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Figure 1: A performer-level image of the performance at Palau Güell

Abstract
This paper presents an overview of a human-machine collab-
orative musical performance by Raül Refree utilizing multiple
MIDI-enabled pipe organs at Palau Güell, as part of the Organic
concert series. Our earlier collaboration focused on live perfor-
mances using drum generation systems, where generative models
captured rhythmic transient structures while ignoring harmonic
information. For the organ performance, we required a system ca-
pable of generating harmonic sequences in real-time, conditioned
on Refree’s performance. Instead of developing a comprehensive
state-of-the-art model, we integrated a more traditional genera-
tive method to convert our pitch-agnostic rhythmic patterns into
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harmonic sequences. This paper details the development process,
the creative and technical considerations behind the final perfor-
mance, and a reflection on the efficacy and adaptability of the
chosen methodology.
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1 Introduction
Palau Güell, a historic architectural landmark in Barcelona de-
signed by Antoni Gaudí, is renowned for its distinctive design
and acoustics. The Organic1 concert series, hosted at this venue,
featured a series of performances aimed at exploring the dynamic
interplay between instruments and acoustics of spaces. As such,

1https://inici.palauguell.cat/en/organic/
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the main aim of the series was to create immersive sonic ex-
periences for audiences by utilizing the venue and its distinct
acoustics as an integral part of the performance.

A key feature of Palau Güell is its permanent organ, crafted
by Albert Blancafort2, a renowned local organ maker. This MIDI-
enabled instrument was custom-designed according to the acous-
tics of the space. Moreover, two portable organs, also built by
Blancafort, were available for use in the performance. While the
main organ remained fixed in the venue, the smaller ones were
intended to be positioned based on the spatial and artistic needs
of each performance.

Over the past two years, we have collaborated with Raül Re-
free on a series of live performances focusing on human-machine
collaborative improvisation. For these performances, we devel-
oped a real-time drum accompaniment generation system called
GrooveTransformer. Invited to participate in the Organic series,
Refree proposed using this opportunity to adapt our previous
work to a new context.

GrooveTransformer is a transformer-based model [15] trained
for real-time drum accompaniment generation [4, 5]. Unlike our
previous work, which focused solely on rhythm generation, this
organ performance required adapting our system to incorporate
pitch. An additional constraint of the performance was Refree’s
insistence to not rely on any pre-composed material for both
training or performance3, wanting the accompaniment to solely
reflect the improvised moment.

While we considered pairing GrooveTransformer with an ex-
isting secondary real-time system, we identified two main draw-
backs. First, deep neural models inevitably carry stylistic bi-
ases inherited from their training data, constraining how the
generated output could reflect the real-time improvised perfor-
mance. Second, we had only a short window of time for ex-
perimentation with very limited rehearsal opportunities. Given
these constraints, we sought to investigate how a state-of-the-
art model could be expanded and recontextualized by integrat-
ing a comparatively simple yet effective traditional generative
model—assigning pitch toGrooveTransformer’s rhythmic sequences
via a Markov-based system trained in real-time. This approach
allowed us to inject minimal prior bias and implement direct
controls to enhance the expressive affordances of the system in
live performance.

2 Related Work
Symbolic-to-symbolic generative systems, designed as musical
agents, have the potential to function both autonomously and
semi-autonomously, crafting music in response to external cues
while acting as dynamic collaborators in live performances. Over
time, the techniques used have evolved to address variousmusical
goals and technical challenges.

Early systems, such as The Continuator [10], often usedMarkov
models to learn from and respond to a musician’s real-time input.
Likewise, evolutionary algorithms have been explored for certain
types of accompaniment generation [3, 9].

A more recent wave of systems leverages neural networks for
greater modeling capacity. Google’s AI-Duet4 enables a call-and-
response style of piano improvisation by interpreting a user’s

2https://www.orguesblancafort.com/en/blancafort-om/
3Had we been able to generate the accompaniments according to pre-composed
material, we could have considered offline state-of-the-art generative methods such
as [14]. However, the real-time requirement demanded a lightweight approach that
could dynamically respond to an unplanned improvisational context.
4https://experiments.withgoogle.com/ai-duet

input in real time. SongDriver [16], BachDuet [2], RL-Duet [6],
ReaLchords [17], and ReaLJam [12]—introduce musical agents
capable of shaping melodic or harmonic structures in response
to a human performer’s actions. These systems are either trained
on very specific repertoires, or are aimed at a very specific type
of accompaniment generation.

Notochord [13], however, is trained on a diverse set of record-
ings that support a variety of generative interactions. Its design
enables instrument designers to create custom digital musical
instruments around the model, without limiting the deployment
context. Several projects have employed Notochord in diverse
contexts, where human performers collaborate with Notochord
in real-time [1, 7].

3 Venue and Instruments
The venue comprised three floors, as illustrated in Figure 2. The
audience was seated on the first floor, while the main organ—a
fixed, non-portable instrument—was positioned on the third floor.
This organ supported remote control via MIDI, enabling the per-
former to remain at the audience level. However, to minimize
visual distractions and encourage active listening while empha-
sizing the spatial characteristics of the venue, the performer ulti-
mately played the organ directly from the third floor, remaining
completely out of sight from the audience.

Figure 2: Overview of the venue and instruments

Initially, the portable MIDI-enabled organs, intended for play-
back of the generated accompaniments, were to be placed at the
audience level. However, given the significant distance between
the audience and the performer, concerns arose about the audibil-
ity of the generations near the main organ, where Refree would
be located. Consequently, one of the accompaniment organs was
positioned on the third floor as a monitor for the performer, while
the other remained on the first floor.

Notably, despite Palau Güell’s reflective surfaces and large
volume, the space exhibits relatively low reverberation, unlike
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traditional organ venues that are typically highly reverberant.
This unique characteristic allows for playback of shorter tran-
sient sequences that are not masked in the reverberation of the
space. As detailed in the next section, these acoustic and spatial
considerations played a crucial role in shaping the performance
design.

4 Performance Development
In addition to considering the venue’s layout, minimal rehearsal
time, and the performance requirements, our intention was to
design a system that could facilitate a completely improvised per-
formance without inherited stylistic biases from a pre-composed
or existing dataset. This meant creating a framework that could
dynamically respond to the performer’s input in real-time, with-
out relying on prior training or pre-composed material. To ac-
complish this, we implemented a Markov-based model that in-
tegrates with GrooveTransformer and actively listens to the live
performance to inject harmonic content and note durations to the
generated rhythms. However, rather than functioning as a fully
autonomous accompaniment generator, the system was designed
to be actively supervised by a secondary performer using a set
of utilities for pre- and post-generation processing.

4.1 Overall Structure of the Accompaniment
System

The system consists of four main components: (1) a real-time
performance on the main organ, (2) a rhythm accompaniment
generator (GrooveTransformer), (3) a custom Markov-based Max
[11] device that generates harmonic content and note durations
for the accompaniment rhythm, and (4) two accompaniment
organs that receive the generated sequences.

Figure 3 gives an overview of the communication between
each component of the system. First, we will consider the Max
device that contains separate Markov models for pitch and note
duration. These models are trained in real-time by receiving and
processing all MIDI notes played on the main organ. In parallel,
all MIDI notes played on the main organ are received and pro-
cessed by GrooveTransformer. In contrast to the Markov models,
which are trained on pitch and note duration, GrooveTransformer
is conditioned on rhythmic content—specifically, the onsets and
velocities of the MIDI notes. From this input, GrooveTransformer
generates, in real-time, an accompanying 9-voice rhythmic pat-
tern with expressive timing and velocity that would typically
be mapped to a traditional drum kit. In this case, however, each
onset of the generated rhythm is used to trigger the Markov
model to output the next accompaniment note. The result is a
multi-voice pattern that complements the main organ perfor-
mance both rhythmically and harmonically. Finally, this pattern
is sent from the Max device and played by the accompaniment
organs.

4.2 Max Device and Controls
The Max device functions as a sub-system, giving the performer
control in four main areas: (1) incoming MIDI, (2) Markov model
type and behavior, (3) multi-channel output algorithms, and (4)
per channel pitch transposition and note-duration modification.

Incoming MIDI is received by the device on two channels.
The first channel is used to train the Markov models, with an
optional pitch range filter that restricts training to notes within
the specified range. The second channel serves as the rhythm
source, triggering the Markov model to generate the next note

for playback. Although GrooveTransformer was the rhythmic
source for this performance, the playback of the generations can
be triggered by the onsets of any external MIDI input. Lastly,
a velocity threshold filter allows further control over rhythm
density by excluding incoming notes below a specified velocity.

The device also includes a mono/poly mode for handling
rhythm input. In mono mode, incoming notes that overlap within
a set duration are ignored, making it ideal for generatingmelodies.
In poly mode, all incoming notes trigger the Markov model, en-
abling chord generation.

The Markov model settings allow the performer to choose
between first- and second-order models for both pitch and dura-
tion. Additionally, the performer can specify whether the next
generated note should be conditioned on the most recent note
from the main performance or the last note generated by the
model itself.

After generation, notes are routed to designated output chan-
nels according to one of four algorithms, creating two distinct
note streams:

• Alternate: Sends each note to Channel 1 or Channel 2 in
an alternating sequence.

• Random Channel: Assigns each note probabilistically to
either Channel 1 or Channel 2.

• Pitch Assign: Maps specific pitch values to a fixed chan-
nel.

• Range Assign: Groups pitch values into intervals based
on the “Pitch Range” setting and alternates their assign-
ment between the two channels.

Alternatively, a performer may also select no algorithm and
allow every note to be output on both channels simultaneously.
Lastly, the performer can apply an octave transposition (-4 to +4
octaves) and a note duration multiplier (0.25 to 16) independently
to each channel.

These aforementioned settings and transformations allow the
performer a high degree of control in shaping the musical out-
put while remaining coherent with the main performance. For
example, certain settings can induce slow, sustained bass notes,
while others create rapid flutters of high-pitched notes or dense
harmonic textures.

5 Reflections and Conclusions
The eventual performance configuration featured Refree as the
primary performer on the main organ, while the first author of
this paper acted as a secondary performer to supervise the accom-
paniment system and maintain a synchronized tempo with Refree.
Designed to be supportive rather than dominant, supervision of
the accompaniment system ensured that the focus remained on
the primary performance. Since the organs are sonically similar
to each other, overly dense or harmonically similar accompani-
ment notes could easily overcrowd the primary performance. To
prevent this, the secondary performer adjusted the parameters of
the accompaniment system in real time, controlling note density,
pitch transposition, and note duration to maintain clear harmonic
and rhythmic distinction between the accompaniment and main
performance.

We also expected that using multi-channel outputs to send
different note streams to the accompaniment organs—positioned
at various levels of the venue—would create a less crowded sound
and provide clearer separation from the main organ. Unfortu-
nately, it was very difficult for the performers to hear andmonitor
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Figure 3: Full overview of accompaniment system.

the organ positioned at the first floor. Therefore, instead of uti-
lizing the multi-channel output algorithms developed for the
accompaniment system, both organs received the same stream
of generated notes so that the third floor accompaniment organ
could serve as a monitor for the organ located on the first floor.

Although the design of this accompaniment systemwas depen-
dent on the constraints and context of this specific performance,
we see this system as being very adaptable, and potentially more
effective in other contexts. In an environment in which each
instrument is sonically distinct and positioned to optimize room
acoustics, the accompaniment system could fully leverage the
multi-channel output algorithms and further enhance the spa-
tial separation and dynamic interplay between different musical
elements.

Ultimately, this work underscores the entanglement of artis-
tic constraints and technical design decisions, illustrating how
model selection is inherently shaped by the specificities of the
performance context. Rather than defaulting to the most recent
or computationally advanced models, we opted for a method that
prioritized responsiveness and sensitivity to live interaction. In
doing so, we demonstrate that in co-creative, improvisational
settings, the most appropriate model is not always the most so-
phisticated, but rather the one best aligned with the situated
demands of the performance environment.

Lastly, a collection of recordings, demos, and source code is
available at

https://NIME2025OrganPerformance.github.io
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