
MaxPy: An open-source Python package for programmatic
construction and manipulation of MaxMSP patches

Ranger Liu
Parsons School of Design

66 5th Avenue
New York, NY 10011

rangerliu@newschool.edu

Satchel Peterson
Columbia University

70 Morningside Drive
New York, NY 10027

sp3914@columbia.edu

Richard Lee
Columbia University

2960 Broadway
New York, NY 10027

rtl2118@columbia.edu

Mark Santolucito
Barnard College
3009 Broadway

New York, NY 10027
msantolu@barnard.edu

ABSTRACT

MaxMSP is a visual programming language for creating in-
teractive audiovisual media that has found great success as
a flexible and accessible option for computer music. How-
ever, the visual interface requires manual object placement
and connection, which can be inefficient. Automated patch
editing is possible either by visual programming with the
[thispatcher] object or text-based programming with the [js]
object. However, these objects cannot automatically create
and save new patches, and they operate at run-time only,
requiring live input to trigger patch construction. There
is no solution for automated creation of multiple patches at
compile-time, such that the constructed patches do not con-
tain their own constructors. To this end, we present MaxPy,
an open-source Python package for programmatic construc-
tion and manipulation of MaxMSP patches. MaxPy re-
places the manual actions of placing objects, connecting
patchcords, and saving patch files with text-based Python
functions, thus enabling dynamic, procedural, high-volume
patch generation at compile-time. MaxPy also includes
the ability to import existing patches, allowing users to
move freely between text-based Python programming and
visual programming with the Max GUI. MaxPy enables
composers, programmers, and creators to explore expanded
possibilities for complex, dynamic, and algorithmic patch
construction through text-based Python programming of
MaxMSP.

Author Keywords

MaxMSP, visual languages, automation, generation, metapro-
gramming

CCS Concepts

•Applied computing → Sound and music computing;

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

1. INTRODUCTION
Programming languages have long held foundational impor-
tance in sound synthesis and audio processing, driving the
frontier of computer music. Both text-based languages like
CSound [2] and SuperCollider [7] as well as visual program-
ming languages like PureData [8] and MaxMSP [1] have
given computer musicians many options for writing code. In
particular, visual languages have allowed non-programmers
to create complex computational artifacts with relative ease
due to their accessible and intuitive interfaces.

However, the main drawback of visual languages is the
amount of manual interaction required to create a program.
In MaxMSP, objects and patchcords must be manually placed
and connected, which becomes inefficient for large or com-
plex patches. These manual actions can be automated with
the [thispatcher] object, which takes message inputs to cre-
ate, destroy, connect, or disconnect objects within the cur-
rent patch. The [js] object also provides text-based pro-
gramming control over [thispatcher] functionality.

These automations can be considered a limited form of
metaprogramming, which refers to languages that enable
the programmatic manipulation of other programs. In this
case, Javascript is used to manipulate MaxMSP code, or
MaxMSP code itself is used to manipulate MaxMSP code.
However, neither [js] nor [thispatcher] can be used to cre-
ate or save new patches, and neither allows for compile-time
behavior that would enable patch construction to occur out-
side of MaxMSP.

In this paper, we introduce MaxPy, an open-source tool
for true metaprogramming of MaxMSP using Python, en-
abling compile-time creation, editing, and saving of Max
patches. Metaprogramming has found enormous success in
traditional programming contexts, including C++11’s con-
stexpr [5], Template Haskell [9], and Scala macros [3]. Fol-
lowing the success of metaprogramming in other domains [6],
we believe that MaxPy will empower new modes of interac-
tion with visual programming languages for human-centered
audio programming and computer-aided composition.

2. MOTIVATING EXAMPLE
We first consider a motivating example of generating patches
from chess data. Given the Forsyth-Edwards Notation (FEN)
for a particular board configuration, we want to 1) place an
abstraction for each piece in play, 2) input their color and
position coordinates as messages, and 3) connect their out-
puts to an [~ezdac] (Fig. 1).

8 rZ0Z0ZkZ
7 Z0Z0Z0Z0
6 pZ0Z0Z0Z
5 Z0ZQZ0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 BZ0Z0Z0Z
1 Z0Z0Z0ZK

a b c d e f g h

FEN: r5k1/8/p7/3Q4/8/8/B7/7K

Figure 1: Example of chess-to-maxpatch generation.

Figure 2: Single-patch generation from chess data using [js].
This patch must be manually saved after each iteration.

Manually creating the patch shown in Fig. 1 is not dif-
ficult. However, generating new patches based on different
configurations becomes challenging, as MaxMSP lacks auto-
mated control over creating and saving patch files. Parsing
FEN strings, placing objects, and connecting patchcords
can all be automated with [thispatcher] or [js], but saving
each generated patch as a separate file requires manual in-
put (Fig. 2). This tedious process scales poorly at high vol-
umes: imagine generating a different patch for every state
of every game in the Games of the Day Archive [4] from the
past year. Without metaprogramming, such a task would be
insurmountable. MaxPy thus offers an efficient solution for
automated patch generation, especially at high volumes1.

3. MAXPY USAGE
This section gives a basic, non-comprehensive overview of
MaxPy usage. Most recent code and documentation can be
found at https://github.com/Barnard-PL-Labs/MaxPy.

3.1 Creating An Empty Patch
To use MaxPy, we first import the library and instantiate
a MaxPatch.

1 import maxpy as mp
2

3 patch = mp.MaxPatch ()

When given no arguments, the default MaxPatch construc-
tor creates an empty patch.

3.2 Creating and Placing Objects
We can use MaxPatch.place() to create and place multiple
objects at once:

1 counter , button = patch.place(["counter",
"button"])

Alternatively, we can first create a “floating” MaxObject

and then place it in the MaxPatch:

1 counter_obj = mp.MaxObject("counter")
2 button_obj = mp.MaxObject("button")
3 patch.place([counter_obj , button_obj])

MaxPy currently supports all max/msp/jit objects from a
vanilla MaxMSP installation. External MaxMSP package
support is discussed in Sec. 5.

3.3 Object Arguments and Attributes
Arguments and attributes are specified in the object cre-
ation string:

1 patch.place(["counter 4 @carryflag 1"])
2

3 #or...
4 counter_obj = mp.MaxObject("counter 4

@carryflag 1")
5 patch.place([counter_obj])

Common box attributes are specified during object cre-
ation:

1 counter_obj = mp.MaxObject("counter",
ignoreclick =1)

1Code for the [js] and MaxPy implementations can be
found at https://github.com/Barnard-PL-Labs/MaxPy/
tree/main/examples/chess-paper-example.

3.4 Connecting Patchcords
Each MaxObject contains MaxObject.ins, a list of Inlets,
and MaxObject.outs, a list of Outlets, both numbered left-
to-right starting from 0. We connect patchcords by speci-
fying (Outlet, Inlet) pairs:

1 outlet = button_obj.outs [0]
2 inlet = counter_obj.ins[0]
3 patch.connect((outlet , inlet))

3.5 Saving Patches
Patches can be saved to the .maxpat format by specifying
a file name:

1 patch.save("my.maxpat")

3.6 Loading Existing Files
Instead of instantiating an empty patch, MaxPy can also
load in an existing .maxpat file:

1 patch = mp.MaxPatch(load_file="my.maxpat")
2

This loaded patch can be manipulated like any MaxPy-
generated patch, allowing users to easily switch between
the Max GUI and MaxPy.

3.7 Abstractions and .js Files
MaxPy will locate and link abstraction files and .js files as
long as they are saved in the current directory.

1 abstraction = mp.MaxObject("my-abs")
2 linked_js = mp.MaxObject("js script.js")

4. CASE STUDIES

4.1 Quantum Audiovisualizer
This data sonification project shows MaxPy’s ability to dy-
namically generate patches based on data processed with
external Python libraries2.
Given a number of quantum circuit components, MaxPy

creates one oscillator per component (Fig. 3). These os-
cillators are symmetrically detuned and panned, with ex-
act amounts depending on the total number of components
(Fig. 4). MaxPy saves these custom oscillator blocks as in-
dividual patch files and places them inside the main synth
patch as abstractions.
The quantum circuit is then simulated and the results are

used to generate a sequence of notes for five synth voices.
MaxPy is used to create and place a sequencer for each
synth voice (Fig. 5). Python then uses OSC messages to
trigger each sequencer.
In creating the synth and sequencers, MaxPy leverages

Python’s data-processing capabilities to calculate detune
and pan amounts, convert quantum data into a sequence
of notes, and parse the sequence into separate voice tracks.
The entire project hinges on MaxPy’s ability to easily inte-
grate with Python’s quiskit package, which enables quan-
tum data to be used directly. As exemplified in this project,
MaxPy’s access to Pythonic data processing creates enor-
mous potential for data-driven sonification and visualiza-
tion.

2Code for this project can be found at https:
//github.com/ryurongliu/quantum-audiovisualizer/
blob/main/quantfinal.py.

Figure 3: MaxPy-generated additive synth with a variable
number of added oscillators.

Figure 4: A comparison of two MaxPy-generated oscillators
for the additive synth. The highlighted [expr] objects are
uniquely calculated for each oscillator.

Figure 5: A MaxPy-generated sequencer with hardcoded fre-
quency and duration amounts.

4.2 you are god
This experiential music game uses MaxPy as a bridge be-
tween Processing and MaxMSP to automatically edit an
open patch, based on user input to Processing.

Figure 6: Screencap from you are god.

In the game, the user places a series of circles and connects
them with lines. Small dots then bounce back and forth
along these lines, triggering each circle’s unique sound on
impact (Fig. 6).
The patch generation for this game is fairly simple: create

one synth voice for each dot, and connect them to trigger
inputs and a signal output3.
Python is used as a bridge between Processing and MaxMSP

(Fig. 7). Processing first uses OSC to communicate the
number of dots to Python. Python then uses MaxPy to
create that number of synth voices in a MaxPatch (Fig. 8).
Finally, Processing uses OSC to trigger these newly loaded
voices in MaxMSP.

Figure 7: Diagram of dataflow within you are god.

Figure 8: The MaxPy-generated abstraction [yag-voices],
containing a variable number of voices connected to OSC
triggers.

This game is a simple example of MaxPy’s possibilities as
a bridge between MaxMSP and other input sources. MaxPy
allows data processing and patch generation to occur out-
side of both MaxMSP and the input method, freeing up

3The MaxPy code can be found at https://github.com/
ryurongliu/you-are-god/blob/main/yag.ipynb.

computational load on both ends. This is particularly use-
ful for interfacing with embedded systems that have limited
on-board memory but require significant data processing.

5. CONCLUSION
In this work we have presented MaxPy, an open-source
Python package for metaprogramming in MaxMSP. In addi-
tion to the promising results so far, our initial experiments
with MaxPy have yielded a number of areas for future work.

One of the attractions of MaxMSP is the ability for exter-
nal developers to create their own Max objects. MaxPy can
support these external objects, but the current importation
process is inefficient. We are developing a streamlined way
to import objects that will allow MaxPy contributors to add
MaxPy support for external packages.

Another open issue is typechecking in MaxPy, which would
check for illegal patchcords attempting to bridge incompat-
ible datatypes. This would enable several potential applica-
tions of MaxPy, such as the generation of random patches
or the creation of an NLP patch generator.

Finally, proper typechecking in MaxPy will likely stem
from (or lead to) a definition of the formal semantics of
MaxMSP. Unfortunately, the wide variety of MaxMSP ob-
jects makes it difficult to pin down such a definition, particu-
larly when considering externally developed object packages
that use custom datatypes. Defining a formal semantics of
MaxMSP remains an ongoing effort.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CCF-2105208.

7. REFERENCES
[1] Cycling. ’74. MaxMSP product page.

https://cycling74.com/products/max, 2023. accessed
1-27-2023.

[2] R. Boulanger. The Csound book: perspectives in
software synthesis, sound design, signal processing, and
programming. MIT press, 2000.

[3] E. Burmako and M. Odersky. Scala macros, a technical
report. In Third International Valentin Turchin
Workshop on Metacomputation, number CONF, 2012.

[4] C. Games. Games of the day archive.
https://www.chessgames.com/perl/gamesoftheday,
2023. accessed 1-27-2023.

[5] N. M. Josuttis. The c++ standard library: a tutorial
and reference. 2012.

[6] Y. Lilis and A. Savidis. A survey of metaprogramming
languages. ACM Computing Surveys (CSUR),
52(6):1–39, 2019.

[7] J. McCartney. Rethinking the computer music
language: Super collider. Computer Music Journal,
26(4):61–68, 2002.

[8] M. Puckette et al. Pure data: another integrated
computer music environment. Proceedings of the second
intercollege computer music concerts, pages 37–41,
1996.

[9] T. Sheard and S. P. Jones. Template
meta-programming for haskell. In Proceedings of the
2002 ACM SIGPLAN workshop on Haskell, pages
1–16, 2002.

