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Abstract
This paper presents Synthetic Ornithology, an interactive sound-
based installation that uses machine learning to simulate sonic
representations of localised Australian ecological futures, extend-
ing work in soundscape composition to engage in a specula-
tive domain. Central to Synthetic Ornithology is a bespoke ML
model, Environmental Audio Generation for Localised Ecologies
(EAGLE), capable of generating high-quality, birdsong-focused
soundscapes, up to 23 seconds in length. This paper outlines
the development of the installation and how its design aims
to influence audience perception of the sonic content of the
work, extending established practices in NIME and sonic arts
to a parafictional approach, and hyperreal aesthetics. Addition-
ally, the paper examines the design and capabilities of the EAGLE
model, and reflecting on how generative tools are positioned
within a creative context, re-imagines the technical processes of
training and configuring MLmodels as sites of artistic authorship
in an expanded creative audio practice.
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1 Introduction
The rapid advancement of generative technology has sparked crit-
ical discussion among sonic artists about its role in creative pro-
cesses, as well as motivations and deterrents tomake use of it. Sur-
veys indicate that generative audio in sonic arts remains under-
explored, as musicians prefer tools that integrate with existing
workflows, and avoid systems that generate complete composi-
tions [17]. Generative tools like RAVE [4] and GANSpaceSynth
[36], while available as plugins, require coding knowledge, spe-
cific resources for training, and offer limited audio quality and
generation length, likely inhibiting their uptake [17]. Neutone
FX1, which acts as a host for generative audio models, while
promising broad access to generative machine learning (ML) for
sonic arts, has hard-coded limits on parameters for model con-
trol and conditioning data. Artists may be further deterred from
generative tools by the "black box effect" of pre-trained models, a
reluctance to deal with ‘big data’ models and datasets that induce
issues of attribution, resource use, and unequal access to technol-
ogy [15]. Developing bespoke models may address many of these
issues, while also aligning with proposals for the subversive use
of technology as outlined in the Critical Engineering Manifesto2.

1https://neutone.ai/fx
2https://criticalengineering.org
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While such efforts become more common, there is little consen-
sus on how this technology is seen within a creative process. In
the NIME context, ML has been described as an ‘autonomous
instrument’ [35] and even a collaborator [37]; however, as these
tools continue to develop, each artist defines their role within
their own practice.

Against this backdrop, Synthetic Ornithology, first presented
publicly in March 2025, is an interactive installation that explores
potential ecological futures by generating realistic birdsong-
focused soundscapes using a bespoke ML model. The installation
presents its sonic depictions of ecological futures as accurate;
however, it is ultimately a work of speculative fiction. Visitors
select a future time, location within Australia and climate condi-
tions via a touchscreen interface, and the work generates a sonic
representation of that scenario, along with generative text that
contextualises the audio with social, environmental, activist and
climate information. Synthetic Ornithology is one of a small but
growing number of audio works where the entire sonic output
comes from a generative model. As such, this research reposi-
tions the technical tasks required to design and train the model,
including dataset curation, model architecture design, and condi-
tioning data selection, as the loci for creative control. Synthetic
Ornithology situates ML not as a tool, agent, or collaborator but
as a mechanism for connecting audiences to inaccessible parts
of the Earth system. This aligns with ideas from theorists like
Latour who argues that technologies shape and transform human
actions and perceptions [21] and Haraway, who proposes that
technology mediates between worlds, and challenges traditional
notions of agency [13]. This exploration into ML in creative prac-
tice adds to a growing body of research that will contribute to
shaping future tools for sonic artists, as generative technology
becomes more widespread.

Figure 1: A view of Synthetic Ornithology installed at
Phoenix Gallery Melbourne, March 2025.
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2 Related work
Synthetic Ornithology draws on a web of creative and technical
research covering soundscape composition, previous NIME re-
search utilising soundscapes and ML, as well as ML in a technical
context.

Soundscape composition embraces environmental recordings
as source material, and contextualises them using musical termi-
nology, ultimately seeing soundscapes as discrete musical com-
positions. Soundscape composers often produce works that aim
to engage with issues connected with the impacts of climate
change [38]. The field has evolved significantly from documen-
tation, through creative outputs using basic editing and play-
back [38], to engaging with immersive media [3]. Soundscapes
reflect ecosystem processes and human activities [27] and as
a medium ‘can be employed to sense more than-human envi-
ronmental change, bringing human and nonhuman bodies into
proximity with events over vast geographical registers’ [14][p.7],
‘remapping the complex spatialities and temporalities of climate
change’ [14] [p. 5] and can facilitate the ‘sonic transmission
of meanings about place, time, environment’ [40][p. 52]. This
broad potential, supported by research into affective responses
to features and changes in soundscapes [30], makes the acoustic
environment an intriguing medium for many sonic artists .

Previous soundscape-focused works presented in NIME have
investigated interactive analysis and composition of soundscapes
[5], soundscape composition using concatenative synthesis [18]
real-time musical synthesis from soundscape timbres [2] and the
use of climatic data to influence granular synthesis for speculative
sonic environments [26]. Cumulatively, these works, in their use
of location and climate data, engagement with ecological issues
and synthesis of soundscapes provide a lineage of developments
in the NIME context that Synthetic Ornithology builds on.

ML has been engaged in numerous NIME studies, often fo-
cused on generating, recognising and manipulating control or
gestural data [8, 28]. Music generation with ML has been ex-
plored in several approaches including score and note generation
[22, 25], rhythm generation [24, 39], control of synthesis [16, 42]
and the use of generative audio through existing tool-kits [32, 33].
As ML technology has advanced and been increasingly utilised,
some artists have developed works where the entire sonic content
is generated byML. For example, TheWandering Mind [9] utilised
Google’s YAMNet3 model, trained on 70,000 field recordings to
create a work wholly based on generated content.

Configuring or modifying and training bespoke models for
generative audio remains an emerging approach in sonic arts. The
technical capabilities of an ML model impact the duration and
quality of generated sound, methods of controlling output, time
required for generation, and media and resources used for train-
ing. When a model is developed within and as artistic practice,
these parameters influence the creative methodology, as much
as creative needs influence the development of the model. While
it may seem preferable to have faster models and higher quality
audio, in creative practice, deeply engaging with technology and
how it can contribute to a work overshadows technical limita-
tions. For example, Deepscape: Transversal [31] used a modified
version of the RAVE model to create a work that also featured
entirely ML generated sonic content focused on planetary sound-
scapes. As discussed, RAVE has limited quality output but is well
suited for the real time generation used by Deepscape: Transversal,
and the work’s artistic framework contextualises the output as

3https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

an otherworldly exploration of computational infrastructures.
Similarly AI-terity [35] utilised a bespoke GAN based model,
GanspaceSynth [36], specifically developed for live performance
as part of a NIME. GanspaceSynth generates only 4-second, 16khz
audio, but at very high speed.AI-terity developed methods for the
artist to traverse the latent space of the model in real time, and
its implementation prevents continuous audio generation from a
fixed latent, making the limited length of output irrelevant. Al-
though 16khz audio is considered ‘low’ quality, post-processing
of the output, part of the works methodology, ultimately rendered
audio fidelity a non-issue.

This growing lineage of creative works using generative ML,
in addition to providing a background for this research, illus-
trates how technology-driven innovations (for example GAN-
synth developed by Google), are adopted and reconfigured by
pioneering artists (e.g. AI-terity’s adaptation of GanSynth into
GanSpaceSynth), then spread to a broader creative community
(as evidenced by numerous works presented in NIME that utilise
RAVE) and ultimately integrate into widely used audio software
tools (exemplified by Neutone FX, a commercial plugin that hosts
generative models).

Future developments in generative ML may result in flexible
technology that integrates seamlessly with existing tools, lessen-
ing the need for custommodel development. However, generative
audio is still an emerging technique in sonic art. Consequently,
continued publication and discussion of ML development in and
as creative practice will uncover its artistic potentials and help
shape future tools. Additionally, in the context of sonic arts, the
conceptual ‘universe’ of a work plays an important role in con-
textualising a generative model’s output, shaping how audiences
interpret and engage with work, as can be seen in Deepscape:
Transversal and The Wandering Mind. As such the following sec-
tion first details the technical development of the EAGLE model
and how the choices made in this process influence the creative
work and follows with a discussion of how Synthetic Ornithology
presents and contextualises its sonic output.

3 The Synthetic Ornithology System
Generative audio is a growing application of ML, and its task
of generating sequences of cumulatively dependent values of a
sound wave’s amplitude is complex. Recent advances in the field
have facilitated the efficient generation of high-quality, variable
length audio that adheres well to conditioning data [7, 10, 29].
Despite these efforts, there is a gap in research generating sound-
scapes based on localised climate scenarios as required by Syn-
thetic Ornithology. This unique gap is unlikely to be addressed
by ML research, as it directly responds to the needs of a single
creative work; it is therefore addressed through this practice-led
research, configuring and training a bespoke ML model.

3.1 Machine learning Model Architecture
In Synthetic Ornithology, the EAGLE model is the sole source of
sonic material; consequently, model architecture, conditioning
data selection, dataset curation, and training parameters become
the principal levers for influencing the sonic output. Different
model architectures can drastically influence creative outcomes.
GANs, for instance offer a diverse output potential but can be dif-
ficult to train. VAEs can be more stable and resource-efficient but
have limited variety in their generated audio; the RAVE toolkit
[4] exemplifies these trade-offs: its output may be less varied

https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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compared to a GAN-based model, yet its fast, low resource gen-
eration is ideal for live performance. This research opted to focus
on long (23 second) high quality, 44.1 kHz audio (sacrificing
stereo content to halve the resource use), and multiple numeric
conditioning parameters, extending an existing approach [10]
originally designed for text to audio generation.

The EAGLE model architecture has two key components: an
audio encoder/decoder model, a Generative Adversarial Network
with Residual Vector Quantisation (RVQGAN) based on the De-
script Audio Codec [19], and a diffusion transformer, featuring
numeric conditioning via a data embedder, and utilising cross-
attention and Classifier-Free Guidance. This combination facili-
tates relatively long audio generation (23 seconds) at high-quality
(44.1 kHz mono), with high temporal consistency, i.e. over the
23 seconds, the audio events and features resemble real-world
recordings.

The RVQGAN acts like a data compression system by organis-
ing audio with similar features in closer proximity in the latent
space. Given a ‘location’ in this latent space, the RVQGAN can
output an audio file with the features that correspond to that
location. During training, audio files are encoded into a latent
representation (with a much smaller data footprint than raw au-
dio, increasing efficiency), which is then sent to the diffusion
transformer, along with the conditioning data. This multi-model
architecture, where a diffusion model operates on latent rep-
resentations of data instead of the raw data is referred to as
latent diffusion. The diffusion mechanism iteratively adds a small
amount of noise to the data and records the stepwise transforma-
tion between the input and each noised iteration; this process is
repeated until only pure noise remains. In the generation process,
starting with pure noise, the diffuser applies transformations that
correspond to the given conditioning data in reverse, until the
resulting latent representation is sent to the RVQGAN and ‘de-
compressed’ to audio. Long audio files are broken into sequences
of smaller segments (conditioned with their start time in the
source file and duration); the transformer part of the diffusion
transformer allows these segments to be operated on in parallel,
increasing efficiency as well as temporal coherence across long
audio files.

EAGLE uses a cross-attention mechanism (ensuring the con-
sistent application of conditioning data across diffusion steps
and sequences) to apply conditioning data with a Classifier Free
Guidance (CFG) scale. The CFG scale can modulate the influence
of conditioning data during generation, lower CFG values al-
low the model greater freedom to deviate from generating audio
that correlates from the conditioning data, while higher values
enforce stricter adherence to it.

Figure 2 illustrates the EAGLE architecture during generation.
On the left the conditioning parameters are applied to gaussian
noise. The diffusion transformer then iteratively applies learned
transformations aligned with the conditioning data, resulting in
a latent representation, that is passed to the RVQGAN, where it
is transformed to audio.

3.2 Dataset and Conditioning Data
This research required curating a bespoke dataset of birdsong-
focused soundscapes from across Australia; each entry consists
of an audio file accompanied by a metadata file. The final dataset
consisted of 44,804 entries, approximately 710 hours of audio4.

4The dataset is visualised online at https://audioweather.com

3.2.1 Dataset curation methodology. Empirical research using
soundscapes preferences capture using high-quality fixed, and
spatially aligned microphones, recording remotely for long pe-
riods and devoid of human presence [1]. This research sourced
soundscape recordings from existing archives, whose content
does not align with these requirements. Captured largely by citi-
zen scientists, recordings in these archives, rather than unbiased
soundscapes, are birdsong-focused recordings that also capture
the surrounding sonic environments. Entries vary in length, are
recorded using handheld devices, lack consistent microphone
placement and frequently include evidence of human presence
such as footsteps, talking and clothing rustles. The inclusion of
artefacts of human presence and from variations in capture qual-
ity and techniques, in the dataset used for training, means that
these artefacts also appear in the model’s generated output.

Synthetic Ornithology embraces these artefacts primarily as
they make the sound more relatable. Footsteps and clothing rus-
tles place a human in the audio scenario, giving the listener a
presence to substitute themselves into. This resonates with Feld’s
voicing, part of a reciprocal process that connects to the listener’s
sense of self and to an embodied experience of place [11]. Ad-
ditionally, the colouring of audio from small recording devices
connects to a more intimate experience of sound. Pristine sound-
scapes are found in cinema and documentary, far removed from
everyday experiences. Smartphone or action-cam recordings are
more likely found in our messages, social media or communi-
cation from family and friends. Synthetic Ornithology, aiming
to connect with personal sonic experiences of place, embraces
the mediation of small recording devices and non-professional
techniques and equipment.

3.2.2 Sources. The dataset was sourced from xeno-canto5 and
the Macaulay Library6. xeno-Canto’s library has a Creative Com-
mons licence and recordings from the Macaulay Library were
accessed through a negotiated agreement with the custodians.
Both libraries have varying metadata attached to entries, for this
research, only entries from Australia and with complete times-
tamps and locations were used.

3.2.3 Pre-processing. Tominimise variation in format and record-
ing levels, all recordings were transposed to 16-bit 44.1 kHz WAV
format, and for all non-mono entries, only the first channel was
retained. A DC offset removal filter, a high-pass filter at 60 Hz
with a 24 dB/octave roll off, and normalisation to -0.1 dBFS were
applied to all entries.

3.3 Metadata/conditioning data
Themetadata file for each entry contains a timestamp, geographic
coordinates, as well as climate conditions from the time and lo-
cation of the recording. This metadata is used as conditioning
data when training the model and is required to generate new
audio. The selection of parameters was guided both by research
detailing connections between changes in climate and variations
in soundscape and birdsong [6, 27, 34], as well as the conceptual
framework of the work. Synthetic Ornithology proposes to gen-
erate localised soundscapes from future climate scenarios, and
the model was designed to reflect this capability. While a model
that could generate highly accurate soundscapes from climate
scenarios might use the same structure and set of conditioning

5https://xeno-canto.org
6https://www.macaulaylibrary.org

https://audioweather.com
https://xeno-canto.org
https://www.macaulaylibrary.org


NIME ’25, June 24–27, 2025, Canberra, Australia Rodrigues

Figure 2: A flow diagram of the EAGLE model architecture for generating audio.

data, Synthetic Ornithology is a creative, speculative work. Al-
though the EAGLE model does utilise correlations between audio
features in the training data and the conditioning data, the in-
fluence of future climate change on localised soundscapes will
likely depend on many more factors not accounted for by the
EAGLE model. In satisfying the artistic requirements of the work,
the final metadata selection was: latitude, longitude, temperature,
humidity, wind speed, pressure, minutes of day and day of year
(to represent seasonal and diurnal variations). Climate data for
each entry was collected via the OpenWeatherMaps7 API and
time of day and day of year metadata was derived from each
recording’s timestamp.

Table 1 shows the final metadata selection, the minimum and
maximum values of each parameter, as well as the mean and
standard deviation based on their normalised values.

Table 1: The final chosen streams of metadata used to con-
dition the model and their minimum, maximum, format,
mean and standard deviation.

Parameter Min Max Format Mean Std dev.

Latitude -54.61 -10.13 double 0.569 0.192
Longitude 96.82 167.96 double 0.662 0.143
Temperature -10.0 55.0 float 0.469 0.145
Humidity 0.0 100.0 float 0.722 0.189
Wind speed 0.0 50.0 float 0.122 0.076
Pressure 800 1200 float 0.537 0.086
Minutes of day 0.0 1439 float 0.398 0.206
Day of year 1 366 integer 0.594 0.280

3.4 Training and evaluation
EAGLE’s multi-model architecture required separate training of
the RVQGAN and the Diffusion Transformer. While pre-trained
models of the RVQGAN are available, these use a fixed latent
output size, reducing flexibility in subsequent steps designing
the diffusion model. The RVQGAN was trained using randomly
7https://openweathermap.org

cropped 1-second audio segments for 200000 steps, approximately
320 GPU hours. Evaluation occurred every 2500 steps, where
three audio segments were output each with the original audio
and round-trip encoded and decoded audio for comparison. The
Diffusion Transformer was trained for 640,000 steps, approxi-
mately 2800 GPU hours. Evaluation occurred every 2500 steps,
generating 3 samples from a set of operator selected condition-
ing parameters, to assess quality and coherence. Notably, earlier
training iterations produced outputs that, while lower fidelity,
offered intriguing creative textures8.

As Synthetic Ornithology relies on generating believable sound-
scapes to engage audiences, the output of the EAGLE model was
evaluated to confirm its fidelity and perceptual realism. This eval-
uation was conducted using Mean Opinion Scores (MOS) surveys,
a commonly used metric to understand the perceptual quality of
a generative audio model.

The survey began by filtering participants based on their fa-
miliarity with birdsong or audio, to determine if professional
perspectives differed from those of non-professionals. All partici-
pants were then played 15 randomly selected audio samples from
a set of 9 real and 19 generated soundscapes. For each audio sam-
ple, participants responded to five questions using a Likert scale
answer ranging from "Strongly Disagree" to "Strongly Agree."
The questions were as follows:

(1) "The sounds in this recording appear natural and lifelike."
(2) "This audio recording creates a sense of being in a real

environment."
(3) "This audio is real and not generated by an artificial intel-

ligence model."
(4) "The audio in this recording is pleasant to listen to."
(5) "The audio in this recording is of high-quality and free

from artefacts."
Likert responses were converted to numeric values between 1

to 5 for analysis; for all questions a higher number represented a
more positive response to the audio. Responses from all listening
events were separated based on whether they corresponded to
a real or generated file, and then average scores for real and

8https://fred-dev.github.io/Synthetic_ornithology_results/errors.html

https://openweathermap.org
https://fred-dev.github.io/Synthetic_ornithology_results/errors.html


Synthetic Ornithology: Machine learning, simulations and hyper-real soundscapes NIME ’25, June 24–27, 2025, Canberra, Australia

generated samples were calculated. With 37 respondents, the
survey collected data from 555 listening events.

3.4.1 Survey results. Table 2 presents the results of the MOS sur-
vey. The similarities in responses to real and generated samples
suggest that the model’s output is comparable to real recordings
confirming that the model achieves both fidelity and realism.
Professional respondents demonstrated similar responses to on
professionals, with the generated audio consistently scoring very
close to the real samples.

Table 2: Qualitative results from an MOS survey on the
model’s audio output.

Section Naturalness Environment Realness Pleasantness Quality Overall

All Real 4.14 4.14 3.58 3.37 3.58 3.76
All Generated 3.94 3.95 3.47 3.58 3.30 3.65
Pro Real 4.24 4.46 3.70 3.91 4.12 4.08
Pro Generated 4.02 4.10 3.62 3.80 4.02 3.91

3.5 Model deployment
To use the model to generate audio for the interactive installation,
the model and software stack need to be running on suitable
hardware and wrapped in a suitable software layer. The model
was deployed on a Hugging Face9 virtual server, and wrapped
with Gradio10, a Python-based library that facilitates interaction
with generative models. This allowed for the development of
the web-based user interface, independently of the generation
system, and also removed the need for specialised hardware on
location to run the installation.

4 Installation and Interaction Design
Synthetic Ornithology, like many works of sonic art, has a strong
conceptual framework that proposes how audiences might per-
ceive the work; here the artistic concept proposed that the audio
generated by the installation is an accurate prediction of future
soundscapes under pressures from climate change. As discussed
earlier, while the model architecture used in the work may be a
plausible way to achieve this goal; the work is speculative, and
plays on plausibility, rather than dealing with accuracy. As such
the installation and the interface design focus on presenting the
work as a plausible simulation, while also leaving several clues
that the work is speculative. This approach resonates with hy-
perreal and parafictional artistic practices, most commonly seen
in visual arts, discussed in more detail in the following section.

In practical terms, the installation’s design evokes the aes-
thetics of a science exhibit: no visible cables, a clean space with
unobtrusive grey couches, and minimal visual clutter. This is
reinforced by a printed, academic-style text describing the use
of soundscapes in climate change impact analysis, Australia’s
unique and threatened bird populations and the installation’s
ability to model the relationship between soundscapes and cli-
mate. The text positions the installation as a plausible scientific
display rather than artistic. An AI-generated image of a bird fly-
ing over a burning Earth points to the speculative nature of the
work.

4.0.1 Installation flow. The installation operates in a drift mode
when left untouched for a few minutes. In this mode the system
randomly plays pre-generated soundscapes from 1000 specula-
tive scenarios, displaying the future dates, times, locations and
9https://huggingface.co
10https://www.gradio.app

weather conditions that were used to generate each file. In this
uncanny audio non-existent people are heard walking through
generated landscapes capturing the sounds of unknown futures,
sometimes interrupted by unintelligible utterances, remnants
from fragments of speech in the training dataset. Audiences are
invited to interrupt the drift mode, and use the touchscreen to
generate speculative soundscapes from locations and conditions
of their choosing. Here, the interactionwith Synthetic Ornithology
unfolds through a step-by-step interface that lets users choose
a location, date, and climate conditions to generate their own
speculative soundscape. The design and flow of the interaction is
aimed at maintaining the sense of plausibility, while an animated
bird at loading steps hints at the work’s speculative nature.

Figure 3: An image of the touch screen for user interaction
and instruction text from the Synthetic Ornithology instal-
lation.

4.0.2 Interface design Methodology. Instrument interface design
often focuses on facilitating embodied interaction or giving artists
and audiences access to otherwise inaccessible systems. In con-
trast, Synthetic Ornithology foregrounds how interactive elements
shape listeners’ perception of the generated audio, an under-
utilised approach in the NIME context. Synthetic Ornithology
uses known UI elements, representations and interaction pat-
terns that the audience has likely been exposed to, to frame the
installation as a plausible, accurate simulation, enhancing affec-
tive impact [12]. While such simple interface elements appear
on many audio tools and even public interfaces, Synthetic Or-
nithology’s adoption of these elements for its entire interface is
an uncommon choice in sonic arts installations. A neutral map
interface and an implementation of Apple’s mobile UI date selec-
tor are used, leveraging their credibility, perceived neutrality and
practical utility [23], as well as audience’s previous experience
of interacting with these elements resulting in factual outcomes.
Through this interface, users choose a future scenario, which is
further grounded by generated text that aggregates information
about the location, date, time, and climate conditions that are
used to seed the soundscape generation.

Familiarity and affect . In Synthetic Ornithology, listeners are
prompted to hear the generated output less as purely artistic
and more as a genuine forecast, engaging with it in relation to
real-world experiences rather than comparing it to other creative
works. This facilitates an affective response termed ‘appropriate-
ness’; Schulte-Fortkamp et al. explain that ‘since an encountered
situation is usually matched against existing cognitive schemes,

https://huggingface.co
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appropriateness viewed as the level of congruency between a
scheme and a real-world situation will influence positive affective
responses. Inappropriate matches consequently lead to negative
affective responses’ [30][p. 36]. Such contemplative comparisons
are further enhanced when the audience has an existing sonic ex-
perience relating to their chosen scenario. In practice, this hinges
on the audience choosing personally significant parameters (e.g.
a familiar location or meaningful date), and the likelihood of
doing so, especially with a familiar user interface, is supported
by Zajonc’s ’mere exposure’ principle [41].

Because place is a fundamental reference point for recalling
past sonic experiences, the interface’s main viewpoint is a map,
built with LeafletJS11. Users pan, zoom, and scroll with familiar
gestures to find their desired location. Long-pressing on a location
drops a marker at that spot, storing the first parameter of the
conditioning data, GPS coordinates. A popup bubble then appears
and prompts the audience to select a future date (limited to a
20-year span). The interface for selecting the year, month, day,
and time uses Apple iOS style rolling wheels, while familiar next
and back buttons guide users through the steps. Once the date is
selected, the user is then prompted to specify climate conditions
(e.g. temperature, humidity, wind speed), starting with pre-filled
suggestions based on real weather data from the past year for
that location, date, and time, varied depending on the future year.
These suggestions are presented in an interface that is based on
common weather forecast widgets. Once finalised, this data is
sent to the remote server to trigger soundscape generation, a
process that takes roughly 23 seconds.

Generative text. While the soundscape generation is triggered,
the user selected scenario is also sent to the ChatGPT API12 to
create a generative text element that serves multiple purposes:
to engage the visitor while the audio is generated, and to provide
an information scaffold that influences audience perception of
the generated soundscape. The text is generated using a prompt
that incorporates the audience selected data. The prompt gathers
localised information on the social makeup of the location, local
species, prominent, endangered and extinct, industrial activity
such as mining or deforestation, environmental protests, and
the extent to which the chosen climate conditions deviate from
historical norms for that time and date. This information is then
woven into a short, cohesive text bridging the present with the
chosen future date, sometimes introducing fictional elements. The
prompt directs that fictional elements are to be extrapolations
of existing gathered information, for example where there have
been protests in the past, a fictional element may be similar
protests on a future date. By constructing a sequence of events
that frame the audience’s chosen scenario, the text contributes
to the perceived plausibility of the work, the last part of the
interactive experience before the soundscape is generated and
automatically played.

Importantly, while ChatGPT and other language models are
not always reliable sources of information, in keeping with the
speculative nature of Synthetic Ornithology, the impact of this
information was considered to be sufficiently useful despite in-
consistencies. While a true evaluation of the accuracy of the text
content is beyond the scope of this research, a substantial number
of outputs were cross checked and found to be sufficiently reliable
for the nature of the work. Due to the large variety of possible
input conditions, it is likely that a proportion of the generated

11https://leafletjs.com
12https://openai.com/api

text will contain inaccuracies, however this is not considered
detrimental to the work as whole.

Figure 4 shows the flow diagram of the user interaction from
the initial map, through the date, time and climate selection to
the resulting generated text and audi playback.

Figure 4: A flow diagram of the interaction process of the
touch screen interface for Synthetic Ornithology.

5 Artistic and Theoretical Contributions
Synthetic Ornithology’s use of a generative model that creates
climate aligned speculative soundscapes fills an under-explored
gap in soundscape composition and allows the field to operate
in previously unavailable speculative and predictive modalities.
The capabilities of the ML model also alter the materiality of
the recorded soundscapes, from singular representations of a
place and time to a malleable set of component audio features
and their relationship to the landscape and climate. This grants
the flexibility to orchestrate these features, akin to manipulating
discrete musical sources, while retaining the authenticity of ac-
tual field recordings and the connection to real environmental
events. Within the conceptual framework of Synthetic Ornithol-
ogy, the model’s facilitation of soundscape ecology to work in
this speculative mode is viewed through the lens of posthuman
philosophy. Here, ML, rather that adding to the capabilities of
the artist or framework, it is seen to extend the ‘being-ness’ of
the audience; allowing them to experience unheard futures and
have a sensory experience of climate impacting discrete biotic
responses to changing environments.

The EAGLE model, while not specifically designed to decom-
pose soundscapes into discreet audio features, produces outputs
that resonate with such capabilities. The composition of audio
features by EAGLE in response to climate scenarios is the centre
of this work’s aesthetic potential. For example, recordings from a
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particular region at sunset in summer frequently include cocka-
toos and cicadas; accordingly, if the user selects a nearby location
and a sunset-in-summer time frame, the generated soundscape
often contains those species. While EAGLE readily captures these
location and time-based patterns, its creative possibilities arise
when the model diverges from expectations. Here the sonic vo-
cabulary of the work is apparent; biophonic sounds not usually
heard together appear in the same soundscape, one bird species
sings the call of another, and familiar bird calls appear with un-
expected variation. A series of comparative samples from the
model output and the dataset can be heard online13.

ML models, such as EAGLE, with their ability to deduce and
reproduce complex patterns and correlations in data are often
used for simulations. Synthetic Ornithology employs EAGLE to
simulate the effects of speculative climate conditions on sound-
scapes, however, prioritises believability over scientific accuracy.
This approach bridges scientific simulations and speculative fic-
tion; where both embody the rules of a universe and present
the outcomes of the application of those rules. While creative
works that use simulation are not uncommon, audio-focused
approaches are relatively unknown.

Synthetic Ornithology’s highly realistic audio, confirmed through
surveys, further aligns with hyperrealism, usually associated
with visual art. Hyperrealist works like Patricia Piccinini’s ‘The
Instruments of Life’14 use realism to engage audiences and ex-
aggerations to highlight external issues. Synthetic Ornithology’s
hyperrealist audio grounds the speculative scenarios in familiar
experiences, creating an initial sense of plausibility. The subtle
and sometimes impossible variations output by the model, like
distortions of birdsong, and impossible combinations of biotic
sounds, highlight possible futures of environmental degradation.
These distortions, like the exaggerations of hyperrealist visual
art, do not detract from realism but instead amplify a capacity
to provoke reflection on humanity’s relationship with the non-
human world. However, unlike hyperrealist works, generally
identified as ‘fiction’ through their presentation, Synthetic Or-
nithology is presented as ambiguously accurate, introducing a
subtle misdirection, situating the work within parafictional art.
Parafictional art engages with narratives that are presented as
true, with an aim to ‘softly’ deceive the viewer (or listener) [20]
and are realised through framing a work of fiction as plausibly
true. Synthetic Ornithology is unique in engaging with hyperreal
and parafictional approaches from an audio focused practice.

6 Ethical and environmental considerations
This work relies on a large number of recordings made by indi-
viduals that may not have considered the use case put forward
by this research. While the licensing of all the material used in
the dataset allows for its use in this work, many recordings were
submitted when such a use case was not possible.

This research also exhibits a critical tension between the
resource-intensive nature of ML development and the ecological
concerns that this project addresses. Although the resources allo-
cated to this research are negligible in comparison to commercial
projects, they remain significant. The training and deployment
of the model, if conducted on commercial cloud computing plat-
forms, would have resulted in an estimated 1,536 kg of CO2
emissions, equivalent to the carbon footprint of a one-way econ-
omy flight from Sydney to London for a single passenger. While

13https://fred-dev.github.io/Synthetic_ornithology_results/comparison.html
14https://www.patriciapiccinini.net/a-show.php?id=2021-Tallinn

the computational resources provided by the National Computa-
tional Infrastructure (NCI) used in this research are powered by
carbon-neutral renewable energy, and the NCI has a commitment
to zero-emissions compute resources, this does not amount to
this research being totally environmentally friendly.

While the number of training hours may seem high for this
research, for some comparison, information on training a RAVE
model (commonhly used in MIME research) from the Institut de
recherche et coordination acoustique/musique (IRCAM)15 suggests
2 phase training may take up to 600 hours with an unknown
dataset size (an initial 3- 4 days for phase 1 and up to 3 weeks
for phase 2). In total this is about 20% of the resources used for
this research. However, the EAGLE model features significant ad-
vances in audio quality, generation length and artistic flexibility
(through its conditioning capabilities). While the EAGLEmodel is
certainly more complex and resource intensive than lightweight
systems, a direct comparison is difficult to make without training
the two models on the same dataset and accounting for the dif-
ferences in output. The resource use of this research is justified
by the artistic requirements of this project, the availability of
carbon-neutral computing, and in reflection the relative use of
resources used – the carbon equivalent of a one-way economy
flight from Sydney to London for a single passenger – a com-
monly used route for academics and researchers presenting at
international conferences to and from Australia.

7 Conclusion
In this paper, the key developments that underpin Synthetic Or-
nithology were introduced. The primary effort of configuring
and training the EAGLE model resulted in its ability to produce
realistic soundscapes of up to 23 seconds in length, and to be
the sole source of audio in this work. This effectively repositions
dataset curation, model design, and training parameters as com-
ponents of the creative process, rather than technical tasks. The
unprocessed generated audio foregrounds the system’s creative
possibilities, combining biophonic, geophonic, and anthropophonic
features in unforeseen ways. This approach aligns with contem-
porary theories on post-anthropocentric perspectives in sonic
arts, and positions ML as an apparatus for enhancing audience’s
sensorial experiences.

The interaction design, employing familiar user interface ele-
ments to shape the audience’s perception of the generated audio,
evoking trust and plausibility, situates the output in a speculative
yet believable realm. The resulting positioning of the work as
hyperreal and parafictional, under-explored contexts for sonic
arts, presents the potential for machine learning based generative
techniques to facilitate new artistic modalities.

The presentation of this research hopes to contribute to a
growing collection of such reflections, and ultimately contribute
usefully to future artistic work, and shapeML tools that will likely
emerge as common in future creative audio tool-kits. Ultimately,
this paper’s methodology, findings, and reflections illustrate the
potentials available to sonic artists in embracing the development
of generative ML within creative practice.

8 Ethical Standards
Before the survey was released online this research passed ethics
clearance at Deakin University Australia (reference HAE-22-077).
Participants were self selecting and the survey began with an

15See the warning under the ’Preparing the training’ section on this tutorial page:
https://forum.ircam.fr/article/detail/training-rave-models-on-custom-data
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ethics and consent statement which participants viewed before
completing the survey. The survey was fully anonymous.
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