
Introducing EG-IPT and ipt~: a novel electric guitar dataset and
a new Max/MSP object for real-time classification of

instrumental playing techniques
Marco Fiorini∗
IRCAM - STMS

CNRS UMR 9912 - Sorbonne Université
Paris, France

marco.fiorini@ircam.fr

Nicolas Brochec∗
Tokyo University of the Arts

Tokyo, Japan
nicolas.brochec@pm.me

Joakim Borg
IRCAM - STMS
CNRS UMR 9912
Paris, France

joakim.borg@ircam.fr

Riccardo Pasini
UNIFE Università di Ferrara

Dipartimento di Matematica e Informatica
Ferrara, Italy

riccardo01.pasini@edu.unife.it

Abstract
This paper presents two key contributions to the real-time classi-
fication of Instrumental Playing Techniques (IPTs) in the context
of NIME and human-machine interactive systems: the EG-IPT
dataset and the ipt∼Max/MSP object. The EG-IPT dataset, specif-
ically designed for electric guitar, encompasses a broad range of
IPTs captured across six distinct audio sources (five microphones
and one direct input) and three pickup configurations. This di-
versity in recording conditions provides a robust foundation for
training accurate models. We evaluate the dataset by employing a
Convolutional Neural Network-based classifier (CNN), achieving
state-of-the-art performance across a wide array of IPT classes,
thereby validating the dataset’s efficacy. The ipt∼ object is a new
Max/MSP external enabling real-time classification of IPTs via
pre-trained CNN models. While in this paper it’s demonstrated
with the EG-IPT dataset, the ipt∼ object is adaptable to models
trained on various instruments. By integrating EG-IPT and ipt∼,
we introduce a novel, end-to-end workflow that spans from data
collection, model training to real-time classification and human-
computer interaction. This workflow exemplifies the entangle-
ment of diverse components (data acquisition, machine learning,
real-time processing, and interactive control) within a unified
system, advancing the potential for dynamic, real-time music
performance and human-computer interaction in the context of
NIME.

Keywords
Instrumental Playing Techniques, Electric Guitar, Music Classifi-
cation, Real-Time, Music AI, Python, Max/MSP, NIME

1 Introduction
Instrumental Playing Technique (IPT) recognition is an emerging
area of significance for New Interfaces for Musical Expression
(NIME), particularly in interactive systems [31] that facilitate
dynamic human-computer interaction [19]. While it has its roots
∗These two authors contributed equally to this paper.

This work is licensed under a Creative Commons Attribution 4.0 International
License.
NIME ’25, June 24–27, 2025, Canberra, Australia
© 2025 Copyright held by the owner/author(s).

in Music Information Retrieval (MIR) [20], its applications in
real-time, expressive musical interfaces offer new creative oppor-
tunities for performers and researchers alike.

Several tools have been developed to address IPT recognition
within NIME scenarios, including FluCoMa [38], MuBu [32], and
the PRiSM Music Gesture Recognition toolkit1, which is used
in Forager2. The latter is an extension of the seminal Voyager
[16] system, now incorporating gesture recognition. These tools,
all compatible with Max/MSP, provide flexible frameworks for
real-time signal processing and prototyping. However, they are
limited in their ability to train and deploy deep learning mod-
els directly in Max/MSP, and evaluating their performance for
accuracy and generalization across diverse datasets and users
remains a significant challenge. A notable breakthrough in this
domain was the introduction of the RAVE generative model [6]
and the nn∼Max/MSP object3. This approach enables deep learn-
ing models trained in Python to be then integrated into Max/MSP
for real-time applications. Although initially designed for timbre
transfer, this workflow has been adopted in various NIME appli-
cations [29, 33, 39] and recently extended to IPT recognition [35].
Despite these advancements, existing implementations often fo-
cus on a limited range of playing techniques and lack systematic
evaluation for generalization to new datasets or users.

In response, we propose a novel workflow specifically designed
for real-time IPT recognition in interactive systems. Building
on the RAVE/nn∼ paradigm, our approach integrates a Python-
based deep learning training phase with a dedicated Max/MSP
object, ipt∼, optimized for this task. This workflow prioritizes
usability, robustness, and generalization, making it suitable for
both research and performance contexts.

The contributions of this paper are as follows: (I) we introduce
a new dataset, EG-IPT, specifically designed for electric guitar
IPT recognition, addressing both MIR and NIME research needs;
(II) we present the ipt∼ Max/MSP object for real-time IPT recog-
nition in interactive systems, leveraging deep learning models;
and (III) we propose a novel workflow that, while inspired by the
RAVE/nn∼ framework, offers a new trajectory focused on practi-
cal utility in interactive performance contexts with an emphasis
on robust generalization. As for the paper structure, section 2
reviews related work on IPT recognition, surveys existing guitar

1https://github.com/rncm-prism/PRiSM-MusicGestureRecognition
2https://www.youtube.com/watch?v=AiveFGVSWSU
3https://github.com/acids-ircam/nn_tilde

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/rncm-prism/PRiSM-MusicGestureRecognition
https://www.youtube.com/watch?v=AiveFGVSWSU
https://github.com/acids-ircam/nn_tilde


NIME ’25, June 24–27, 2025, Canberra, Australia Fiorini et al.

datasets, and introduces our proposed workflow. Section 3 details
the EG-IPT dataset. Section 4 describes the implementation of
the ipt∼ object in Max/MSP. Section 5 outlines the evaluation
tests we conducted to validate our dataset. Section 6 discusses
the results, and Section 7 concludes the paper.

2 Related Works
2.1 Instrumental Playing Technique

Recognition
Various approaches have been tried to recognize Instrumental
Playing Techniques (IPTs) from audio data. For Western instru-
ments, studies mainly focused on acoustic Guitar [21, 26, 30, 37],
piano [5, 18], violin [36], cello [9], and flute [3, 4, 10]. Eastern in-
strument playing techniques recognition include studies on guqin
[14], a plucked seven-string Chinese instrument, guzheng [17],
a plucked twenty-one-string Chinese instrument and Chinese
bamboo flute [40]. A few recent systems address the real-time
recognition of IPTs for real-time creative purposes, notably stud-
ies on the cello [9], acoustic guitar [21], and flute [10]. Only the
study on the flute achieved promising results in classifying IPTs
using training and test data from different performers, with an
accuracy of 92.56% across seven classes. This success is attributed
to a technique involving the simultaneous recording of IPTs with
multiple microphones for the recording of IPT samples [4]. This
approach captures more audio without extending recording time
and improves accuracy by incorporating audio files from various
microphones into the training dataset.

2.2 Guitar Datasets
The guitar is central to Music Information Retrieval (MIR) and
New Interfaces for Musical Expression (NIME). As data-driven
methods advance, the demand for high-quality, diverse datasets
grows. However, many existing datasets lack comprehensive IPT
coverage, diverse microphone and pickup setups, and real-time
applicability. Below, we review notable guitar datasets:

• Guitar Playing Techniques [37] (2014): 6580 clips with
11928 notes annotated for seven techniques. Access is
currently unavailable.

• IDMT-SMT-Guitar [15] (2014): 5100 note events across
monophonic and polyphonic recordings on electric and
acoustic guitars.

• Guitar Solo Detection [27] (2017): Focused on solo detec-
tion, with limited details on annotations.

• GuitarSet [42] (2018): 360 acoustic guitar excerpts, de-
signed for transcription tasks, but lacks electric guitar
effects.

• EGDB [7] (2022): 240 electric guitar tone renditions, with-
out real-time or hardware effects.

• EGFxSet [28] (2022): 8970 recordings processed with real
effects, suited for physical effect emulation tasks.

• EG-Solo [13] (2023): 6833 annotated note events for electric
guitar solos, with a focus on techniques like palm muting
and harmonics, but sourced from YouTube.

• Guitar Style [23] (2024): 549 video samples of nine tech-
niques, constrained by a single performer and amplifier
simulations.

• AG-PT [34] (2024): Over 10 hours of acoustic guitar record-
ings with eight techniques, but lacks electric guitar diver-
sity.

#1 - Offline Dataset Recording

ipt~

#3 - Real-Time Inference

Technique Index

Technique Name

Techniques Distribution

Log Mel Spectrogram CNN based Classifier

.ts Model

#2 - Offline Training

Use Dataset for Training

Load .ts Model into ipt~

Figure 1: Diagram illustrating our end-to-end proposed
workflow: (1) Record the dataset, (2) Train the CNN-based
classifier in Python, and (3) Load the resulting .ts model
into the ipt∼ object in Max/MSP for real-time inference.

While these datasets provide valuable resources, they often
lack comprehensive coverage of guitar techniques, diverse record-
ing setups, and real-time applicability. Our dataset addresses
these gaps by offering a wider range of IPTs, diverse recording
conditions, and compatibility with real-time systems, particularly
for NIME applications.

2.3 Proposed Workflow
Our proposedworkflow for real-time IPT classification is outlined
in Figure 1 and consists of three main stages:

(1) Dataset Recording: Audio samples are recorded using
six audio sources (five microphones, one direct input) and
three pickup configurations, encompassing 19 techniques.
Details are in Section 3.

(2) Model Training: A CNN-based classifier is trained on the
dataset using log mel spectrograms. Section 4 provides an
overview of the training process and model evaluation.

(3) Real-Time Inference: The trained model is deployed in
Max/MSP using the ipt_tilde object, enabling real-time
classification of live audio input. The model, exported in
TorchScript format, is detailed in Section 5.

This workflow integrates data collection, model training, and
real-time interaction, offering a scalable solution for IPT classi-
fication. Its versatility makes it ideal for NIME systems, where
real-time accuracy is crucial.

3 The EG-IPT Dataset
The Electric Guitar Instrumental Playing Techniques (EG-IPT)
dataset [11] comprises 52320 audio files totaling 28 hours, 22
minutes, and 56 seconds of recordings, with a size of 29.77 GB.
It includes 19 distinct playing techniques, capturing individual
electric guitar sounds performed by a professional guitarist and



Introducing EG-IPT and ipt~ NIME ’25, June 24–27, 2025, Canberra, Australia

recorded by a sound engineer in a specialized studio using high-
quality equipment. The dataset reflects rigorous standards, offer-
ing a diverse and comprehensive resource for studying IPTs and
it’s available on Zenodo4.

3.1 Recording
The recording was made using a 2005 Gibson SG Standard electric
guitar equipped with two humbucker pickups, offering three
selectable positions: bridge humbucker, both pickups coupled,
and neck humbucker. An EVH 5150 III 50W 6L6 tube amplifier
head was used, set with all controls in a flat position and no
reverb applied. The amp was paired with a Mesa 4x12” cabinet
with Celestion V30 UK speakers. The recording took place in a
studio room measuring 4.5 meters in width, 4.5 meters in depth,
and 3 meters in height. The audio was captured at a resolution
of 96kHz and 24-bit using Pro Tools Ultimate.

Following the methodology of microphone-based data aug-
mentation [4], the dataset was recorded using 6 distinct recording
sources, as detailed in Table 1. These include 5 microphones and
1 direct input line (DI box). For close-miking, a Shure SM57 dy-
namic microphone was paired with a FetHead and Tk Audio
DP1 preamp, positioned at a distance of 2.5 cm. An AKG C414
condenser microphone, connected to a Tk Audio DP1, was also
placed at 2.5 cm for additional tonal variation. A Peluso R14
ribbon microphone was used at a mid-distance of 24 cm with a
Soyuz The Launcher and a Tk Audio DP1 preamp, capturing a
warmer, more ambient tone. An Audio Technica 350 was placed
190 cm away in a bucket on the wall, while an Audio Technica
4050 was set at 280 cm in an omnidirectional pattern for room
ambiance. Lastly, a DI Box BSS Audio AR 133 through a Midas
XL48 preamp was used to record the direct guitar signal.

3.2 Electric Guitar Playing Techniques
The EG-IPT dataset includes the following techniques:

(1) ordinario: Playing notes with a natural, sustained tone,
allowing the string to vibrate without additional effects.

(2) staccato: Producing short, detached notes by muting the
string immediately after plucking.

(3) muted: Dampening the strings near the bridge with the
palm, generating a percussive tone.

(4) vibrato: Modulating pitch by rapidly bending and releasing
the string.

(5) harmonics: Producing tones by lightly touching string
nodes, including natural and artificial harmonics.

(6) glissando: Sliding along the string for a continuous pitch
transition.

(7) slide: Moving the fretting hand along the string to shift
between pitches, as indicated (e.g., “1st,” “1t”).

(8) bend: Raising pitch by bending strings, including whole-
tone, half-tone, or pre-bend variations.

(9) hammer-on: Transitioning to a higher pitch by pressing
the string without re-plucking.

(10) pull-off : Releasing a fretted note to sound a lower pitch
on the same string.

(11) tremolo: Rapidly repeating a single note for a sustained,
continuous effect.

(12) trill: Alternating between two adjacent pitches in quick
succession.

(13) snap-pizz: Plucking the string forcefully to make it snap
against the fretboard.

4https://doi.org/10.5281/zenodo.15205644

(14) ebow: Using an electronic bow to create sustained string
vibrations.

(15) arco: Bowing the strings to produce sustained tones or
harmonics.

(16) palmstrike: Striking the strings or body of the guitar with
the palm to create rhythmic impacts.

(17) scratch: Dragging fingers or objects along the strings to
generate non-pitched, frictional sounds.

(18) bottleneck: Using a slide on the string to create continuous
pitch transitions.

(19) behind-nut: Plucking or pressing the string behind the nut
to produce short, high-pitched tones.

3.3 Dataset Structure
The EG-IPT dataset is organized hierarchically to facilitate effi-
cient navigation and use in machine learning applications. Its
structure, depicted in Figure 2, reflects the combinations of pickup
configurations, recording sources, and instrumental playing tech-
niques included in the dataset.

At the root level, the dataset is divided into folders repre-
senting the three pickup configurations: HB-bridge, HB-couple,
and HB-neck, corresponding to the bridge humbucker, combined
pickup setting, and neck humbucker of the guitar, respectively.
Each configuration folder contains subfolders for six distinct
recording sources: five microphones and one direct input (DI).
These sources, detailed in Section 3.1 and in Table 1, include
close-miking setups (e.g., dynamic and condenser microphones),
mid-distance and room captures, as well as the DI signal, ensur-
ing a comprehensive range of tonal characteristics. Within each
recording source, subfolders represent the 19 instrumental play-
ing techniques included in the dataset. These techniques, outlined
in Section 3.2, span a wide variety of articulations, including com-
mon methods such as ordinario, bend, and hammer-on, as well as
more specialized techniques like ebow, bottleneck, and behind-nut.
Each recording is labeled with its pickup configuration, source,
technique, string played, and distance/width (for techniques in-
volving two notes, such as bend, hammer-on, pull-off, slide, and
trill), along with a unique identifier for the note played. These
labels facilitate precise categorization, enabling effective use in
training and evaluating machine learning models.

This hierarchical organization provides a structured and ex-
tensible framework for the dataset, supporting both detailed
exploration of specific techniques and broader studies of electric
guitar performance. The inclusion of placeholders (. . . ) in the tree
diagram in Figure 2 illustrates the potential for extending the
dataset with additional techniques or recording setups in future
research.

4 Evaluation of EG-IPT
The code for all the evaluations discussed in this paper is available
on GitHub5 while a video demo of ipt∼ detecting techniques from
the EG-IPT dataset can be found on YouTube6.

4.1 Proposed Methodology
4.1.1 Datasets. After preliminary tests, we conducted three ex-
perimental setups to evaluate our dataset and training architec-
ture. Our initial hypothesis was that the multi-source recordings
in the EG-IPT dataset would improve training accuracy com-
pared to using only DI signals, as shown in a previous study

5https://github.com/nbrochec/nime2025.git
6https://youtu.be/PFiWNnOd-vg

https://doi.org/10.5281/zenodo.15205644
https://github.com/nbrochec/nime2025.git
https://youtu.be/PFiWNnOd-vg


NIME ’25, June 24–27, 2025, Canberra, Australia Fiorini et al.

Table 1: Microphones, preamps and specifications used to record the dataset

Name Microphone Preamp Distance
dyn Shure SM57 FetHead + Tk Audio DP1 2.5 cm
cond AKG C414 Tk Audio DP1 2.5 cm
rib Peluso R14 Soyuz The Launcher + Tk Audio DP1 24 cm
bucket Audio Technica 350 Tk Audio DP1 190 cm, in a bucket on the wall
room Audio Technica 4050 Tk Audio DP1 280 cm, omnidirectional pattern
DI DI Box BSS Audio AR 133 Midas XL48 -

EG-IPT

HB-neck . . .

HB-couple . . .

HB-bridge

room . . .

ribbon . . .

dyn . . .

DI . . .

cond . . .

bucket

vibrato

trill

tremolo

staccato

snap-pizz

slide

scratch

pull-off

palmstrike

ordinario

muted

harmonics

hammer-on

glissando

ebow

bottleneck

bend

behind-nut

arco

Figure 2: Tree diagram of the folder structure of the EG-IPT
dataset

about the flute [4]. Additionally, we aimed to assess the extent to
which our architecture could generalize by validating the dataset
against a different electric guitar dataset. Out test configurations
include: setup A, using only DI signals from different pickups for
training, validation, and testing (see Table 2); setup B, training on
full multi-source recordings from a single pickup, validated and
tested with DI signals from other pickups; and setup C, training
on an all-pickups DI set, validated and tested with another novel
dataset we recorded for the experiment, the Strandberg Dataset.

Table 2: Overview of the datasets used in the study, detail-
ing the training, validation, and test sets, along with the
number of IPTs for each configuration setup.

Setup Training Set Validation Set Test Set n IPTs
A HB neck DI HB bridge DI HB couple DI 14
B HB neck multisource HB bridge DI HB couple DI 14
C HB all pickups DI 20% Test Set Strandberg DI 10

For evaluations A and B, we reduced the techniques to 14:
behind-nut, bend, bottleneck, glissando, legato, muted, palmstrike,
scratch, snap-pizz, staccato, sustained, tremolo, trill, and vibrato.

This restructuring simplifies the taxonomy by grouping perceptu-
ally similar techniques. Considering that ordinario and harmonics
are perceptually similar, we grouped them into the sustained cat-
egory. We applied the same methodology to hammer-on, pull-off,
and slide that we grouped into legato category. Finally, arco and
ebow were excluded due to potential challenges for guitarists
unfamiliar with these tools.

Evaluation setups A and B create semi-heterogeneous eval-
uation conditions, as recordings from the same guitarist and
guitar differ due to varying pickup configurations and sources.
To assess the generalization of our dataset and model under fully-
heterogeneous conditions, we recorded the Strandberg Dataset
(C Test Set, as referenced in Table 2). This dataset comprises
1038 audio files, totaling 35.58 minutes with a size of 310.3 MB,
covering 16 techniques. Recorded by a different guitarist using a
Strandberg Boden Prog 7 strings guitar with two Fishman Flu-
ence Modern pickups, directly connected to a Scarlett Focusrite
2i2 interface, and a 2023 MacBook Pro with M3 Max processor, it
simulates real-life conditions without high-end studio equipment.
Unlike EG-IPT with 19 techniques, this dataset omits behind-nut
(due to the lack of a headstock on the guitar), arco and ebow
(due to guitarist’s inexperience with these tools), focusing on
one pickup (bridge). Given the adjustments in IPT classes for
evaluations A and B, we then aligned the classes for evalua-
tion configuration C with the Strandberg test set, resulting in
10 classes: bend, glissando, legato, muted, palmstrike, staccato,
sustained, tremolo, trill, and vibrato.

4.1.2 Preprocessing. Our preliminary tests showed that down-
sampling the audio files to 8 kHz improved performance with our
architecture and dataset setups. We removed the silence from the
audio files because it is irrelevant, using the trim function from
the librosa library [22] with top_db=-60. We sliced the audio files
into adjacent sequences of ≈ 900ms, considering long-duration
playing techniques from EG-IPTs such as the bend, glissando,
or legato, which cannot be fully comprehended with a shorter
temporal window.

Data augmentation is a typical technique in machine learning.
It allows for mitigating overfitting by increasing the amount of
data and data variability. We applied several offline data augmen-
tations after slicing audio files. We generated new training data
by separately applying three different audio transformations to
the original data. We employed detuning, noise addition, and
time stretching inspired by the performance conditions. We de-
tuned the audio files with a range of ±100Hz around 440Hz the
tuning frequency, considering that the electric guitar’s tuning
may vary across performances. We added noise, considering that
amplifying the electric guitar signal may induce noise. We time-
stretched the audio files with a random ratio between 0.9 and 1.1,



Introducing EG-IPT and ipt~ NIME ’25, June 24–27, 2025, Canberra, Australia

considering that the playing techniques can be performed at dif-
ferent speeds. By applying these data augmentation techniques,
we multiplied our training data by a factor of 4.

Our datasets are unbalanced due to the difference in time du-
ration of each class. Indeed, long-duration playing techniques
provide more training samples, e.g., sustained is a longer playing
technique than staccato. To alleviate that concern, we use a bal-
anced batch sampler7. It balances batches by ensuring the same
number of data samples per class is used.

4.1.3 Model Architecture. Recent studies show thatmodels based
on convolutional neural networks are adapted to recognize IPTs
in real-time [8, 9, 21]. Building on a previously developed model
architecture [4, 10], we augmented the number of parameters of
the model by increasing the output channels of convolutional
layers. To build our architecture, we defined four custom blocks,
LMS, Conv2d, MaxPooling, and Linear blocks, as shown in Figure
3. Blocks are assembled to form the entire architecture, as shown
in Figure 4. Kernels of the first four Conv2d blocks are set to 2x3,
and the remaining are set to 2x2. The block LMS processes in-
putted raw audio and output a normalized Log-Mel-Spectrogram,
using n_fft=2048, n_mels=128, hop_length=512 and fmin=50.
A flatten layer adapts the output dimension of the last Conv2d
block to the first Linear block. Softmax is applied at the bottom
end to provide the class distribution. The entire architecture has
around three million parameters.

Figure 3: Custom blocks used in the proposed architecture.

4.1.4 Training Process. We train our model for 100 epochs, using
a batch size of 32, considering memory use and computational
speed. Random pitch shifting is applied separately to each data
sample of each batch with a probability of 50% thanks to the
torch-audiomentations library8. Cross-entropy loss is minimized
using ADAM optimization with a weight decay of 1𝑒−5. The
training was performed on an A6000 GPU machine and lasted 40
minutes.

4.2 Results
4.2.1 Accuracy,Macro F1, ConfusionMatrix. Measurementswere
taken on the model state that achieved the lowest validation loss.
As mentioned in 4.1.2, our training dataset is unbalanced be-
cause of the difference in the total time duration of each class.
7https://github.com/khornlund/pytorch-balanced-sampler
8https://github.com/asteroid-team/torch-audiomentations

Figure 4: Entire architecture using our custom blocks.

To address this concern, we also measured the macro F1-score
because it allows for a more representative measure of model per-
formance, considering no difference between highly and poorly
populated classes [12]. Table 3 reports detailed results of accuracy,
macro F1-score, and standard deviation for all three experimental
setups, while figure 5 shows individual class accuracy for Setup
C with data augmentations.

Table 3: Comparison of accuracy, F1-score, and standard
deviation results with and without adding audio augmen-
tation during training. Results averaged on five tests (%)

Setup Original Augmented
Accuracy ±𝜎 Macro F1 ±𝜎 Accuracy ±𝜎 Macro F1 ±𝜎

A 94.48 ± 0.65 92.70 ± 1.15 97.91 ± 0.35 96.58 ± 0.59
B 98.57 ± 0.21 97.83 ± 0.31 99.01 ± 0.12 97.61 ± 0.27
C 51.96 ± 2.12 45.64 ± 2.29 82.58 ± 0.87 78.47 ± 1.78

Figure 5: Confusion matrix for training setup C with data
augmentations, averaged on five tests (%)

4.2.2 Latency. Latency was measured by measuring the time
interval between successive classification results of the first 1000
inferences in running our best-performing model. We did not use

https://github.com/khornlund/pytorch-balanced-sampler
https://github.com/asteroid-team/torch-audiomentations


NIME ’25, June 24–27, 2025, Canberra, Australia Fiorini et al.

the onset detection in this experiment. To measure the time inter-
val in Max 9, we used the timer object. Mean and standard devi-
ation were computed thanks to array.mean and array.stddev
objects. The model was run on the CPU device on an Apple Sil-
icon M1 laptop. We found an average latency of 5.8ms with a
standard deviation of 0.43ms. Modifying the sampling rate and
buffer size of the DAW did not affect latency.

5 Implementation of ipt∼
The ipt_tilde object is a new Max/MSP external designed to
enable real-time classification of IPTs using a pre-trained Convo-
lutional Neural Network (CNN). The object is implemented with
a multi-threaded architecture that facilitates low-latency audio
processing and classification, delivering the output in real-time
to Max patches. Below, we break down the core components and
functionalities of the implementation (the code for the implemen-
tation of ipt∼ is availabe on GitHub9):

5.1 Model Loading and Setup
Upon initialization, the ipt_tilde object dynamically loads a
pre-trained CNN model using the PyTorch C++ API10. The
model’s file path and target device (CPU, CUDA, or MPS) are
specified by the user. This flexibility allows the classifier to be de-
ployed across different environments. The IptClassifier class
manages the loading and inference tasks, selecting the computa-
tion device based on the user’s input, with a fallback to CPU if
the specified device is unavailable.

While this paper introduces the new EG-IPT dataset, which
is specific to electric guitar, the ipt_tilde object can load any
trained model, making it adaptable to different instruments. This
generality allows the object to be used for classifying IPTs across
a variety of instruments.

5.2 Audio Preprocessing
To ensure consistent input for the model, the ipt_tilde ob-
ject integrates the r8brain-free-src11 library for high-quality
downsampling. This library converts any audio input to the
model’s trained sampling rate, preserving classification accuracy
with alias-free resampling. Audio input is captured in real-time
via Max MSP’s audio system and enqueued in a FIFO buffer
(m_audio_fifo). The audio thread processes each sample, while
a separate thread performs inference and delivers results.

5.3 Multi-Threaded Architecture
The object uses a multi-threaded architecture to simultaneously
handle audio input and classification inference, preventing block-
ing or delays in the audio stream. Specifically:

• Audio Input Handling: A dedicated thread processes the
main audio input, collecting and buffering samples. Each
incoming sample is queued in the FIFO buffer
m_audio_fifo.

• Classification Inference: A separate thread performs
inference on the buffered audio. Once sufficient data is
gathered, the classifier generates results and enqueues
them in the m_event_fifo for delivery to the Max outlets.

9https://github.com/nbrochec/ipt_tilde.git
10https://pytorch.org/cppdocs/
11https://github.com/avaneev/r8brain-free-src/

5.4 Signal Processing and Classification
The core of the classification process is the IptClassifier,
which handles the prediction. Key components include:

• Leaky Integrator: To stabilize predictions and mitigate
abrupt changes due to noise or transient events, the
LeakyIntegrator smooths the classifier’s output. The
integrator applies a decay to past predictions, producing
more stable and continuous output over time. The leaky
integration is modeled as:

𝑦𝑡 = (1 − 𝛼) · 𝑦𝑡−1 + 𝛼 · 𝑥𝑡
where:
– 𝑦𝑡 is the output at time 𝑡 ,
– 𝑥𝑡 is the current classification output,
– 𝑦𝑡−1 is the previous output,
– 𝛼 is the leaky factor, defined as 𝛼 = Δ𝑡

𝜏 , where Δ𝑡 is the
elapsed time and 𝜏 is the time constant.

The integrator smooths transitions between consecutive
classification outputs, reducing the impact of transient
noise.

• Circular Buffer: To manage real-time audio processing, a
circular buffer stores incoming audio samples. The buffer
ensures that only a fixed number of samples are kept, dis-
carding older data as new samples are added. The circular
buffer is defined as:

𝑏𝑡 = (𝑏𝑡−1 + 1) mod 𝑁

where:
– 𝑏𝑡 is the current position at time 𝑡 ,
– 𝑏𝑡−1 is the previous position,
– 𝑁 is the buffer size.
When the buffer reaches its limit, it wraps around, ensur-
ing that only the most recent samples are stored.

• EnergyThreshold: An energy threshold filters low-energy
signals. The threshold is based on the RMS (Root Mean
Square) value of the audio signal. If the RMS exceeds a
specified threshold (in dB), the signal is considered valid
for classification. The energy threshold is defined as:

Thresholddb = 20 log10

(
RMS(𝑥)

Reference Level

)
where:
– RMS(𝑥) is the root mean square of the audio signal 𝑥 ,
– Reference Level is a fixed value for normalization.
Signals below the threshold are discarded, ensuring the
classifier only responds to significant audio events.

5.5 System Control and Customization
Several adjustable attributes allow users to control the behavior
of the classifier in real-time through Max/MSP messages. For
detailed explanations of components like the Leaky Integrator
and Energy Threshold, refer to the previous section.

• Sensitivity: The sensitivity attribute controls themodel’s
responsiveness to incoming audio. A higher sensitivity
allows quicker reactions to changes in audio input, while
lower sensitivity smooths the output.

• Energy Threshold: The threshold attribute defines the
minimum energy level required for classification to occur.
It helps filter out irrelevant signals.

• Threshold Window Size: The window attribute controls
the size of the temporal window over which the classifier’s

https://github.com/nbrochec/ipt_tilde.git
https://pytorch.org/cppdocs/
https://github.com/avaneev/r8brain-free-src/


Introducing EG-IPT and ipt~ NIME ’25, June 24–27, 2025, Canberra, Australia

confidence is smoothed. A larger window reduces fluctu-
ations but introduces latency, while a smaller window
increases responsiveness but may cause more jitter.

• Enabled Flag: The enabled attribute allows the classi-
fier to be manually turned on or off, controlling whether
classification occurs during the processing cycle.

5.6 Error Handling and Robustness
The object is designed with robust error-handling mechanisms
that ensure smooth operation duringmodel loading, initialization,
and inference. If errors occur during the loading of the model
or the execution of inference, appropriate warnings and error
messages are displayed to the user, but the system continues to
run without interruption, ensuring that live performance is not
disrupted.

5.7 Max/MSP Integration
The ipt_tilde object is fully integrated into Max/MSP, utiliz-
ing the Min API12 for the creation of Max externals. This API
ensures seamless communication between the audio processing
components and the Max environment. Key features include:

• AttributeManagement: Parameters such as sensitivity,
threshold, and window can be adjusted and queried in
real-time via Max messages.

• Real-Time Output: Classification results are delivered
to Max via the following outlets:
– outlet_main: Sends the index of the selected class based
on the classification result. This integer value represents
the predicted class, which can be used for further pro-
cessing or control within Max.

– outlet_classname: Sends the name of the selected class
as a symbol, providing a human-readable label for the
classification result. This allows users to easily interpret
the results in terms of meaningful categories.

– outlet_distribution: Sends a list of floating-point
values representing the class probability distribution.
This list indicates the confidence level for each class,
providing insight into how certain the classifier is about
its prediction. This output can be useful for analyzing
or visualizing the classifier’s decision-making process.

5.8 Compilation and Packaging
The ipt_tilde object is compiled using CMake13, linking against
the necessary PyTorch and Min-API dependencies. The shared
library is built and packaged as a Max-compatible external, which
can be used directly in Max/MSP patches. The compilation pro-
cess integrates the libtorch library, which is managed by the
FetchContent mechanism in the CMake script. This approach
ensures that the necessary PyTorch files are downloaded and
configured automatically as part of the build process. The CMake
configuration specifies the architecture for macOS as arm64 and
sets the deployment target to macOS 10.13, ensuring compatibil-
ity with the target environment. Additionally, the inclusion of
r8brain-free-src for audio resampling and integration with
Min-API simplifies the packaging and deployment of the Max
external. Post-build steps ensure that all necessary dependencies,
including the model and its associated libraries, are included in
the final package.

12https://github.com/Cycling74/min-api
13https://cmake.org/documentation/

6 Discussion
When tested on setups A and B (semi-heterogeneous datasets),
our model shows a very strong performance, reaching 99.01%
accuracy and 97.83% Macro F1-score. When tested on setup C
(fully heterogeneous dataset), the model shows a strong perfor-
mance, reaching 82.58% accuracy and 78.47% Macro F1-score.
In any case, using augmented datasets brought overall better
performance, thus validating our hypothesis that multi-source
recordings enhance classifier’s performance [4].

The confusion matrix Figure 5 shows that several IPTs are
misclassified. We think these misclassifications are related to
perceptual similarity between classes. For example, the muted
playing technique is a short-duration technique with a limited
spectral content, which is also the case for staccato. We think
increasing the resolution of the LMS would provide the model
with better insight into the slight variations of frequencies over
time, allowing for accurate classification of short-duration tech-
niques [17]. For the vibrato and the legato techniques, the model
tends to classify them at 23.91% and 22.88%, respectively, as bend
techniques. We think this misclassification is related to the span
of the pitch movement over time, as the vibrato, legato, and bend
imply pitch change. Our legato class is composed of three play-
ing techniques, hammer-on, pull-off, and slide, that consists of
playing a pitch next to another either above or below. We think
that including larger hammer-on and pull-off intervals in our
training dataset could further characterize the legato class, which
musically also includes large spans of tied notes, which we think
would improve its classification. We think the misclassification
of vibrato and bend is more complex to dampen. Indeed, the pro-
duction of vibrato on string instruments consists of bending the
string to create an up-and-down alternative pitch movement. The
only difference with the basic bend is that the string is only bent
up or down once. Testing out several combinations of simultane-
ous analysis window length is worth exploring as it may provide
the model recent and ’older’ information [2] and therefore may
be able to classify vibrato and bend properly.

Regarding the latency performance, the result shows that the
system is trustworthy, with an average latency of 5.8ms over
1000 inferences. Compared to an existing study [10] that uses
PyAudio and PythonOSC, our implementation ofMax/MSP object
drastically reduces the latency. The object needs testing from
different users to fine-tune its parameters according to the model
trained and the desired playing characteristics. Also, we hope
the spread of our workflow could help improve its efficiency and
generalization.

Table 4 presents a comparative overview of our dataset and ar-
chitecture performance in terms of accuracy, efficiency (F1 score),
and real-time latency relative to other state-of-the-art guitar clas-
sificationmethods. This is not intended as a formal benchmarking
study, as the compared systems differ in architecture due to lim-
ited availability of datasets or implementation details in prior
works. The comparisons are based on reported metrics from pub-
lished studies. In some cases, standard deviations are not included
because the original studies do not provide complete statistical
information. Most of these studies assess only two out of the
three performance aspects chosen, and only one [21] includes
an evaluation of real-time latency, while the others focus exclu-
sively on offline processing. Additionally, several of these works
address multiple tasks simultaneously, which reduces the clarity
and focus on the IPT recognition task specifically.

https://github.com/Cycling74/min-api
https://cmake.org/documentation/


NIME ’25, June 24–27, 2025, Canberra, Australia Fiorini et al.

Table 4: Comparison of our EG-IPT dataset and model architecture with other state-of-the-art guitar classification ap-
proaches, based on the number of IPTs, accuracy, F1 score, and real-time system latency.

Dataset and Setup n IPTs Accuracy ±𝜎 (%) Macro F1 ±𝜎 (%) Latency ±𝜎 (ms)

PercCNN[21] 4 - 92.92 ± 2.99 12.68 ± 1.13
IDMT-SMT-Guitar [15] 6 83 ± 13.79 - -

Guitar Playing Techniques [37] 7 - 71.70 ± 13.40 -
Guitar Style [23] 9 84.2 ± - 83.1 ± 1.2 -

AG-PT [34] 12 - 88.0 ± - -
EG-IPT 14 99.01 ± 0.12 97.83 ± 0.31 5.80 ± 0.43

Finally, in this study, we use a large amount of data with a
relatively large model (3 million parameters), which may be a
problem for users with limited data and calculation resources.
To tackle this concern in the future, we will conduct an ablation
study to remove layers that do not improve model performance.
Furthermore, we think approaching IPTs classification task with
a few-short learning method, which consists of providing a few
labeled examples to enable rapid generalization [41], is worth
exploring.

7 Conclusions
This paper introduced a comprehensive framework for real-time
classification of Instrumental Playing Techniques (IPTs), featur-
ing the new EG-IPT dataset and the novel ipt∼ Max/MSP object.
The EG-IPT dataset significantly advances the field by offering di-
verse electric guitar techniques recorded across various sources
and pickup configurations, providing robust training data for
machine learning models. A CNN-based classifier demonstrated
state-of-the-art performance, validating the dataset’s relevance
for further research. The ipt∼ object enables real-time classifica-
tion in Max/MSP, supporting models trained on diverse datasets
and accommodating various instruments and techniques. This
integration establishes an end-to-end workflow for data collec-
tion, machine learning, and interactive applications in human-
computer music interfaces. While this paper emphasized tech-
nical details, the contributions open significant possibilities for
interactive systems in the NIME community. The ipt∼ object
complements existing interactive systems in Max/MSP, enabling
integration with libraries like FluCoMa [38], MuBu [32] and
Rave/nn∼ [6], as well as HCI systems like Voyager [16], Somax2
[1], Dicy2 [25], and Improtek [24]. By contributing these tools,
we aim to expand expressive musical interactions, reinforcing
the NIME theme of entangling data collection, machine learning,
and interactive human-machine performance.

8 Ethical Standards
This research was supported by funding from a European Re-
search Council (ERC) project, which had no influence on the
design, execution, analysis, or reporting of the study. The EG-IPT
dataset was recorded entirely by the authors, ensuring full control
over its ethical handling. The Strandberg dataset was recorded
by a human subject with informed consent obtained prior to the
recording sessions. All data collection adhered to ethical princi-
ples, ensuring the privacy, autonomy, and rights of the individual
involved. No animals were involved in this research. This work is
intended to benefit the NIME community by providing open and
ethically sourced tools and datasets, promoting responsible and
innovative applications in human-computer musical interaction.

Acknowledgments
This research is supported by the European Research Council
(ERC) as part of the Raising Co-creativity in Cyber-Human Mu-
sicianship (REACH) Project directed by Gérard Assayag, under
the European Union’s Horizon 2020 research and innovation pro-
gram (GA #883313). Funding support for this work was provided
by a Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) scholarship to Nicolas Brochec. The authors
would like to thank Lenny Renault for recording the Strandberg
Dataset.

References
[1] Gérard Assayag, Laurent Bonnasse-Gahot, and Joakim Borg. 2022. Cocreative

Interaction: Somax2 and the REACH Project. Computer Music Journal 46, 4
(Dec. 2022), 7–25. https://doi.org/10.1162/comj_a_00662

[2] Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl. 2012. Online
real-time onset detection with recurrent neural networks. In Proceedings of
the 15th International Conference on Digital Audio Effects (DAFx-12), York, UK.
sn, 17–21.

[3] Nicolas Brochec and Tsubasa Tanaka. 2023. Toward Real-Time Recognition of
Instrumental Playing Techniques for Mixed Music: A Preliminary Analysis.
In International Computer Music Conference (ICMC 2023). Shenzhen, China.
https://hal.science/hal-04263718

[4] Nicolas Brochec, Tsubasa Tanaka, and Will Howie. 2024. Microphone-based
Data Augmentation for Automatic Recognition of Instrumental Playing Tech-
niques. In International Computer Music Conference (ICMC 2024). Seoul, South
Korea. https://hal.science/hal-04642673

[5] Judith C Brown and Paris Smaragdis. 2004. Independent component analysis
for automatic note extraction from musical trills. The Journal of the Acoustical
Society of America 115, 5 (2004), 2295–2306.

[6] Antoine Caillon and Philippe Esling. 2021. RAVE: A variational autoencoder
for fast and high-quality neural audio synthesis. arXiv:2111.05011 [cs.LG]
https://arxiv.org/abs/2111.05011

[7] Yu-Hua Chen, Wen-Yi Hsiao, Tsu-Kuang Hsieh, Jyh-Shing Roger Jang, and
Yi-Hsuan Yang. 2022. Towards automatic transcription of polyphonic electric
guitar music: A new dataset and a multi-loss transformer model. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 786–790.

[8] Jean-Francois Ducher and Philippe Esling. 2019. Apprentissage profond pour
la reconnaissance en temps réel des modes de jeu instrumentaux. In Journées
d’Informatique Musicale.

[9] Jean-Francois Ducher and Philippe Esling. 2019. Folded CQT RCNN for real-
time recognition of instrument playing techniques. In International Society for
Music Information Retrieval.

[10] Marco Fiorini and Nicolas Brochec. 2024. Guiding Co-Creative Musical Agents
through Real-Time Flute Instrumental Playing Technique Recognition. In
Sound and Music Computing Conference (SMC 2024). Porto, Portugal. https:
//hal.science/hal-04635907

[11] Marco Fiorini, Nicolas Brochec, Joakim Borg, and Riccardo Pasini. 2025. EG-
IPT Dataset (Electric Guitar Instrumental Playing Techniques). https://doi.org/
10.5281/zenodo.15205644

[12] Margherita Grandini, Enrico Bagli, and Giorgio Visani. 2020. Metrics for
multi-class classification: an overview. arXiv preprint arXiv:2008.05756 (2020).

[13] Tung-Sheng Huang, Ping-Chung Yu, and Li Su. 2023. Note and playing tech-
nique transcription of electric guitar solos in real-world music performance.
In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 1–5.

[14] Yu-Fen Huang, Jeng-I Liang, I-Chieh Wei, Li Su, et al. 2020. Joint analysis of
mode and playing technique in Guqin performance with machine learning..
In ISMIR. 85–92.

[15] Christian Kehling, Jakob Abeßer, Christian Dittmar, and Gerald Schuller. 2014.
Automatic Tablature Transcription of Electric Guitar Recordings by Estimation
of Score-and Instrument-Related Parameters.. In DAFx. 219–226.

https://doi.org/10.1162/comj_a_00662
https://hal.science/hal-04263718
https://hal.science/hal-04642673
https://arxiv.org/abs/2111.05011
https://arxiv.org/abs/2111.05011
https://hal.science/hal-04635907
https://hal.science/hal-04635907
https://doi.org/10.5281/zenodo.15205644
https://doi.org/10.5281/zenodo.15205644


Introducing EG-IPT and ipt~ NIME ’25, June 24–27, 2025, Canberra, Australia

[16] George E Lewis. 2000. Too many notes: Computers, Complexity and Culture
in Voyager. Leonardo Music Journal 10 (2000), 33–39.

[17] Dichucheng Li, Mingjin Che, WenwuMeng, YulunWu, Yi Yu, Fan Xia, andWei
Li. 2023. Frame-level multi-label playing technique detection using multi-scale
network and self-attention mechanism. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1–5.

[18] Beici Liang, György Fazekas, Andrew McPherson, and Mark Sandler. 2017.
Piano pedaller: a measurement system for classification and visualisation of
piano pedalling techniques. (2017).

[19] Davide Lionetti, Luca Turchet, Massimiliano Zanoni, and Paolo Belluco. 2024.
Muscle-Guided Guitar Pedalboard: Exploring Interaction Strategies Through
Surface Electromyography and Deep Learning. , Article 37 (September 2024),
11 pages. https://doi.org/10.5281/zenodo.13904842

[20] Vincent Lostanlen, Joakim Andén, and Mathieu Lagrange. 2018. Extended
playing techniques: the next milestone in musical instrument recognition. In
Proceedings of the 5th international conference on digital libraries for musicology.
1–10.

[21] Andrea Martelloni, Andrew P McPherson, and Mathieu Barthet. 2023. Real-
time Percussive Technique Recognition and Embedding Learning for the
Acoustic Guitar. arXiv preprint arXiv:2307.07426 (2023).

[22] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. 2015. librosa: Audio and music signal analysis in
python.. In SciPy. 18–24.

[23] Alexandros Mitsou, Antonia Petrogianni, Eleni Amvrosia Vakalaki, Christos
Nikou, Theodoros Psallidas, and Theodoros Giannakopoulos. 2024. A multi-
modal dataset for electric guitar playing technique recognition. Data in Brief
52 (2024), 109842. https://doi.org/10.1016/j.dib.2023.109842

[24] Jérôme Nika, Marc Chemillier, and Gérard Assayag. 2017. ImproteK: introduc-
ing scenarios into human-computer music improvisation. ACM Computers in
Entertainment (Jan. 2017). https://doi.org/10.1145/3022635

[25] Jérôme Nika, Ken Déguernel, Axel Chemla, Emmanuel Vincent, Gérard As-
sayag, et al. 2017. DYCI2 agents: merging the "free", "reactive", and "scenario-
based" music generation paradigms. In International Computer Music Confer-
ence. Shangai, China.

[26] Tan Hakan Ozaslan and Josep Lluis Arcos. 2010. Legato and glissando identifi-
cation in classical guitar. In 7th Sound and Music Computing Conference (SMC),
Vol. 457.

[27] Ashis Pati and Alexander Lerch. 2017. A Dataset and Method for Guitar
Solo Detection in Rock Music. https://doi.org/10.17743/aesconf.2017.978-1-
942220-15-2

[28] Hegel Pedroza, Gerardo Meza, and Iran R. Roman. 2022. EGFxSet: Electric
guitar tones processed through real effects of distortion, modulation, delay and
reverb. https://doi.org/10.5281/zenodo.7044411

[29] Nicola Privato, Victor Shepardson, Giacomo Lepri, and Thor Magnusson. 2024.
Stacco: Exploring the Embodied Perception of Latent Representations in Neu-
ral Synthesis. In Proceedings of the International Conference on New Interfaces
for Musical Expression. Utrecht, Netherlands. http://nime.org/proceedings/
2024/nime2024_62.pdf

[30] Loïc Reboursière, Otso Lähdeoja, Thomas Drugman, Stéphane Dupont, Cécile
Picard-Limpens, and Nicolas Riche. 2012. Left and right-hand guitar playing
techniques detection. In Proceedings of the International Conference on New
Interfaces for Musical Expression. University of Michigan, Ann Arbor, Michigan.
https://doi.org/10.5281/zenodo.1180575

[31] Robert Rowe. 1992. Interactive music systems: machine listening and composing.
MIT Press, Cambridge, MA, USA.

[32] Norbert Schnell, Axel Röbel, Diemo Schwarz, Geoffroy Peeters, Riccardo
Borghesi, et al. 2009. MuBu and friends–assembling tools for content based
real-time interactive audio processing in Max/MSP. In ICMC.

[33] Hugo Scurto and Ludmila Postel. 2023. Soundwalking Deep Latent Spaces.
In Proceedings of the International Conference on New Interfaces for Musical
Expression, Miguel Ortiz and Adnan Marquez-Borbon (Eds.). Mexico City,
Mexico, Article 33, 4 pages. https://doi.org/10.5281/zenodo.11189166

[34] Domenico Stefani, Gregorio Andrea Giudici, and Luca Turchet. 2024. On the
Importance of Temporally Precise Onset Annotations for Real-Time Music
Information Retrieval: Findings from the AG-PT-set Dataset. In Proceedings of
the 19th International Audio Mostly Conference: Explorations in Sonic Cultures
(Milan, Italy) (AM ’24). https://doi.org/10.1145/3678299.3678325

[35] Domenico Stefani, Matteo Tomasetti, Filiippo Angeloni, and Luca Turchet.
2024. Esteso: Interactive AI Music Duet Based on Player-Idiosyncratic Ex-
tended Double Bass Techniques. In Proceedings of the International Confer-
ence on New Interfaces for Musical Expression. Utrecht, Netherlands. https:
//doi.org/10.5281/zenodo.13904929

[36] Li Su, Hsin-Ming Lin, and Yi-Hsuan Yang. 2014. Sparse modeling of magnitude
and phase-derived spectra for playing technique classification. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 22, 12 (2014), 2122–
2132.

[37] Li Su, Li-Fan Yu, and Yi-Hsuan Yang. 2014. Sparse Cepstral, Phase Codes for
Guitar Playing Technique Classification.. In ISMIR. 9–14.

[38] Pierre Alexandre Tremblay, Owen Green, Gerard Roma, James Bradbury, Ted
Moore, Jacob Hart, and Alex Harker. 2022. Fluid Corpus Manipulation Toolbox.
https://doi.org/10.5281/zenodo.6834643

[39] Federico Visi. 2024. In Proceedings of the International Conference on New
Interfaces for Musical Expression. Utrecht, Netherlands. https://doi.org/10.
5281/zenodo.13904810

[40] Changhong Wang, Emmanouil Benetos, and Elaine Chew. 2021. CBFdataset: A
Dataset of Chinese Bamboo Flute Performances. https://doi.org/10.5281/zenodo.
5744336

[41] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. General-
izing from a few examples: A survey on few-shot learning. ACM computing
surveys (csur) 53, 3 (2020), 1–34.

[42] Qingyang Xi, Rachel M Bittner, Johan Pauwels, Xuzhou Ye, and Juan Pablo
Bello. 2018. GuitarSet: A Dataset for Guitar Transcription.. In ISMIR. 453–460.

https://doi.org/10.5281/zenodo.13904842
https://doi.org/10.1016/j.dib.2023.109842
https://doi.org/10.1145/3022635
https://doi.org/10.17743/aesconf.2017.978-1-942220-15-2
https://doi.org/10.17743/aesconf.2017.978-1-942220-15-2
https://doi.org/10.5281/zenodo.7044411
http://nime.org/proceedings/2024/nime2024_62.pdf
http://nime.org/proceedings/2024/nime2024_62.pdf
https://doi.org/10.5281/zenodo.1180575
https://doi.org/10.5281/zenodo.11189166
https://doi.org/10.1145/3678299.3678325
https://doi.org/10.5281/zenodo.13904929
https://doi.org/10.5281/zenodo.13904929
https://doi.org/10.5281/zenodo.6834643
https://doi.org/10.5281/zenodo.13904810
https://doi.org/10.5281/zenodo.13904810
https://doi.org/10.5281/zenodo.5744336
https://doi.org/10.5281/zenodo.5744336

	Abstract
	1 Introduction
	2 Related Works
	2.1 Instrumental Playing Technique Recognition
	2.2 Guitar Datasets
	2.3 Proposed Workflow

	3 The EG-IPT Dataset
	3.1 Recording
	3.2 Electric Guitar Playing Techniques
	3.3 Dataset Structure

	4 Evaluation of EG-IPT
	4.1 Proposed Methodology
	4.2 Results

	5 Implementation of ipt
	5.1 Model Loading and Setup
	5.2 Audio Preprocessing
	5.3 Multi-Threaded Architecture
	5.4 Signal Processing and Classification
	5.5 System Control and Customization
	5.6 Error Handling and Robustness
	5.7 Max/MSP Integration
	5.8 Compilation and Packaging

	6 Discussion
	7 Conclusions
	8 Ethical Standards
	Acknowledgments
	References

