Let 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 be defined as (𝑟 < ℎ𝑐 [𝑡]Δ𝑡) ∧ (𝑡 == 1 ∨ 𝑡 · Δ𝑡 −
last_spike > 𝑚), where 𝑟 is a random number such that 𝑟 ∈ [0, 1],
𝑚 is the minimum interval (in sec.) between successive spikes
and 𝛾 is a dynamic factor used to amplify the signal and improve
the signal-to-noise-ratio (SNR).

Given the vector 𝑓𝐶 generated by the operator𝐶 (), and a single-
layer SNNwith𝑁𝑛𝑒𝑢𝑟𝑜 spiking units, the input 𝑓𝑁 for the operator
𝑁 () is defined as in Equation (18), where interp(𝑓𝐶 , 𝑁𝑛𝑒𝑢𝑟𝑜 ) de-
notes the interpolation operation applied to the vector 𝑓𝐶 , yield-
ing a new vector 𝑓𝑁 (of length depending on real-time acquisition
buffer), 𝛼 is a scaling factor, and 𝜂 represents a vector of length
𝑁𝑛𝑒𝑢𝑟𝑜 whose elements are sampled from a uniform distribution
to simulate background noise in the neural activity.

𝑓𝑁 = 𝛼 · interp(𝑓𝐶 , 𝑁𝑛𝑒𝑢𝑟𝑜 ) + 𝜂 (18)
Equation (18) does not represent the only way to define 𝑓𝑁 .

Alternatively, 𝑓𝑁 can be constructed by randomly assigning each
value in 𝑓𝐶 to a subset of neurons whose size matches the length
of 𝑓𝐶 , while assigning the remaining neurons to zero or a neutral
value.

All neurons are interconnected and arranged in a 3D space.
This spatial organization reflects the biological plausibility of
cortical networks and allows for the simulation of spatiotempo-
ral dynamics that emerge from auditory processing. The neural
connectivity is typically governed by a probabilistic function



NIME ’25, June 24–27, 2025, Canberra, Australia Pasquale Mainolfi

Figure 1: Graphical representation of the proposed model. Three-phase process: Inner-Hair Cell Model, Spiking Neural
Network and s-EEG.

that depends on the spatial distance between neurons, promot-
ing the formation of local clusters and long-range connections
characteristic of cortical structures.

If we consider a set of neurons (19), where 𝑗𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )
represents the coordinates of the i-th neuron.

J = { 𝑗𝑖 ∈ R3 |𝑖 = 1, 2, 3, ..., 𝑁𝑛𝑒𝑢𝑟𝑜 } (19)
The initial synaptic weight𝑤𝑖 𝑗 is defined as a function of the

euclidean distance 𝑑𝑖 𝑗 between the neurons (Equation (20)), as
described in (21).

𝑑𝑖 𝑗 =

√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2 + (𝑧𝑖 − 𝑧 𝑗 )2 (20)

𝑤𝑖 𝑗 =


1
𝑑2
𝑖 𝑗

, if 𝑖 ≠ 𝑗

0 if 𝑖 = 𝑗
(21)

𝑊 =


𝑤00 𝑤01 · · · 𝑤0𝑁𝑛𝑒𝑢𝑟𝑜

𝑤10 𝑤11 · · · 𝑤1𝑁𝑛𝑒𝑢𝑟𝑜

.

.

.
.
.
.

.

.

.
.
.
.

𝑤𝑁𝑛𝑒𝑢𝑟𝑜0 𝑑𝑁𝑛𝑒𝑢𝑟𝑜 1 · · · 𝑤𝑁𝑛𝑒𝑢𝑟𝑜𝑁𝑛𝑒𝑢𝑟𝑜


(22)

The synaptic weight matrix 𝑊 , with dimensions 𝑁𝑛𝑒𝑢𝑟𝑜 ×
𝑁𝑛𝑒𝑢𝑟𝑜 , is then formulated as in (22). The membrane potential in
(6) is modified to include the effect of synaptic inputs, resulting
in (23).

𝑣 ′ = 𝑣 + [0.042𝑣2 + 5𝑣 + 140 − 𝑢 + (𝑊𝜍 + 𝐼 )] (23)
𝑣 and 𝑢 are vectors of length 𝑁𝑛𝑒𝑢𝑟𝑜 . The therm𝑊𝜍 represents
the matrix-vector product, where 𝜍 is a vector of length 𝑁𝑛𝑒𝑢𝑟𝑜

that encodes the spikes of presynaptic neurons. It contains binary
values 𝜍𝑖 ∈ {0, 1}, indicating whether the i-th neuron has pro-
duced a spike (1) or not (0). The variables 𝑣 and 𝑢 are initialized
following [13].

An unsupervised learning mechanism based on Spike-Timing
Dependent Plasticity (STDP) updates the weights in𝑊 . STDP
adjusts synaptic weights based on the relative timing of spikes
between pre- and postsynaptic neurons, strengthening connec-
tions when presynaptic spikes precede postsynaptic spikes and
weakening them in the opposite case. The STDP update rule [5, 7]
is expressed as in (24) and (25):

Δ𝑊 =


𝑎𝑝𝑟𝑒 · 𝑒

− Δ𝑡
𝑡𝑝𝑟𝑒 , if Δ𝑡 > 0,

−𝑎𝑝𝑜𝑠𝑡 · 𝑒
− Δ𝑡
𝑡𝑝𝑜𝑠𝑡 , if Δ𝑡 < 0,

(24)

𝑊 ←𝑊 + Δ𝑊 (25)

where Δ𝑊 is the synaptic weight change, Δ𝑡 = 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒 is the
timing difference between postsynaptic and presynaptic spikes,
𝑎𝑝𝑟𝑒 and 𝑎𝑝𝑜𝑠𝑡 are the maximum amplitudes for potentiation and
depression, and 𝑡𝑝𝑟𝑒 , 𝑡𝑝𝑜𝑠𝑡 are time constants for the exponential
decay.

The spike threshold 𝑉𝑠𝑝𝑖𝑘𝑒 is implemented as a dynamic value
rather than a fixed constant (e.g. in [12]). Dynamic thresholds ad-
just the stimulus level required for neuron activation, enhancing
adaptability to changing input conditions.

There are various methods for implementing dynamic thresh-
olds. Among these are spike-rate-dependent thresholds, which
consider the number of spikes generated by a neuron. In this case,
the threshold can increase if the neuron generates a high number
of spikes. There are also time-dependent thresholds, which adapt
to periods of prolonged inactivity or activity, as well as composite
models such as BDETT (Bioinspired Dynamic Energy-Temporal
Threshold). BDETT includes two main components: the Dynamic
Energy Threshold (DET) and the Dynamic Temporal Threshold
(DTT) [9]. All the mentioned methods aim to achieve dynamic
and homeostatic adaptation within the network, utilizing differ-
ent sources of information to modulate the threshold.
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In the proposed framework, the threshold is a dynamic value
that adapts to the statistical characteristics of 𝑓𝑁 (18). Specifically,
as illustrated in Equation (26), it corresponds to the standard
deviation of 𝑓𝑁 multiplied by a scaling factor 𝛽 , which regulates
the sensitivity of the network.

𝑉𝑠𝑝𝑖𝑘𝑒 = 𝛽 · std(𝑓𝑁 ) (26)
The formulation adopted proved advantageous during testing.

It enhances the network’s robustness and sensitivity to input
variations, improving adaptability to diverse inputs.

3.2 Modelling EEG Signals From Network
Activity

The final phase involves monitoring and recording the network’s
overall activity, simulating an EEG that detects potential fluctua-
tions through components (electrodes) placed in a 3D (virtual)
space.

Figure 2: Scalp electrode placement according to the 10-20
system. The number 10-20 refers to the distance between
adjacent electrodes is either 10% or 20% of the total front-
back or right-left distance of the skull. The lobe is identi-
fied by a letter (F = frontal; C = central; P = parietal; T =
temporal; O = occipital) and the hemisphere by a number.
(image taken from [27].)

An EEG is a non-invasive technique used to record the brain’s
electrical activity. It is performed by placing electrodes on the
scalp. The electric fields generated by the synchronous activity
of neurons pass through various tissues (brain, skull, scalp, etc.),
which act as conductors, attenuating and diffusing the signals.
The electrodes detect these signals and transmit them to a device
that amplifies and records them. The collected data is represented
as waves that vary in frequency and amplitude.

Similarly,𝐴() in Equation (9), is defined as an operator consist-
ing of a set of points (27), arranged according to the international
10-20 system [26, 33]. This arrangement ensures uniform cover-
age of relevant brain regions (Figure 2) [37].

E = {𝑒𝑘 ∈ R3 |𝑘 = 1, 2, 3, ..., 𝑁𝑒 } (27)
In Equation (27), 𝑒𝑘 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) represents the coordinates of

electrode in 3D, and 𝑁𝑒 represents the total number of electrodes.
EEG signals are primarily generated by the current dipoles

formed due to synaptic activity in cortical pyramidal cells. When
neurons receive excitatory signal, ionic currents enter the cell
(sink) and must be balanced by outward currents (source), form-
ing a current dipole. These dipoles, aligned along the apical den-
drites, are the primary source of EEG signals recorded on the

scalp. The further one moves from the neuron, the more the ex-
tracellular potentials assume a dipolar shape, justifying the single
dipole approximation for calculating EEG signals, particularly at
large distances from the neuronal source [36].

The contribution of each neuron to the EEG signal measured
by the k-th electrode can thus be calculated using the formula
for the electric potential 𝑉 generated by an electric dipole 𝑝 at a
point 𝑟 (see Equation (28)) [25],

𝑝 = Δ𝑉 · 𝐿 · 𝜎 · 𝑜 (28)
in which Δ𝑉 is the potential difference along the neuron, 𝐿 is
the distance between the main signal input and output zones
of the neuron, typically ranging between 0.25 and 0.5𝑚𝑚 (the
effective distance over which the neuron’s potential difference
develops). 𝜎 is the intracellular conductivity, and 𝑜 is the unit
vector representing the neuron’s orientation in three dimensions.

The potential on the scalp surface can then be approximated
using the formula for the electric dipole (29) [25],

𝑉 (𝑟 ) = 𝑝 · 𝑟
4𝜋𝜎𝑟 3

(29)

with 𝑟 representing the vector that defines the position of the
dipole relative to the measurement point on the scalp. The term
4𝜋𝜎𝑟 3 accounts for the spherical geometry of the electric field,
the tissue conductivity, and the signal attenuation with distance.
It is important to emphasize that the decision to omit the dielec-
tric constant is justified by the relatively low frequencies of the
electrical signals detected by EEGs.

In this regime, the tissue’s conductivity dominates the sig-
nal propagation behavior, rendering the effect of permittivity
negligible compared to conductivity [25].

Thus, for each electrode 𝑒 in E, the potential measured on
𝑉 (𝑒, 𝑡) the scalp at time 𝑡 is calculated by summing the contri-
butions of each neuron 𝑗 , weighted by the distance between
the neuron and the electrode, the neuron’s orientation, and the
neuron’s membrane potential at time 𝑡 , as in Equation (30),

𝑉 (𝑒𝑘 , 𝑡) = 𝜂 +
𝑁𝑛𝑒𝑢𝑟𝑜∑︁
𝑖=1

𝑎𝑖 (𝑡)𝐿𝑖𝜎𝑜𝑖 (𝑒𝑘 − 𝑗𝑖 )
4𝜋𝜎 | |𝑒𝑘 − 𝑗𝑖 | |3

(30)

where 𝑎𝑖 (𝑡), represents the membrane potential of neuron 𝑖 at
time 𝑡 and 𝜂 is a noise termmodeled as a normally distributed ran-
dom variable (simulating the noise generated by the electrode).

4 AUDIO-TO-s-EEG DOMAIN:
EXPERIMENTAL SETUP AND MODEL
RESPONSE

This section presents the response generated by the proposed
model. The implementation of IHC model enabled an accurate
representation of the mechano-electrical transduction, providing
a bio-realistic input to SNN. The neural network exhibited the
ability to learn and adapt to the signal properties through the
STDP mechanism. Individual neurons generated complex spatio-
temporal activation patterns in response to auditory stimuli.

The analysis of s-EEG signals, obtained by considering the
contribution of all neurons in the network, revealed a clear map-
ping of (fake) brain activity correlated with the characteristics of
the input sound. Variations in the amplitude and frequency of
s-EEG oscillations emerged in response to changes in intensity,
frequency, and the temporal structure of the audio signal.

Finally, adopting a dynamic threshold model capable of adapt-
ing to the statistics of the input signal provided the network with
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Figure 3: The plot provides an example of the visualization
of the neuron’s membrane potential over time. The input
to the network is an audio signal recorded in a domestic
environment, with a buffer size of 512 samples and a sam-
pling rate equal to 12000 Hz. The waveform of the input
audio signal is shown below the plot.

greater robustness and adaptability, enhancing the overall quality
of the generated data.

To concretely illustrate the capabilities of the proposed model,
several experiments were performed using a variety of audio
signals as inputs and different model parameter configurations.
These examples demonstrate of how the system responds to
different types of auditory stimuli and how these reactions are
reflected in dynamic and complex control structures.

In Figure 5 and Figure 3 two representative case studies are
presented to highlight the model’s performance in response to
the varying characteristics of the considered stimuli (model pa-
rameters in Table 1).

Each neuron position 𝑗𝑖 is unique (two neurons cannot occupy
the same position) and is randomly selected during the model
initialization (see example in Figure 4). This coordinate remains
constant throughout all experiments.

The position of each neuron is constrained within a sphere
whose radius corresponds to 90% of the average human skull
radius, in order to allow for a small tolerance with respect to the
surface where the electrodes are placed.

Figure 3 clearly illustrates the significant correlation between
the membrane potential graph and the network’s input stimulus.

It is evident that variations in the membrane potential reflect
the temporal characteristics and amplitude of the stimulus, high-
lighting a synchronized response of the neural network to the
incoming impulses (each vertical colum in Figure 3 represents a
single frame consisting of 𝑛-samples, as show in Equation (18)).

Table 1: Experimental setup of the model

Description Variable Value

Time Interval (audio) 𝑇𝑐 8 · 10−5𝑠
Time Interval (EEG) 𝑑𝑡 2 · 10−3𝑠
Total Number of Neurons 𝑁𝑛𝑒𝑢𝑟𝑜 900
N. of excitatory neurons exc ⌊0.91 · 𝑁𝑛𝑒𝑢𝑟𝑜⌋
N. of inhibitory neurons inh 𝑁𝑛𝑒𝑢𝑟𝑜 − 𝑒𝑥𝑐
Exciters Parameters a 0.02

b 0.25
c -30.0
d 8.0

Inhibitory Parameters a 0.02
b 0.25
c -30.0
d 2.0

STDP Parameters 𝑎𝑝𝑟𝑒 10−3
𝑎𝑝𝑜𝑠𝑡 10−3
𝑡𝑝𝑟𝑒 dt
𝑡𝑝𝑜𝑠𝑡 dt

Sparsity s 0.05 %
Electrodes Model 10-20 3D, 24-ch
Min. Spike Interval (IHC) m 10−4𝑠
Spike Gain Factor (IHC) 𝛾 104
Stimulus Factor 𝛼 103
Threshold Factor 𝛽 103
Noise Range (stimulus) 𝜂 [0.0, 1.0]
Interpolation Mode No-Interp
Frame Size N 512 (samples)
IHC Parameters A 5.0

B 300.0
g 2000.0
y 5.05
𝜆 2500.0
r 6500.0
x 6631.0
M 1.0
h 1.0

This observation suggests that the electrical activity of the mem-
brane is closely tied to changes in the input stimulus, demon-
strating a direct link between external stimuli and the generated
system response. This indicates, to some extent, that the network
behaves consistently with expectations. The transformation ap-
plied, first through the IHC and then through SNN, confirms
that the s-EEG analysis will be conducted on data that faithfully
reproduce the stimulus response.

For the s-EEG, the electrodes were arranged as shown in Ta-
ble 2. The 3D coordinates of the electrodes (see Table 2) represent
their positions on the surface of a sphere expressed in normal-
ized values (from -1 to 1). The electrodes are arranged along
the equator of the sphere, an imaginary circle located midway
between the north and south poles. Their positions follow the
international 10-20 system. The sphere is considered unitary.
This standardization simplifies the representation of electrode
positions according to the 10-20 system, enabling consistent com-
parison and analysis of EEG recordings. Each electrode is labeled
based on the simulated region where it is positioned (see Figure 2,
additional labels include LPA (Left Preauricular) in front of the
left ear, RPA (Right Preauricular) in front of the right ear, and
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Figure 4: The image shows neurons arrangedwithin a three-
dimensional spherical space. The electrodes are positioned
on the upper surface of the sphere.

Table 2: 3D representation of EEG electrode locations
within normalized range coordinates

Label x y z

C3 0.8090 0.0 -0.5878
C4 0.8090 0.0 0.5878
Cz 1.0 0.0 0.0
F3 0.6730 0.58 -0.4591
F4 0.6730 0.58 0.4591
F7 0.3090 0.5590 -0.7695
F8 0.3090 0.5590 0.7695
Fp1 0.3090 0.9045 -0.2939
Fp2 0.3090 0.9045 0.2939
Fpz 0.3090 0.9511 0.0
Fz 0.8090 0.5878 0.0
LPA 0.0 0.0 -1.0
NAS 0.0 1.0 0.0
O1 0.3090 -0.9045 -0.2939
O2 0.3090 -0.9045 0.2939
Oz 0.3090 -0.9511 0.0
P3 0.6730 -0.58 -0.4591
P4 0.6730 -0.58 0.4591
P7 0.3090 -0.5590 -0.7695
P8 0.3090 -0.5590 0.7695
Pz 0.8090 -0.5878 0.0
RPA 0.0 0.0 1.0
T7 0.3090 0.0 -0.9511
T8 0.3090 0.0 0.9511

NAS (Nasion), located at the point between the forehead and
the nose). It is specified that, in the presented experiment, the
coordinates listed in the table were appropriately scaled using a
factor representing the average radius of a human skull, which
was approximated as a sphere for modeling convenience.

In Figure 5, the result of the s-EEG analysis are presented.
Graph display raw s-EEG recordings, collected without applying
any filter.

Nevertheless, filtering remains a fundamental tool for signal
analysis and denoising. They enhance data quality and isolate
components relevant to the analysis of brain activity. Similar
to human brain activity, the SNN activity while processing an
audible stimulus can be segmented into frequency bands. This
allows for identifying specific features of the audio signal that
might otherwise go unnoticed.

Finally, without delving further into the details, it is important
to highlight that the translation of an audio signal into an s-
EEG domain would also allow for the use of traditional EEG
analysis techniques, commonly applied to study human brain
activity, such as coherence analysis, synchronization measures,
event-related potential (ERP) analysis, and topographic mapping.

5 FUNCTIONAL PERSPECTIVES AND
RESEARCH DIRECTIONS

While the core focus of this research lies in audio-to-s-EEG map-
ping, the potential applications extend well beyond theory.

The generated s-EEG signals could act as control interfaces for
interactive systems, enabling neural patterns triggered by sound
to drive actions such as controlling prosthetics or interacting
with virtual environments.

This approach transforms simulated brain activity into a com-
mand language for digital interaction. The versatility of the pro-
posed system could also be expressed in real-time control of
sound synthesis, lighting, and visual effects, with the potential
to create an immersive ecosystem where the brain’s response
dynamically shapes the user’s sensory experience.

To demonstrate these possibilities, imagine a sophisticated
audio system that captures and analyzes sounds in a specific
environment. This system converts audio information into an
adaptive framework that interacts with and learns from its envi-
ronment.

While conceptually similar to Di Scipio’s work [8], this ap-
proach is fundamentally different in substance. Through the inte-
gration of cutting-edge signal processing techniques — including
multi-channel spatial filtering and adaptive feature extraction —
the system dynamically maps intricate soundscapes onto pseudo-
neural control signals. The system creates a two-way relationship
with its environment: it uses audio data to adjust its parameters
while simultaneously responding to environmental changes. This
makes the environment an active part of the creative process
rather than just a passive source of input.

Furthermore, the operator (9) has a key feature in its design:
it can dynamically adjust the dimensions of the processed in-
formation based on specific application needs. The operator
𝐴() (see Equation (9)) can adapt the number of s-EEG channels
𝑥 : R𝑛 → R𝑚 , where 𝑛 and 𝑚 represent the number of input
and output dimensions. This flexibility allows for both dimen-
sional reduction (for 𝑛 > 𝑚), useful when simpler control signals
are needed, and dimensional expansion (for 𝑛 < 𝑚), beneficial
for scenarios requiring higher-order feature spaces. For exam-
ple, a complex audio signal could be mapped to a smaller set of
control parameters for simple interactions, or expanded into a
larger set of channels for more detailed analysis and control. This
adaptability makes the system particularly versatile for differ-
ent applications, from basic sound parameter control to complex
interactive installations.

These represent just some of the potential applications of the
proposed system. Its functional perspectives further expandwhen
considering the possibilities offered by EEG analysis techniques,
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Figure 5: The image shows an example of s-EEG corresponding to an event captured in real time within a domestic
environment. The associated audio signal is displayed at the bottom of the figure, while the model parameters are listed in
the Table 1.

asmentioned at the end of Section 4. Such techniques would allow
for an even deeper exploration of new dimensions in (simulated)
neuro-informed interaction and control.

5.1 Future Works
The next step following the development of the audio-to-s-EEG
mapping framework will focus on its practical application (as dis-
cussed above in Section 5), with the aim of concretely evaluating
its effectiveness and versatility in real-world contexts.

This experimental phase will not only validate the proposed
framework but will also pave the way for potential optimizations
and new development directions, guided by concrete application
needs and field experience.

6 CONCLUSION
The proposed method represents an initial step toward a bio-
inspired model for audio information analysis and mapping.
While the current implementation demonstrates coherence and
innovation, several aspects warrant further investigation: the
random arrangement of neurons in 3D space, the spike gener-
ation threshold function, and the parameter selection criteria.

Although these elements may not be critical limitations in artistic
applications, their refinement could enhance the model’s perfor-
mance and biological accuracy. A notable observation from the
simulations is the imperfect repeatability of results, even with
fixed seeds and neural arrangements. This variability likely stems
from the network’s stochastic components, cumulative numer-
ical errors, and the implemented STDP learning model, which
continuously modifies synaptic strengths based on spike timing.
The STDP’s sensitivity to neural event timing can significantly
influence the learning process and network responses, while the
network may require extended periods to reach stabilization.

In an artistic context, this non-deterministic behavior can be
considered a valuable feature rather than a limitation, contribut-
ing to unique and unrepeatable experiences where unpredictabil-
ity becomes an integral part of artistic creation. Each interaction
with the system, influenced by simulated complex brain dynam-
ics, could generate singular sound and visual expressions. With
further development and optimization, this approach may de-
velop into a versatile tool for analyzing and generating control
maps from complex acoustic phenomena, serving both artistic



s-EEG-Driven Audio Mapping NIME ’25, June 24–27, 2025, Canberra, Australia

and technical applications while offering more precise and reli-
able data in performance engineering.

7 ETHICAL STANDARDS
This work adheres to the ethical standards of the NIME com-
munity [23]. There are no potential conflicts of interest, either
financial or non-financial, associated with this research.
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