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ABSTRACT

In this paper, we endeavor to examine specific phenomena
- knots - which are subjects of study in various scientific
disciplines, including a particular field within mathematics.
Our main goal is to explore the possibilities that knots open
for computer music, particularly for NIME researchers. We
aim to achieve this goal by analyzing four aspects of knots:
topology, geometry, physics, and semantics. Subsequently,
we apply these aspects to areas of computer music with ex-
amples, some of which are accompanied by proof-of-concept
models, while others remain purely conceptual, awaiting
further practical research. Although most cases draw in-
spiration from mathematical Knot Theory, not all strictly
adhere to its conditions.
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CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts;

1. INTRODUCTION
Knots, visually complex and intriguing [38], embody con-
figurability and captivate curiosity [11, 38]. Their shapes,
derived from bodily movements, act as operational trajec-
tories, motivating precise actions.
Physically created knots, like the Slip Knot and Bowline

Knot, share a source and may look alike, but differ funda-
mentally in functionality. Knots are configurable machines.
Becoming more recognized [35], they are subjects of in-

terdisciplinary studies. They find applications in physics,
mechanics, cultural studies, biology, etc. [1, 19]. Collabo-
rations across zoology, computer science, material research,
and robotics explore the unique capabilities of knotted liv-
ing organisms [10, 29].
Mathematical studies of knots impact modern disciplines

[1, 35], inspiring the abstract field of Knot Theory (within
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Topology). The intersection of Computer Music and knots
exists, but still is a new area [12, 13, 14, 31, 5], presenting
an intriguing avenue for exploration.

The scope of this paper precludes a comprehensive overview
of Knot Theory; however, recommended sources are avail-
able [1, 35, 23, 33]. Nevertheless, we provide a brief outline
of the concepts, which are essential for our exploration.

1.1 Mathematical Knots
Knot Theory centers on the abstract notion of a mathe-
matical knot, represented as a simple closed curve in three-
dimensional space [23]. The most basic is the ”trivial knot”
or ”unknot,” seen as a circle in 3D space. All mathematical
knots are tied (tangled) on a looped curve. In most simple
words Knot Theory claims that those knots, which can not
be untangled to the state of visible circle - might be signifi-
cantly different between each other. Knot Theory provides
tools to distinct and classify those different knots.

1.2 Topological vs Geometric Knots
Knot Theory distinguishes between topological and geomet-
ric knots. Topological knots consider equivalence under
continuous deformations, while geometric knots account for
spatial embeddings and geometric features [1, 35].

1.3 Crossings
Knots can be identified by the number of crossings, where
the curve self-intersects. Knot tabulations are based on this
characteristic. While a mathematical knot can have any
number of crossings, reducing it to its simplest form yields
a specific crossing number. Knots with the same number of
crossings may differ, but the variety is likely finite.

1.4 Knot Projections in 2D
Many knot problems utilize 2D projections on a plane, rep-
resented as diagrams or shadows. Diagrams code crossing
information, while shadows lack such details [18, 27].

Figure 1: Shadow (left) and a Diagram (right) (from [33])

Sometimes terms “projection” and “shadow” are mixed.



1.5 Knot Equivalence Problem
The equivalence problem, determining how to differentiate
between different knots, relies on twp main tools: Reide-
meister Moves and Knot Invariants. Reidemeister Moves
involve three basic operations on knot diagrams. Every
tangled knot can be transformed to it’s most basic form by
sequential use of the moves (Figure 2). Which downgrades
the number of crossings to minimum.

Figure 2: Reidemeister Moves (from [33])

Knot Invariants are unchanged properties used for dis-
tinction. The list of knot invariants is very long and it
keeps growing. Some of them are based on topological and
geometric characteristics (e.g. tricolorability, p-colorability,
etc.). Others are coded in expression like polynomials (e.g.
Alexander Polynomial, Jones Polynomial, HOMFLY Poly-
nomial, etc.). “Minimal number of crossings” - is actually
one of the invariants [33].

1.6 Types of Knots
Knot Theory classifies knots into various types. For exam-
ple, Prime Knots are fundamental basis for all other knots,
and Torus Knots are those that can be embedded on the
surface of a torus [35, 1, 4]. Torus Knots are identified with
two coprime integers (p, q). An example of a simple non-
trivial torus knot is the (2,3)-torus knot, commonly known
as the trefoil (Figure 3).

Figure 3: Diagram of a trefoil knot (from [33])

1.7 Braids
Knot Theory extends beyond knots to include Braids, which
are arrangements of parallel strands. Braid Theory, related
to Knot Theory, explores connections between knots and
braids [33, 1].
A closure of specific braids can be used to represent any

knot (Figure 4).

1.8 Computing a Knot
352,152,252 distinct non-trivial prime knots have been tabu-
lated by year 2020 [4]. Knots can be computed using Fourier
parametrization or specific parametric equations, such as
those for Torus Knots [36, 2]. Below is the formal inscrip-
tion for a trefoil knot:

Trefoil (a simple Torus knot) : 31knot(3, 2)

Figure 4: A braid (left) closes into a knot (right) (from [1])

where ”3” is the minimum number of crossings, lower-case
”1” is the order index of the knot with 3 crossings in the
standard knot tabulation (which is beyond our scope) and
”(3, 2)” are the ”(p, q)” integers.

A set of parametric equations for Torus knots:

x = r cos(pt)

y = r sin(pt) (1)

z = − sin(qt)

where

[r = cos(qt) + 2] and [0 < t < 2π]

After assigning ”(p, q)”values, we can see these equations
plotted in 3D in a form of a trefoil knot:

Figure 5: Realisation of a trefoil (in MatLab)

2. ON POSSIBLE APPLICATIONS

2.1 What do Knots provide to us?
The limited introduction to the Knot Theory given above
can be summarized into practical outcomes, according to
two domains: geometry and topology. We add to them an-
other two, which are not investigated in the Knot Theory,
but useful for our purpose: physics and semantics. We re-
sult in four aspects:

Geometrically: Knots provide to us a possibility to com-
pute various types of tangled trajectories in 3D (or 2D)
spaces. They may look chaotic, but in fact would be strictly
determined. Some of them (like Torus Knots) would have
symmetry and regularity.

Topologically: Knots provide to us a tool to track some
core unchangeable characteristics under continuous and po-
tentially infinite deformations. This would be true to any-
thing, which could be coded as a deformation of a looped
curve in 3D (or 2D in case of projections).



Physically: Knots form potentially infinite number of dif-
ferent 3D structures, which can be created from a basic
source, equal in its features to a single filament. These
structures could be arranged to differ (or be similar) in phys-
ical qualities (e.g. volume, mass, texture). And in case the
source filament is looped - topological and geometric knot
tools can be applied onto these structures.
Semantically: Knots can be used to code information.

And sometimes for some reasons it is a preferred way.
Physical knots were famously used in South American

cultures as a mnemonic system, called Khipu (or Quipu)
[24, 5, 3]. Research shows, that the information was coded
not only via the positioning of knots on a larger strand
(geometry), but also with the types of knots used (topology)
(Figure 6) [3].

Figure 6: Three types of knots in Khipu. From right to
left: Long knot with 4 turns, Single knot (equal to a trefoil),
Figure-eight knot (from [3])

At the same time, weaving could be thought of as a type of
coding. The Jacquard machine, which was used to automate
weaving patterns with looms, patented in 1804, used punch
cards, and is recognized as one of precursors to modern
computers [36]. Basically it was translating a code from
cards into a sequences of braids. Quite obvious, that those
braids could be read and translated back into cards. On
the higher level of coding with knots and/or braids we can
find descriptive and objective ornamental structures. For
example lace in a shape of a flower or someone’s face or a
word.

Figure 7: Core Rope Memory simplified diagram (from [17])

An interesting technique of weaving mnemonics for elec-
tronic hardware is a Core Rope Memory, implemented by
NASA in Apollo Guidance Computer [17]. Although strictly
speaking, we can not be sure, that the quality of crossings
(over or under) had any significance in this device, it’s sim-
plified diagram is a braid projection (Figure 7).

2.2 Fields of Computer Music
Just for the convenience of this paper we arbitrarily di-
vide Computer Music into these fields: Music Generation
Systems (MGS), Spatiality (S), Digital Signal Processing
(DSP), New Interfaces for Musical Expression (NIMEs).

2.3 Music Generation Systems
Numerous Music Generation Systems (MGS) exist [6, 41].
Given the time-based sequential nature of music, many MGS
can be effectively represented as graphs, even accommodat-
ing polyphonic multichannel music [7].

For example Markov Chain algorithm - is a directed graph
where vertices correspond to states and directed edges rep-
resent state transitions [8].

Knot projections - are planar graphs, where crossings be-
come vertices and arcs represent strands.

Derived from knot diagrams, specific graph types, like
medial graphs, add vertices at arc midpoints, with edges
indicating strand crossings, preserving both topology and
spatial relationships [28].

There are many connections between Graph Theory and
Knot Theory [21, 15, 28].

We can see, that by using graphs in MGS, we sometimes
use knot projections. What can be a knot-specific applica-
tion?

2.3.1 Geometrically:
When considering applications of geometrical properties, we
mostly will talk about knotted trajectories within paramet-
ric spaces. In the context of MGS, this translates to a com-
positional parametric space, with each dimension represent-
ing a gradient of musical change.

A knot shadow, depicting a tangled move in 2D space,
can serve as a graphic score.

Extending to a knot diagram introduces an additional
condition - information about crossings (two states) for other
parameters.

A 3D knot manifests movements in three composition di-
mensions.

Notably, each 3D knot, in various spatial orientations, can
produce multiple simultaneous projections, all looped. For
instance, a 3D trefoil realization within a cube generates six
shadows, one on each side, potentially serving as trajectories
for distinct musical changes. Rotation of the knot induces
a synchronized alteration across all six scores (Figure 8).

Figure 8: Three momentary shadows of a trefoil inside a half
of a cube (from [9])

2.3.2 Topologically:
Achieving composition transitions between complex states
while maintaining recognizable qualities can be accomplished
through sequences of Reidemeister Moves. Graph-based al-
gorithms, particularly those operating on intrinsically knot-
ted graphs, offer identifiable knotted paths aligning with
Knot Theory tools [15].

The multitude of invariants among the 350 million tab-
ulated knots allows for diverse recordings of intrinsic knots



within graphs, potentially enhancing memory organization
in knot-related MGS through simple algebraic expressions
[4].

2.3.3 Physically:
Imagine a rubber band with various knots: a large ”monkey
fist,” a composite knot, lightweight ”overhand” knots. Each
knot becomes a distinct ”rubber ball” connected elastically
to the next. When dropped onto a resonating surface, this
system creates partly-random sound sequences.
Untying the knots and forming three large ”monkey fist”

knots of equal volume from the same rubber band (Figure 9)
yields a new system with differing core temporal and tim-
bral characteristics, despite still generating partly-random
sequences when dropped onto the same membrane.

Figure 9: Two physical systems made from one filament

2.4 Spatiality
Space manipulation is crucial for computer music practi-
tioners, with multi-layered spatial composition ranking as
the third criterion in Karlheinz Stockhausen’s Four Cri-
teria of Electronic Music [37]. Various computation tech-
nologies, such as Ambisonics, Vector Base Amplitude Pan-
ning (VBAP), Dolby Atmos, and Wave Field Synthesis, aim
to allow composers or performers to place virtual sound
sources anywhere in space around the listener. Can knots
be useful here?

2.4.1 Geometrically:
Knot computations involve calculating a curved trajectory
in 3D, offering possibilities for moving virtual sound sources
with tangled dynamics or static positioning along knotted
lines. Projections can be useful when spatial systems use a
single-level array of speakers, lacking Z-axis information.
Immersive capabilities of speaker-based systems often hinge

on the number of speaker arrays, making them costly. Bin-
aural modeling, delivered via headphones or ultra-directional
close-range speakers, may prove more effective in convinc-
ingly moving virtual sound objects, especially in challenging
scenarios like a room with two people.
Imagine a spatial composition in VR. A single virtual

sound source moves around each listener within a shared
VR space, following knotted trajectories. If listeners are
dynamic, the sound source adapts, continuously recalculat-
ing knotted paths to accommodate their changing positions,
including entries and exits. (Figure 10).
A proof-of-concept for this example was realised in Unity3D

engine by scripting a parametric trefoil trajectory to a 3D
object, while using a first person game controller and stereo
audio render (Figure 11). We can see, that in VR it becomes
possible for the user to walk into the knotted structure and
listen to the virtual sound source (blue cube), constantly
moving in a knotted path.

Figure 10: Knotted path (black) around listeners (blue) in
dynamic change (red)

Figure 11: Trefoil trajectory in VR space. Using a first-
person controller, we can walk inside the virtual space. Thus
we walk to the sound object (cube), while it moves in a trefoil
path first in front of us, and later - around our head.



2.5 Digital Signal Processing
A number of research exists in the intersection between sig-
nal processing and topology. Some of it explores representa-
tions of harmonic patterns in sound and visuals [31]. Other
shows a rigorous work in mappings between synthesis and
topological structures [14, 13, 12]. And some even model
hardware (not necessarily digital) [32]. Still this area is
largely new and waits deeper study, and knots in particular
have not always been in a focus of attention.
As mentioned earlier - a mathematical knot is a tangled

(sometimes to a level of knotting) circle in 3D. In DSP,
circle usually represents a sinusoidal signal. Essl [14, 12]
showed the possibility of synthesis by deforming oscilla-
tory signals, topologically mapped on circles. Hence we can
imagine knots as representation (or generation) of specific
wave shapes from circles deformed into knots.
Another direct connection between knots and synthesis is

a type of knots called Lissajous knots, which give Lissajous
curves as their projections on any of three coordinate planes.
It is proven, that all (3, q)-torus knots have Lissajous pro-
jections as well [22, 20]. Both Lissajous and Torus knots
are defined by 3 sinusoidal parametric equations and can
be translated as 3 sound oscillators.

2.5.1 Geometrically:
Here we would like to show an example of proof of concept
for the Torus knot synthesizer (Figure 12 to Figure 15). It
maps “p” and “q” variables as angular frequencies (usually
“w”) for 3 oscillators, identified earlier (see equations (1)).
We took (q, p) values for the first five Torus knots from
Adams, Hildebrand and Weeks [2]:

31knot(3, 2), 51knot(5, 2), 71knot(7, 2),

819knot(4, 3), 91knot(9, 2).

The three oscillators are interpreted as sounding mixed
(added) together. According to the equations (1), oscilla-
tors “x”and“y”use amplitude modulation (“r”), and oscilla-
tor “z” is inverted to represent negative amplitude (usually
“A”). The instrument is realised as a Pure Data patch [30]
and GEM (Graphic Environment for Multimedia, written
by Mark Danks and now maintained by Johannes Zmölnig)
is used for 3D visualisation.

Figure 12: The start of a Torus forming seen in real-time
along with frequencies of the oscillators raising: q=3 p=0
(left) ; q=0 p=2 (center) ; q=3 p=0.12 (right)

2.5.2 Topologically:
Several existing synthesis techniques were shown to be mapped
on topological structures in [13, 12, 14]. This was done
through the use of mathematical tool called “sheaves”, un-
derstanding of which probably requires a deeper training

Figure 13: Two angles of view on a stable

31knot(3, 2) “trefoil”

with corresponding waveform and spectrum

Figure 14: 51knot(5, 2)

Figure 15: 819knot(4, 3)



in topology. One particular case (example 3 from [13]) de-
scribes a Frequency Modulation as a Torus knot projection
on a plane.

2.5.3 Physically:
One interesting possibility lays in the use of knotted shapes
in physical modelling.
Examples here could be:
1) a knotted pipe with valves in place of crossings
2) a dynamically knotted string, which could change it’s

thickness to become a knotted tubular bell
3) a model of the structure, which can alternate masses,

proposed earlier as MGS (Figure 9)

2.6 NIMEs
We may say, that every example mentioned so far has an
implicit interface possibility in itself. Especially as the start-
ing point for our exploration - knot - is a tangible phenom-
ena, which was first abstracted into images, and later to
symbols. Nevertheless, some ideas could be instigated by
thinking of performative or interactive interface as a start-
ing point. Those perhaps would fit better into the current
category.

2.6.1 Geometrically:
Some work in haptic exploration of mathematical knots
(represented geometrically), is shown in [39, 40]. In par-
ticular in [40] we find a prototype for the display-based
interface, where knots could be loaded and manipulated.
And if previously such interfaces would imply modelling of
physical properties of rope, here we see authors using tools
from Knot Theory. Like the interaction, which is limited to
the set of Reidemeister moves “resulting in a more fluid yet
mathematically correct user experience with knots”.
Another publication is more focused on haptic feedback

during the exploration of virtual knots with touchscreen
[39]. Researchers try to enrich user experience in haptic
tracing of mathematical knot, which is represented on a flat
screen (thus being a diagram), to the extent of ”feeling” the
3D structure. Interestingly enough, sound tags are used
here to distinguish “each over and under crossing”.
These types of experimental interactive interfaces, could

be mapped on various parameters of sound.

2.6.2 Topologically:
Examples of application of Knot Theory to the study of
musical gestures is given in [25, 26]. The authors describe
mathematical theory of musical gestures and generalize it
to include knots and braids. This can be considered as a
purely topological application, because knot theory features
are used here for the tasks of recognition and classification
- the initial purpose of the theory.
In case of interfaces, the natural field for such tasks -

is browsing and menus. And this is a nice transition to
semantic domain.

2.6.3 Semantically:
Multiple experimental research in psychology shows the su-
periority of pictograms in memorization and recognition [34,
16, 33]. As in computer music a practitioner has to con-
stantly deal with very abstract sounds, challenge may be
to find picture representations for collections of them. We
can imagine a menu, where abstract sounds, or synthesizer
patches could be assigned with knot diagrams.

In this case a topological equivalence can be useful, as we
know, that every knot can be represented by infinite number
of diagrams and even larger number of shadows.

For example, a 3-oscillator basic patch is represented by
a trefoil diagram in it’s simplest symmetrical form. Then
every next alternation of this basic patch can be represented
by every next diagram of a trefoil. At the same time, a basic
patch of 4 oscillators would be assigned with a simplest
symmetrical figure-eight knot diagram, and etc (Figure 16).

Figure 16: Possible synthesizer menu: basic trefoil (a synth
patch) and 8 first shadows of it (subpatches)

2.6.4 Physically:
Finally, it might be useful to think of possibilities of using
knots as physical controllers.

An artistic work has been done in this regards by Ca-
david [5]. By implementing discussed earlier Khipu into a
NIME, author not only used semantic and physical features
of knots, but also put the whole project into a cultural and
historical context, at the same time keeping it aesthetically
beautiful and sonically engaging. Although knots were used
here as electronic sensors, the project itself was bigger, than
that. That is why, it actually does not explore the mechan-
ical possibilities of knots as devices.

In the start we’ve mentioned that knots can be thought
of as configurable machines. We can try to conceptualize
a tangible haptic controller in a form of a rope or a cable,
which would be able to change the functionality of software
according to the different shapes of knots formed with it.

We can take Knot Theory tool - invariant - to track the
shape of the knots. An invariant “number of crossings” can
work in this case.

The user instruction for such controller can be:
1) tie a knot of your choice
2) press every crossing one by one for calibration
3) use loops of the knot as buttons or faders
Such controller can utilize mechanical advantages of ropes

and knots. For example it can be wrapped around per-
former’s body, or change shape and function depending on
the number of players (Figure 17).

The crucial part of such device would be a design of a flex-
ible sensor, which could register crossings and assign differ-
ent parts of the tangled filament with different parameters.

That is why for the proof of concept of it we decided to
prototype such sensor. It uses Velostat material, conduc-
tive foil, resistive rubber border in between the two and a
protective cover (Figure 18). We show, that such sensor is



Figure 17: Three hypothetical different controllers from one
rope-like source, thanks to topological invariant. Every other
shape can trigger different mode, according to the number
of crossings.

capable of registering a push in a form of two different resis-
tance measurements from both ends (Figures 19, 20). This
divides the filament in two parts. Obviously, a crossing of
the rope (not a circle) requires a division in three. With the
further engineering this might be improved.

Figure 18: Inside the sensor: velostat, foil, rubber

Figure 19: Test of push reading on a table. The two Ohmme-
ters show relative readings of a push on a horizontal surface.
This can allow to divide the stripe in two parts in subsequent
computation. Each part then can be assigned to control var-
ious parameters.

3. CONCLUSION
In this work we have explored briefly phenomena of knots.
We took a mathematical Knot Theory for the start and
derived two main domains of knots: geometrical and topo-
logical. After adding another two domains - physical and
semantic - we have outlined several examples of applica-
tions of knots in four areas of computer music. We showed
conceptual examples for Music Generation systems in geo-
metrical, topological and physical domains. We developed
proof of concept prototype for Spatial sound application in
VR space, using geometrical calculation of a Trefoil Knot.

Figure 20: Test of crossing reading. We can see, that the
crossing is registered as the same kind of simultaneous rel-
ative reading of two resistances as in the previous picture.
The future computation should invoke logic to make it possi-
ble to divide the stripe in three parts from this interaction.

We made a Torus Knot Synthesizer as an example of a sim-
ple DSP application of the same geometrical features but
now computing several different torus knots. Finally we
illustrated the possible use of topological domain in menu
design and tested a setup of a real physical controller, which
could be turned into a knot-registering sensor.

In some cases (like physical domain for Spatiality) - we
could not think of a good enough examples. In others (like
a Topological domain for Spatiality) - it would be repeti-
tion, because a Geometrical examples already involve use
of topological tools. And in case of Semantic domain for
any field, other than NIMEs - the examples would be too
obvious (a knot-based coding language for controlling MGS,
or spatial distribution or synthesis). Perhaps more interest-
ing and useful applications could be realised, and this we
leave for future studies.

It is important to state that this work is a short outline of
some of the possibilities and does not aspire to be exhaus-
tive. The main purpose of this paper is to instigate interest
in knotted structures, facilitate their exploration in music
technologies and perhaps contribute to a dialog about it.
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