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ABSTRACT

This demo showcases Tungnaá, a new voice synthesis system
and software instrument for real-time musical exploration of
“Deep Voice Synthesis”. The design of Tungnaá emphasizes
real-time interaction and customization, enabling artists to
manipulate various aspects of the synthesis process and to
explore aesthetic artefacts unique to autoregressive neural
synthesis. The synthesis engine achieves real-time stream-
ing generation of paralinguistic and extended forms of vocal
expression, while controlling them using symbolic text nota-
tions drawn from the entire unicode character set, allowing
for the creation of new notation systems. The interface pro-
vides visual display and mouse- or OSC-controllable inter-
ventions into the machine vocalisations. The demo show-
cases Tungnaá on a laptop with headphones and a MIDI
controller, allowing participants to explore the instrument
via both a textual and physical interface.
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CCS Concepts

•Applied computing→ Sound and music computing; •Computing
methodologies → Neural networks; •Human-centered com-
puting → Interactive systems and tools;

1. INTRODUCTION
Deep learning-based voice synthesis methods (“Deep VS”)
are lately capable of producing human-sounding voice with
ever increasing realism, prosodic expressivity and compu-
tational efficiency. The bulk of research has been in the
domains of text-to-speech (TTS) and singing voice synthe-
sis (SVS).However, TTS systems are rarely designed with
musicality in mind, and as a plethora of artists in experi-
mental music and across cultures demonstrate, the human
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voice is capable of expressions far beyond the narrow focus
of SVS research on clean and precise tonal singing styles.

This motivates us to design a voice instrument that lever-
ages the hyper-realistic synthesis of Deep VS towards vocal
expressions which may be non-tonal, paralinguistic and ex-
tended into arbitrary domains of human vocal expression,
while also conferring the uncanny and intriguing artefacts
of neural synthesis – what we call the “WaveNet Aesthetic”
of hyperrealistic babbling first heard in a 2016 demo [19].

So motivated, we designed Tungnaá, a software NIME
based on Deep VS. In its synthesis engine, a Tacotron2-
style [23] alignment model predicts audio features from text,
while a RAVE [6] vocoder streams them to audio. We also
explore token-free text encoders [9] to allow the creation
of arbitrary text-based notation systems for generating au-
dio. Tungnaá combines this engine with a GUI exposing the
underlying mechanisms of neural synthesis, like text-audio
alignments and latent variables, for manipulation.

2. BACKGROUND

2.1 Voice Instruments
Given that the voice is such a prominent part of most forms
of music across cultures, it’s unsurprising that artists would
seek out new and unique relationships with this “primal
instrument” [10]. Voice research in NIME is so rich that
Kleinberger et al [16] produced a taxonomy of vocal NIMEs,
based on whether the voice is input or accompaniment,
analyzed or synthesized, or live versus pre-recorded. The
new wave of data-driven Deep VS techniques complicates
this categorisation, where pre-recorded samples are used as
training data, but analysis and synthesis are entangled with
a degree of malleability suggesting reconsideration of the re-
lationship between artist and voice.

Nevertheless, we feel several real-time interfaces for speech
synthesis could be considered spiritual antecedents of Tung-
naá. Glove-TalkII [12] was a seminal glove-based gestural
controller using a neural network to map gestures to artic-
ulatory voice synthesis parameters in real-time, and which
was later imagined as a NIME in GRASSP [20]. Another
tangible interface for statistical parametric speech synthesis
came with MAGE [2] in 2012. Indeed, instruments based
on “old fashioned” articulatory synthesis may be closest in
spirit to our work, because they open up the voice to its
broadest sonic possibilities. The popular web-based articu-
latory synthesizer Pink Trombone [25] is notable.

What we call“theWaveNet aesthetic”, the signature weird-
nesses of hyper-real babbling, neural network distortion arte-
facts, and paralinguistic voice sounds can be heard in con-
temporary music, such as the 2021 album AAI by Mouse
on Mars utilizing the krach.ai synthesis instrument, Holly
Herndon’s 2019 PROTO [13] which used a Deep VS sys-



tem to glitchy effect, and DadaBots’s [31] collaboration with
Jennifer Walshe on the 2020 A Late Anthology of Early Mu-
sic. Such work might be placed within a tradition of com-
posers working with vocal fragments such as Paul Lansky
[15], and we are also inspired by artists in the traditions
of Dadaist sound poetry, such as Jaap Blonk or Tomomi
Adachi, who notably uses an “Infrared Sensor Shirt” instru-
ment to live-sample improvised sound poetry. Finally, mu-
sicians such as Jonathan Chaim Reus have combined vocal
improvisation with Deep VS and bespoke physical inter-
faces, bending voice conversion models to create uncanny
vocalizations [22].

2.2 Deep Voice Synthesis
Deep VS can be seen as an extension of traditional statis-
tical parametric speech synthesis to nonlinear models with
large numbers of parameters, which can result in highly re-
alistic and flexible models when fit to large datasets.
DNN-based SVS approaches have developed rapidly [8],

but most research focuses on obtaining clean articulation
and melody with a commercial music production environ-
ment in mind. In light of this, our research focus on adapt-
ing TTS methods into a NIME context.

2.2.1 Streaming TTS
Streaming TTS methods continuously generate speech with
low latency, compared to offline methods which must work
with large chunks. Many streaming methods [28][24] build
on FastSpeech2 [21]. These rely on a text encoder to predict
token durations, and causal layers to then decode to vocoder
features. When durations are modeled as conditionally in-
dependent, it can lead to poor performance on expressive
speech datasets. Recent work in the FastSpeech2 lineage
[1] includes a more powerful generative duration model, but
still requires durations estimated by an external alignment
model when training.
Another family of streaming TTS methods based on Tacotron2

[23] learn text-audio alignment jointly with conditional gen-
eration. These models compute a distribution of attention
over text tokens for each frame of audio, depending on all
past audio frames, alignments, and the input text [5].

2.2.2 Vocoding
Most streaming TTS methods rely on a separate vocoder.
Streaming neural vocoders includeWaveRNN [14] and deriva-
tives [26] [17]. While efficient, they require bespoke low-level
implementations for fast sample-by-sample generation.
In contrast, block-level models can be implemented us-

ing high-level machine learning frameworks, as overhead is
less problematic when block size is large. In such vocoders,
causal convolutions or block-level RNNs support a genera-
tive model based on normalizing flows or GANs [27] [18].
RAVE [6] is an autoencoder for raw audio which learns

a continuous latent space of audio features. An adversarial
loss term allows high-fidelity audio reconstruction despite a
highly compressed representation. In this regard, RAVE is
similar to neural codec models [29], however RAVE’s latent
representations are continuous and relatively interpretable.
RAVE is both high bandwidth (44.1-48 kHz) and streaming
via cached causal convolutions [7].

3. TUNGNAÁ
Our instrument consists of a neural text-to-voice synthesis
engine, and a software GUI.

3.1 Voice Synthesis Engine
Tungnaá’s synthesis engine is designed to meet the following
requirements:

1. Real-time performance on a CPU, with latency below
100ms, suitable for interactive use within a live-coding
paradigm.

2. Interactivity, with human-in-the-loop manipulation of
the synthesis process.

3. Controllability, exposing the underlying neural syn-
thesis engine to allow nuanced explorations of effects
such as alignment failures, glitches and babbling.

4. Flexibility, with production of any sounds a human
voice might make, without limitation to fluent speech
or a single singing style.

5. “Hi-Fi” audio, representing frequencies up to 20 kHz
with dynamic range suitable for digital music applica-
tions.

6. Openness, for users to train their own models and de-
sign their own text notations with small datasets.

3.1.1 Alignment Model
Per requirement (4), we choose a Tacotron2-like architec-
ture which can learn alignments from utterance-level text
and audio pairs, avoiding a forced alignment step which
might fail when text is annotated with unconventional sym-
bols. Specifically, we use Dynamic Convolutional Attention
(DCA) [5], which mitigates the instability of purely content-
based or location-sensitive attention but allows for creative
(mis)use per (3).

Additionally, we increase expressivity using a neural spline
flow [11] to model the density of audio features. This model
quickly learns alignments and models diverse prosody with-
out further conditioning.

3.1.2 Tokenless Text Encoder
Considering requirement (6), a pre-trained CANINE lan-
guage model [9] is used as a text encoder. Unlike most
language models, CANINE represents text as unicode char-
acters rather than variable-length tokens, which simplifies
the text-audio alignments from a UI perspective.

3.1.3 Real-time Vocoder
RAVE [6] is used as a streaming vocoder. Per requirement
(5), it attains a high sound quality. Per requirements (6, 2),
RAVE has both a high-quality open implementation of the
training code, and streaming inference which is integrated
with computer music workflows. Because RAVE learns a la-
tent space of audio features, almost any input will decode to
a speech-like sound, making RAVE’s latent space more suit-
able for exploratory manipulation than spectrogram-based
vocoders (3).

3.2 Model Training
We designed Tungnaá with the idea of pre-training on pub-
lic speech datasets, then fine-tuning on small artist-created
datasets. Thus far, we’ve mainly explored the former, how-
ever, we expect to include artist-made datasets by the time
of demonstration.

For development, we use part of the Hi-Fi TTS audio-
books dataset [3], specifically the segment recorded by speaker



Figure 1: One audio frame of training. The pretrained au-
dio encoder is frozen, while the pretrained text encoder is
fine-tuned. A Tacotron2-like module predicts alignments a
and audio feature distributions PN (z), conditioned on char-
acter encodings t1...tM and previous audio features zn−1 via
hidden state hn−1.

9017 (John Van Stan) due to the large number of utterances,
high quality of recordings, and expressivity of performance,
which varies in style as the reader assumes different charac-
ters. We also experimented with the multi-speaker VCTK
dataset [30].
To train a Tungnaá model, a RAVE vocoder is first fit to

the audio part of the dataset. Then, the audio is prepro-
cessed through the RAVE encoder. Finally, a text encoder
and alignment model are fit to pairs of text and encoded
audio (Figure 1).

3.3 Software Instrument
Tungnaá is a software instrument distributed as a Python
package, combining our voice synthesis engine with GUI
elements for input and display. It also exposes features to
OSC control. A video demonstration is available in the
accompanying materials.

Figure 2: Tungnaá GUI. From top to bottom: option switches
and temperature control; text entry field; encode and loop
buttons; paint bar; scrolling text-audio alignment; vocoder
meters and bias faders.

The Tungnaá GUI consists of three major elements: text
entry, alignment, and vocoder (Figure 2). A text entry field
allows the performer to prepare a short text for Tungnaá to
vocalise. When ready, the performer can send it to the text
encoder, which also resets the alignments.

A scrolling alignment graph depicts progress through the
text over time. Once encoded, an input text appears along
the horizontal axis of the graph, while time is on the vertical
axis, with the present time at the top. Light pixels denote
the portion of the text being used by the model at a given
time. If attention painting mode is engaged, the paint bar
allows the performer to directly manipulate this alignment.
Otherwise, the model autonomously reads through the text
according to its learned rhythms of speech.

A set of meters and faders display the RAVE latent vec-
tors as they are produced by the alignment model, while
a temperature control affects how variable they are. The
performer can also apply a bias to each latent dimensions
using the faders, to directly manipulate the sound. Each
fader controls one aspect of voice sound as represented by
the RAVE model. This is different for each model, but di-
mensions related to loudness, voicedness, frontalization of
vowels and so forth can often be discerned. Biasing the
vocoder this way does not affect the alignment model un-
less the latent feedback switch is engaged. Transformed la-
tents are fed back into the alignment model, disrupting its
progress through the text in aesthetically interesting ways.

We found that potentials of the autoregressive model came
to light via the graphical interface, inspiring new features
such as forking paths: with attention painting mode, the au-
toregressive generator continues in the context of previous
manipulations. But with the forking paths feature, it can
be rewound to a previous hidden state, to generate endless
alternative takes of the utterance.

Finally, a sampler mode is in development, allowing pre-
viously generated material to be looped and sampled via
text-based search over utterances.

4. CONCLUSION
Tungnaá represents a proof of concept for interactive artis-
tic exploration of Deep VS, with several avenues for future
research.

We have yet to fully explore the potential of the token-free
text encoder for new unicode-based notation systems, which
is exciting for areas where innovation in notation is impor-
tant, such as live coding or spectromorphological analysis.
While our design choices are deliberately style-agnostic, we
have yet to demonstrate models for paralinguistic vocalisa-
tions or languages other than English.

As we have mainly focused on technical aspects of the sys-
tem, future studies should address the creative dynamics of
Tungnaá, asking how artists respond to a real-time version
of their own or others’ voices in different musical and cul-
tural contexts. These are especially crucial questions to ask
in this era of readily available vocal deepfake tools.

Finally, we wish to promote an open ecosystem around
Tungnaá by providing tools to train models and design cus-
tom notations. This requires further research into tech-
niques for efficient fine-tuning of small-dataset models from
model pre-trained on larger corpora.
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6. ETHICAL STANDARDS
Tungnaá is dependent on voice recordings of actual people
- a sensitive form of digital information, especially for vocal
artists who are tradition bearers, have developed a particu-
lar craft or artistic brand. We endeavor to use only ethically
sound voice data in the development of this work. Initial
research was done using standard public English language
speech datasets, such as VCTK [30] and HiFi TTS [4].
We are developing bespoke datasets in close collaboration

with vocal artists, these data and models will not be released
without their explicit consent.
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