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ABSTRACT

This paper presents the GrooveTransformer, a Eurorack
module designed for generative drum sequencing. Central
to its design is a Variational Auto-Encoder (VAE), around
which we have designed a deployment context enabling per-
formance through accompaniment and/or user interaction.
This module allows the user to use the system as an ac-
companiment generator while interacting with the genera-
tive processes in real-time. In this paper, we review the
design principles and technical architecture of the module,
while also discussing the potentials and short-comings of
our work.
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CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts; •Information systems → Music retrieval;

1. INTRODUCTION
In recent years, our research has been predominantly fo-
cused on the advancement of real-time, performance-oriented
deep generative systems for symbolic music [7]. Our main
aim has been to design and build lightweight systems de-
ployable as software plugins to allow for a user-friendly in-
teraction with state-of-the-art generative models.
While deploying a symbolic generative system as a MIDI

plugin promotes accessibility and ease of use, it also bears
inherent limitations that are worth examining. Plugins that
are specifically designed for integration within digital audio
workstation (DAW) environments, typically have a rigid set
of controls and functionalities. Consequently, users may
find themselves confined to a defined application scope and
unable to experiment beyond the intended use of the plugin.
For instance, consider a drum pattern generator that has
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been trained on human performances to generate ”human-
like” patterns through intricate manipulations of velocity
and micro-timing dynamics of a generated score/pattern
[4]. Once deployed as a MIDI plugin, the most conven-
tional use of this generative system is to be paired with a
virtual drum kit plugin to generate human-like drum per-
formances. In such a setting, certain aspects of the genera-
tions such as voice mappings, velocities, and micro-timings
are automatically handled and interpreted by the virtual
instrument. Consequently, the user may be predisposed to
use the trained generative model only in the context for
which it was developed.

Our aim is to challenge this conventional use and inspire
a more expansive and exploratory approach to symbolic
generative models. Rather than adhering strictly to the
originally intended application, we sought to develop a de-
ployment strategy in which the users were encouraged to
redefine the musical semantics associated with the gener-
ated patterns. By enabling users to define the application
of these musical attributes, they can expand the functional-
ity of the generative systems beyond their original intended
use cases. For example, in the case of the previously dis-
cussed drum generation system, the velocity of events in a
drum pattern could be repurposed to control other musi-
cal parameters or to influence entirely different aspects of
a composition. This new perspective invites users to en-
gage with these generative models in a broader, more cre-
ative context than what was originally envisioned. In our
pursuit of an expansive, exploratory approach to the ap-
plication of neural network (NN) based generative models,
we found the Eurorack modular synthesis platform to be a
particularly effective medium. In this format, every mod-
ule, connection, and interaction is determined by the user,
leading to uniquely curated and patched systems. In using
the Eurorack format, each aspect of the generated patterns
can be provided to the user as a sequence of discrete volt-
age gates and control voltages (CV) which the user routes
within their system. Subsequently, the user is encouraged
to redefine and re-purpose the musical semantics associated
with the generated patterns.

In this work, we specifically focused on adapting a pre-
viously developed generative system, originally designed to
provide symbolic real-time drum accompaniments [7] (see
Section 3), to the Eurorack format. Rather than merely
cloning the existing system into a hardware format, we
re-conceptualized its design to achieve the objectives men-
tioned above: (1) to foster a more exploratory and user-
driven approach in using the drum generation model, and
(2) to enable users to re-define and creatively re-purpose
the musical semantics of the generated patterns. The cul-
mination of this work is an open source hardware prototype
(see Figure 1), constructed according to our revised design
principles. This paper discusses our design and adaptation



process, highlighting the potential of this approach to har-
nessing deep generative models for musical expression.

Figure 1: The final developed module

2. RELATED WORK
Before discussing the relevant works, it is important to em-
phasize that our project did not aim to investigate or opti-
mize the embedding of deep learning models into microcon-
trollers, a topic thoroughly explored in several studies [9,
15, 13, 3, 14]. Instead, our objective was to develop a con-
ceptual prototype that allows for real-time interaction with
our generative model and to understand different hardware
deployment strategies. Therefore, in this section, we focus
on relevant works that explore interaction in the context of
deep generative or machine learning based music models.
As interactive deep generative systems become more preva-

lent in sound and music composition, we expect to see new
paradigms of control and interaction emerge. One of the
clearest examples of this is AI-terity, a deformable, non-rigid
musical interface that allows for complex and continuous
control over a Generative Adversarial Network (GAN) [18].
Bending and deforming the instrument allows the performer
to navigate the latent space of the network for real-time
audio generation while applying different levels of pressure
controls the parameters of a granular synthesizer engine.
An example of an interactive, generative model deployed

to an embedded system is the NSynth Super. This de-
vice features the NSynth generative model which uses a
WaveNet-style autoencoder to learn meaningful represen-
tations of instrument sounds from a dataset of 300k notes
from 1000 instruments [2]. It uses MIDI control to trig-
ger note events while also incorporating a 4-quadrant X/Y
touch pad that morphs the timbre of the generated sound
by interpolating the characteristics of four assigned instru-
ments. A similar concept is applied to Neurorack, a Eu-
rorack module that features a real-time generative audio
model deployed to a single NVIDIA Jetson Nano board [12].
This model generates impact sounds based on the distribu-
tion of seven adjustable descriptors.
The notion of abstracting away traditional methods of

composition and control in favor of newly defined perceptual
representations need not be confined solely to audio gener-
ations and tactile interfaces. A previous study by Gómez-
Maŕın et. al. explores symbolic generations and develops a
list of perceptual rhythm descriptors that are used to build
a meaningful, navigable rhythm space that interpolates be-
tween a collection of drum patterns. Patterns are organized
by similarity and modeled according to human ratings [5].

The Mutable Instruments Grids applies a similar rhythm
space concept but in the Eurorack format. This 3-channel
trigger generator features a 2-dimensional map, generated
through machine learning techniques, that encapsulates drum
patterns extracted from an extensive set of drum loops [11].

Latent Drummer, another symbolic rhythm generation
model designed for Eurorack, is a classic 16-step, 5-channel
drum sequencer that uses a Variational Autoencoder (VAE)
to generate drumming styles, and a set of Markov Models
to improvise within the generated style [19].

3. METHODOLOGY
This section will outline the evolution of the GrooveTrans-
former Eurorack module. At the core of our system is a
generative Variational Auto-Encoder (VAE) model that we
had previously utilized in our research [7]. Illustrated in
Figure 2, this model is adept at transforming single-voice
rhythmic patterns, containing timing and velocity informa-
tion, into multi-voice, humanized drum sequences.

Figure 2: Generative Model

We initially employed this architecture to develop a real-
time drum accompaniment system [7]. The system was de-
signed to generate drum patterns that emulated human per-
formance, conditioned by an input groove extracted from
real-time instrumental performances. This initial applica-
tion showcased the model’s ability to interact dynamically
with live inputs, a feature we aimed to preserve and enhance
as we adapted it to the Eurorack format.

3.1 Adaptation for Eurorack
Our previous real-time drum accompaniment system was
designed to respond dynamically to a live instrumental per-
formance. This live input from the performer conditioned
the model to generate a rhythmically compatible accompa-
nying pattern. This behaviour was designed to simulate a
traditional improvisational environment.

In contrast to a performance with traditional instruments
in which tight timing and coordination are key, the emphasis
of a Eurorack performance is typically more focused on ex-
ploring sonic and rhythmic possibilities achievable mainly
by applying various methods of automation, control, and
modulation. Modules are used to generate sequences, com-
plex waveforms, or control voltages that drive and interact
with other parts of the system. Commonly, Eurorack per-
formers use CV to automate or inject randomness into these
processes and allow for autonomous and complex behavior
to develop.



Although the real-time drum accompaniment model can
still be used in a Eurorack system, the inherent difference
in interaction modality and purpose between these two sys-
tems presented an opportunity to consider how to leverage
the generative system in a Eurorack environment. In con-
sidering the GrooveTransformer, we identified potential use
cases of the VAE model’s latent space that could expand the
system’s capabilities beyond its original application. Specif-
ically, we implemented a set of controls that allow the per-
former to navigate the latent space for the purpose of uncon-
ditioned pattern generation rather than solely allowing for
conditioned pattern generation as is the case with real-time
drum accompaniment.

3.1.1 Latent Space Interpolation Control
To facilitate the construction and navigation of the latent
space, the interface allows a performer to randomly generate
and store two separate drum patterns, each associated with
a latent vector, respectively represented by points ZA and
ZB in Figure 3. Once these points are selected, interpolation
between these two points leads to an intermediate pattern
(ZAB). As such, the interpolation parameter α shown in
Figure 3 allows the performer to manipulate the generated
pattern while maintaining a degree of rhythmic similarity
between two known patterns ZA and ZB .

Figure 3: Latent Space Bilinear Interpolation

Similarly, the encoder of the VAE model can be used to
encode an instrumental performance into a latent vector,
denoted as ZGroove in Figure 3. When this latent point
is present, a bi-linear interpolation between ZA, ZB and
ZGroove will allow for generating an intermediate pattern
that is correlated with these points. The amount of in-
terpolation between ZAB and ZGroove, represented by β,
determines how closely the system follows the input groove
(i.e. the instrumental performance). At maximum (β = 1),
the system acts fully as a drum accompaniment to the input
groove ignoring the preset states A and B. On the other
hand, at minimum (β = 0), the output of the system acts in-
dependently of the input groove and the output will directly
correspond to the value of α. Therefore, by controlling the
β parameter, the user can specify whether and how much
the generator should follow the instrumental performance.

3.2 Interaction and Control
The GrooveTransformer Eurorack module utilizes two dis-
tinct control signals, CV and MIDI, each of which influences
two primary aspects of the system. Firstly, they can be
used to condition the outputs of the generative VAE model;
secondly, they can facilitate interaction and communication
with external devices. To condition the model with an input
groove, as described in the prior discussion concerning the

drum accompaniment system, a user can send a sequence
of voltage gates (such as those produced by a Eurorack se-
quencer) to represent note events, as well as a separate CV
sequence to represent the velocity for each sequenced event.
This pairing of voltage gates and CV is utilized in a simi-
lar manner when routing the generated patterns to external
devices. In this case, each of the module’s output voices has
a separate gate and CV output corresponding to the gener-
ated sequence and associated velocities. While the user can
utilize these output signals however they see fit, a conven-
tional approach would be to use the gate output to trigger
an amplitude envelope and to use the CV output to control
some parameter that affects the loudness or sonic charac-
teristic of the sound. Alternatively, to allow compatibility
with non-Eurorack devices, input grooves and pattern out-
puts may also be transmitted or received via MIDI. Finally,
in typical Eurorack fashion, the GrooveTransformer mod-
ule also allows for the use of CV automation over certain
model parameters that are exposed to the user on the mod-
ule’s interface, particularly those that facilitate navigation
of the latent space.

3.3 Hardware Design
As previously mentioned, the aim of the current work was
not to explore model optimization, but rather to develop a
hardware prototype, that would allow us to implement our
previously discussed ideas in a real-world Eurorack envi-
ronment. Therefore, our primary objective was to create a
functional and reliable hardware interface that could seam-
lessly interact with the generative model. To this end, we
decided to use dedicated hardware for managing the inter-
face while running the model inference (generation) on a
separate Linux-based single-board computer (SBC).

Figure 4: Hardware Communication

To be more specific, the GrooveTransformer implements
a dual-board approach using both an Electrosmith Daisy
Seed [1] micro-controller and a Libre AML-S905X-CC [8]
single board computer. The Daisy Seed, making use of the
libDaisy and DaisySP C++ libraries, handles CV and MIDI
inputs on the module interface, manages MIDI and CV
playback of the patterns, and serves as the master clock.
The AML-S905X-CC is used to host the PyTorch model
and perform real-time inference. These two boards commu-
nicate via a two-way UART connection. Parameter control
values are transmitted from the interface (Daisy Seed) and
received by the model (AML-S905X-CC). As the model re-
ceives new input grooves and/or parameter control values, it
transmits newly generated patterns to the module interface.
This communication architecture is illustrated in Figure 4.

The benefit of the chosen design was twofold. Firstly,
given our limited experience in embedded systems, this setup



allowed for a clear delineation between the model-inference
process and the hardware interface. Utilizing a Linux-based
Libre board provided the flexibility to deploy our model
without the complexities of compiling or porting the source
code to a specific microcontroller. Simultaneously, the Elec-
trosmith Daisy platform, being specifically designed for au-
dio and music applications, offered numerous utilities for
managing hardware electronics and handling essential com-
munication protocols such as MIDI, UART, and I2C. This
separation of tasks would enable us to focus on each aspect
of the system with the appropriate tools and environments,
streamlining development and troubleshooting.
Secondly, each Daisy board uses the STM32 micro-cont-

roller [16]. STMElectronics provides the STM32Cube.AI
[17] toolbox to convert simple neural networks into opti-
mized code to run on certain STM32 micro-controllers. As
such, while not the focus of our initial development, in the
future we would be able to explore the development of light-
weight simple networks that would be directly deployable on
the Daisy Seed board without requiring a Linux-based SBC.

4. DISCUSSION AND FUTURE WORK
TheGrooveTransformer module is our first attempt at hard-
ware based deployment of generative models. While we have
successfully developed a functioning prototype, it is perti-
nent to acknowledge that certain decisions made along the
way notably influenced the trajectory and outcome of our
project. In this section, we introspect on these decisions
in an effort to guide our future work and to inform similar
endeavors that may be undertaken by novice researchers.
One of the primary challenges we faced was the complex-

ity involved in debugging a system built on a two-board
setup. This architecture, while offering advantages in terms
of performance and specialization, significantly complicates
the debugging process. The inter-board communication
adds an extra layer of complexity, making it difficult to
isolate and resolve issues efficiently. A top priority of any
future hardware prototypes would be to deploy the system
to a powerful single board computer such as the NVIDIA
Jetson Nano [12].
Additionally, we realized that it would be beneficial to

design an interface that places a greater emphasis on adapt-
ability. The current interface is not flexible enough to ac-
commodate significant feature changes that may be imple-
mented in future iterations of the model. In the next ver-
sion of our prototype, we would opt for a more adaptable
design, possibly incorporating a touchscreen in conjunction
with physical controls. An adaptable framework such as this
could facilitate future updates to the model and increase the
longevity of the hardware prototype.
Finally, we intend to continue expanding our capabilities

for user testing. Initially, we were limited to a single hard-
ware prototype. This meant that end-user testing could
only be conducted onsite and our ability to gather a diverse
range of user feedback was limited. However, to mitigate
this and to facilitate faster prototyping of ideas, we devel-
oped a VST plugin version of the module. Albeit in a differ-
ent environment than the intended hardware deployment,
this software version can be used within virtual Eurorack
environments or paired with MIDI/CV converters to inter-
act with hardware Eurorack modules. Now, we are working
closely with a local musician to test and evaluate our sys-
tem in a series of live performances. We anticipate that the
feedback and insights gained from these performances will
play a key role in shaping the future iterations of our model.

Figure 5: Software implementation of the GrooveTrans-
former module. Developed using the NeuralMidiFx VST
Wrapper [6]

5. CONCLUSION
In this paper, we discussed how we adapted an existing
generative system to the Eurorack format in a way that is
conducive to real-time live performance. We showed that by
employing bi-linear interpolation between two pre-selected
drum patterns and a pattern associated with a performed
groove, users can perform with the generative system in
ways ranging from manual manipulation of generation con-
trol parameters all the way to generating patterns by pro-
viding the system a real-time instrumental performance.

We plan to develop an improved version of this module
using a more generalizable interface that would accommo-
date future versions of the generative engines as well. Also,
for the upcoming prototypes, we aim to use a single board
setup to improve the integration and compactness of the
module. Lastly, the existing module and the future itera-
tions will be tested in performance settings throughout a
series of upcoming improvisational live shows.

In order to share our current progress and any future iter-
ations, we have developed a software version of the Groove-
Transformer module. Source code, documentation and de-
mos of both the hardware Eurorack module and the plugin
implementation are available in the following website:

https://groovetransformer.github.io/
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Real-Time Drum Accompaniment Using Transformer
Architecture. In Proceedings of the 3rd Conference on
AI Music Creativity. AIMC, Sept. 2022.

[8] Libre Computer. Aml-s905x-cc.
https://libre.computer/products/aml-s905x-cc/. Accessed:
2024-01-26.

[9] A. McPherson. Bela: An embedded platform for
low-latency feedback control of sound. The Journal of
the Acoustical Society of America, 141(5):3618–3618,
2017.

[10] F. Morreale, N. Gold, C. Chevalier, and R. Masu.
NIME Principles & Code of Practice on Ethical
Research, Jan. 2023.

[11] Mutable Instruments. Grids eurorack module.
https://mutable-instruments.net/modules/grids/, 2014.
Accessed: 2024-01-26.

[12] NVIDIA. Nvidia jetson. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/. Accessed:
2024-01-26.

[13] T. Pelinski, R. Diaz, A. L. B. Temprano, and
A. McPherson. Pipeline for recording datasets and
running neural networks on the bela embedded
hardware platform. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, Mexico City, Mexico, May 2023.

[14] T.-V. H. Rong-Guey Chang. Constructing an ai
compiler for arm cortex-m devices. Computer Systems
Science and Engineering, 46(1):999–1019, 2023.

[15] A.-M. Solomes and D. Stowell. Efficient bird sound
detection on the bela embedded system. In ICASSP
2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 746–750, 2020.

[16] STMicroelectronics. Stm32 32-bit arm cortex mcus.
https://www.st.com/en/microcontrollers-microprocessors/

stm32-32-bit-arm-cortex-mcus.html. Accessed: 2024-01-26.

[17] STMicroelectronics. Stm32cube.ai.
https://stm32ai.st.com/stm32-cube-ai/. Accessed:
2024-01-26.
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