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ABSTRACT

We present a system for interactive co-creation of expressive
performances of notated music using speech and gestures.
The system provides real-time or near-real-time dialog-based
control of performance rendering and interaction in multiple
modalities. It is accessible to people regardless of their mu-
sical background via smartphones. The system is trained
using sheet music and associated performances, in partic-
ular using notated performance directions and user-system
interaction data to ground performance directions in per-
formances. Users can listen to an autonomously generated
performance or actively engage in the performance process.
A speech- and gesture-based feedback loop and online learn-
ing from past user interactions improve the accuracy of the
performance rendering control. There are two important as-
sumptions behind our approach: a) that many people can
express nuanced aspects of expressive performance using
natural human expressive faculties, such as speech, voice,
and gesture, and b) that by doing so and hearing the mu-
sic follow their direction with low latency, they can enjoy
playing the music that would otherwise be inaccessible to
them. The ultimate goal of this work is to enable fulfilling
and accessible music making experiences for a large number
of people who are not currently musically active.
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tion; Mobile interface; Deep learning

CCS Concepts
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1. INTRODUCTION

Artificial intelligence and machine learning are bringing new
perspectives to the process of creating and performing mu-
sic [10, 20, 15]. In the traditional music interpretation and

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).
NIME’23, 31 May-3 June, 2023, Mexico City, Mexico.

Vladimir Viro
Peachnote GmbH
Munich, Germany

vladimir@peachnote.de

performance paradigm, for example in classical music, the
musician interprets a score and translates the intended ex-
pression into the control of the musical instrument, which
then produces the sound that conveys affect and emotion to
the listener [24, 28]. However, effective control of musical
instruments often requires significant expertise, instrument
training, and physical ability.

With this work, we aim to alleviate some of these extra-
musical requirements by tapping directly into natural hu-
man faculties of affective communication, such as speech,
voice, and (facial) gestures. We connect them directly to the
composed music, which may be seen as a carrier frequency
that is being modulated by these naturally expressed affects
to transmit them to the audience.

Recent advances in deep learning have provided opportu-
nities for human-in-the-loop systems to enable interactive
music creation [15, 8]. In this context, we propose to use
speech and gestures to control music performance. Inspired
by recent advances in multimodal representation learning [3,
25, 26], we connect user expression data in multiple modal-
ities with music performance features and offer real-time
or near-real-time interaction with the music performance.
This allows people to intuitively express their creative ideas
and play with the music, exploring the musical works and
enjoying spontaneous affective expression through music.

Inspired by the practice of music conducting, in which
musicians translate the score and the conductor’s gestures,
facial expressions, and speech direction during rehearsals
into music performance [18, 9], we focus on performance
rendering for previously notated music. One useful feature
of notated music is the presence of performance direction
markings in scores, such as cresc., lento, note accents, etc.,
which composers use to communicate certain aspects of in-
tended articulation to the musicians. Using existing mu-
sical performances, we ground these labels in musical per-
formance practices and add them to the vocabulary of our
system, which can be used to control performances. We use
transformers [30] — state-of-the-art deep neural network ar-
chitectures in sequence modeling — to advance research in
expressive music performance rendering [6].

This paper presents the ongoing development of a deep
and active learning based system for interactive co-creation
of expressive music performances that provides:

1. real-time interactive music performance rendering;

2. human expression (facial expressions and speech) as
performance control modalities;

3. accessibility to people without professional musical
training and background;

4. frugal design and accessibility through inexpensive smart-

phone devices with camera and voice recorder;
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Figure 1: Illustration of an interactive system for real-time co-creation of expressive music performances using speech and facial
expressions. The user interacts with the music performance model through a mobile application and interaction backend. The
rendered music performance is played back to the user in the mobile application.

Our goal is to provide a new kind of fulfilling, engaging,
and accessible music making experience, allowing people to
perform great musical works using natural human expres-
sion. Our main contributions:

1. We develop a method to interactively control music
performance rendering in real-time using speech and
facial expressions;

2. We modify transformer models for controllable expres-
sive music performance rendering;

3. We implement a mobile web-interface for interactive
music performance co-creation with low hardware re-
quirements.

In the following sections, we present some related work
and how our work builds on and differs from it, describe
the system architecture, the music performance rendering
model, and the application design. We conclude with a
discussion of current limitations and future work.

2. RELATED WORK

2.1 Music Generation

Music generation with deep learning [15] is dominated by
transformers for learning long-term sequential musical pat-
terns [7, 33, 34] and variational autoencoders for unsuper-
vised style encoding and control [29, 4, 33, 31]. The models
offer offline global control of performance style [4, 7] or fine-
grained manipulation of performance parameters [33, 31].
Recently, there has been a trend towards description-to-
music [31] and text-to-music [1] generation systems, which
offer a human intuitive way to musical expression. We adapt
the advances in music generation to expressive performance
rendering and focus on real-time interactive control.

2.2 Expressive Music Performance

Expressive music performance models render performances
for written scores [20, 6]. You can create performances us-
ing rules [32, 14] or machine learning models [5, 22, 17,
27]. KTH model [14] uses explicitly learned programmed
rules to render and control performance. Basis Mixer [5]
maps score features to expressive performance parameters

through a set of learned basis functions. VirtuosoNet [17],
Maezawa et al. [22], and Rhyu et al. [27] use variational
autoencoders for performance style encoding and control,
and recurrent neural networks for expressive performance
rendering. Our performance model follows a similar design,
but uses a transformer architecture [30] to improve long-
term music dependency modeling and maps learned style
spaces to human expressive control inputs.

2.3 Interactive Music Performance

Interactive music performance systems introduce novel in-
struments for musical expression [12, 23, 11] and offer con-
trol over a generative model through an interface [16, 2, 21,
35]. Wekinator [12] is a computer application and intuitive
meta-instrument that learns a mapping between camera-
scanned sample inputs, such as gestures or facial expres-
sions, and specific performance actions. CoCoCo [21] offers
multi-example sampling with revision and Al steering tools
to control the diversity and high-level directions of a gener-
ative model. COSMIC [35] provides a novel way to create
music through a textual dialog system for coordinating the
generation process. We follow the Wekinator approach, but
apply it in the domain of expressive performance render-
ing with a fixed score. We aim for maximum accessibility
through a multi-modal mobile web-interface.

3. SYSTEM OVERVIEW

Figure 1 illustrates the architecture of the system and its
main components:

1. Music Performance Model;
2. Interaction Backend;

3. Mobile Web Application.

The Music Performance Model enables the controllable
creation of expressive performances for written music. Its
goal is to mimic human-like musical expressiveness and ade-
quately implement user’s expressed wishes by learning from
examples of human performance and feedback. By auto-
matically performing the written notes, the model removes
the need for a user to play a musical instrument in order to
perform a piece of music.
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Figure 2: Music Performance Model. The performance en-
coder compute style performance embeddings on note, beat,
and bar levels. The performance renderer decoder outputs
performance parameters given note features, past perfor-
mance, and encoded style representations. The direction
classifier associates the performance context with a set of
performance direction labels.

The Mobile Application and Interaction Backend connect
users to the computational performance model and allow
interactive manipulation of the performance. By offering
real-time performance rendering, we provide users with on-
line interaction and immediate response. The speech and
gestures allow users to express creative ideas using intuitive
concepts such as text and emotion.

The following sections describe the technical details be-
hind the performance rendering model, mobile application
and interaction backend. Examples of implemented user
interactions are listed in Section 5.2.

4. MUSIC PERFORMANCE MODEL

This section describes the computational music performance
rendering model shown in Figure 2. It begins with a de-
scription of the score and performance features used by the
model. Then, we present the expressive performance ren-
derer. Finally, we describe the control modalities and the
technical background behind them.

4.1 Score and Performance Data

The performance rendering model requires score and perfor-
mance data for training. At this point, we restrict ourselves
to working only with solo piano music. We preprocess the
ASAP dataset of matched piano scores and performances
[13]. We compute note-level alignments and filter out per-
formances with less than 80% of matched notes. For sim-
plicity, we correct performances to have a full note-to-note
mapping to the score. We remove extra performed notes
and interpolate missing notes using the local performance
tempo and dynamics.

The score features used to train the models are: note
value, bar, position in bar, and performance direction mark-
ings (dynamics, tempo, and articulation). The expressive
performance parameters predicted by the models are: local
performance tempo, note timing, duration, and dynamics.

4.2 Performance Renderer

The Performance Renderer is a deep learning model trained
on musical scores and example music performances. It com-

bines transformers [30] for sequential data modeling and
variational autoencoders [19] for encoding performance style.
The model consists of performance encoder and decoder,
shown on the left in Figure 2.

The Performance Encoder computes performance style
representations at the note, beat, and bar levels. The Trans-
former model takes a sequence of score and performance fea-
tures as input and outputs an embedding for each note. The
embeddings are averaged over bars and beats and passed
through a linear layer to compute latent bar-, beat-, and
note-level performance style embeddings, optimized using a
variational evidence lower bound.

The Performance Decoder works with the score features
(notes to play), the previous performance context (perfor-
mance history), and the combined multi-level performance
style embeddings computed by the Performance Encoder
(style input). The decoder is a decoder-like transformer
model with causal attention masking that prevents the model
from looking into the future. The outputs are the per-
formance parameters of the next played notes: local on-
set tempo, note onset deviation, duration, and dynamics.
The model is optimized by maximizing the likelihood of the
performance parameters. To avoid overfitting to low-level
performance embeddings, we randomly drop half of the bar,
beat, and note embeddings during model training.

During inference, the randomly sampled and modified
performance embeddings can be used to generate and con-
trol music performances. Since the embedding space is op-
timized with the decoder performance generation objective,
the latent space encodes features relevant to performance
reconstruction. The model supports real-time CPU infer-
ence for use in interactive applications.

The model can be fine-tuned on the user-model interac-
tion data. Currently, the active learning framework includes
offline periodic fine-tuning of the model on feedback scores.
Given a set of performance-feedback score pairs, the perfor-
mance decoder is optimized with an additional loss function
that maximizes the positive feedback per input performance
sequence. The model can be fine-tuned within several min-
utes. In the future, we plan to implement online model
fine-tuning.

4.3 Performance Direction Classifier

We associate performance embeddings with musical score

directions to provide an intuitive interpretation of the learned
control space. We train a Direction Classifier that, given a

local context of bar, beat and note embeddings, classifies it

into performance direction classes:

e dynamic: degrees of piano and forte;

e dynamic changes: crescendo and diminuendo;

e tempo: adagio, largo, presto, etc.;

e tempo changes: accelerando, ritardando, a tempo, etc.;
e articulations: legato, staccato, fermata, etc.

The classifier predicts the likelihood of a direction being
performed in a given performance context. Differences be-
tween embeddings with high and low likelihoods provide a
direction for moving the generation toward a specified per-
formance marking. We can then map these quantified per-
direction embedding differences to natural language com-
mands such as “play more piano here” or “switch to largo”
to control performance rendering. This interaction is em-
bedded into the performance control interface.



S. APPLICATION

This section presents a mobile web application® for the real-
time co-creation of expressive music performances. Our ap-
plication uses two primary intuitive interaction modalities:

1. Speech: the system analyzes the audio stream and
recognizes speech-specific phrases. The speech tran-
scription text embeddings are mapped to performance
direction classes and corresponding performance con-
trol embeddings as described in Section 4.3.

2. Gestures: the system processes the video stream and
extracts facial expressions. The expression embed-
dings are mapped to performance direction classes and
predefined user-system actions.

These interaction modalities can be combined to create a
highly expressive and dynamic musical performance. The
following sections go into the implementation details for the
backend and frontend of the application.

5.1 Backend

The backend comprises multiple micro-services responsible
for different tasks, such as handling the client connection,
audio transcription, video analysis, performance rendering,
audio rendering, etc. The services are implemented in differ-
ent languages (Python, C++ and Go) and can be restarted,
updated and rolled back independently. They all commu-
nicate via a messaging bus. A database stores scores, past
performances, user feedback, and performance directions,
which we use to optimize the performance model.

The JavaScript client connects to a multi-user WebRTC
backend and establishes a bi-directional data channel and
audio stream, as well as a video stream from the client. The
audio and video streams are analyzed in real-time. Audio is
transcribed to text using Whisper [26], which is forwarded
to GPT-3 [3] for intent extraction. Intent extraction works
with input in multiple languages.

Currently, the system is sequencing and rendering MIDI
performances to audio. In the future, we plan to generate
audio directly. The MIDI sequencer gets its cues from the
gesture and intent recognition services and renders MIDI
performances live. The MIDI stream is sent to the au-
dio rendering node. Its audio output is sent back to the
WebRTC server process that handles the client connection,
and from there the music audio is sent back to the web
interface and the user.

The system latency for video-induced performance con-
trol is on the order of 0.75 seconds. The behavior seems
similar to that of an attentive chamber music partner.

The existing limitations are: small database, limited in-
teraction modalities, rare issues with the quality of rendered
performances, support for only one instrument, piano, and
no control over acoustic sound properties.

5.2 Mobile Web-interface

The web-interface greets the user and asks them to turn on
their camera and microphone on to begin interactive com-
munication with the music performance model. Once the
permissions are granted and the WebRTC connection is es-
tablished, the user sees the camera image in the top half of
the screen, while the interaction button appears in the mid-
dle of the bottom half. The purpose of the button is to let
the user know that the system should pay attention to their
input, audio, or video. At the start, the backend selects

'"Demo: https://d3dbzxyywswxzm.cloudfront.net.

a random musical composition from the database of musi-
cal scores and starts rendering an arbitrary performance for
this written music. The user can press the button and ask
the system to do any of the following within a single phrase:

1. select a composition
- “Let’s play Chopin’s Mazurka in D major”

2. pause or stop the performance
- “Please stop”

3. navigate to a different place in the score
- “Let’s play again from the beginning”

4. provide feedback on the current performance

- “That was still a bit too slow and too much staccato”

5. ask the system to play in a particular way
- “Could you play this like a mother singing a lullaby
to her child?”

6. show the system non-verbally how to play using facial
gestures, for example making a blissful expression.

The walkie-talkie button relieves us of the need to con-
tinuously evaluate user input and judge whether it is inten-
tional with respect to the performance direction, or acci-
dental (when the user does not intend to direct the perfor-
mance, but still moves or says something). While the but-
ton is pressed, the system continuously evaluates the video
input and applies the analysis results to the performance.
The audio input is evaluated only after the button is re-
leased. However, if a voice activity detector (VAD) detects
speech, we immediately reduce the performance volume for
the next few seconds in order to not play over the user talk-
ing, which tells the user that we are listening and makes it
easier to understand the speech.

The information that we are looking for, such as naviga-
tion directions, feedback on past performance, and direc-
tions for future performance, is extracted from the tran-
scribed speech using GPT-3. This allows us to successfully
process free-form speech in multiple languages and offers
great flexibility during development, at a cost in reliability
and latency that we are currently willing to accept.

The interaction data and feedback are saved in the database
to tune the music performance model in subsequent itera-
tions. Specifically, the backend stores the compressed video
frame representations, the verbal commands and their em-
beddings, and the rendered performances. These features
are then used in order to fine-tune the performance render-
ing model according to the desired input control.

6. FUTURE WORK

Our long-term technical goal is to incorporate all natural
human modes of expression that are used in musical con-
texts (conducting, teaching, playing together, etc.). The
most obvious is vocalization, pitched or unpitched, which
allows one to “show” the system how to play. It can be
used to modulate performance tempo, dynamics and artic-
ulations. The other mode is full-body gestures. It is unclear
whether this mode is practical with the current smartphone-
based setup, but if the camera can be positioned farther
away from the user, it may enhance possible interaction.

We will explore issues related to personalization of con-
trol: how different people describe and show music differ-
ently, and how they expect the system to behave. We want
to offer a personalized experience for each user, but at the
same time benefit from the accumulating grounding of mu-
sic descriptors that the system collects over time.



We will also work to better understand user intent, whether
they are providing control input, disengaged, or engaged but
following and reflecting the music rather than trying to lead
its performance. We plan to incorporate the user feedback
into the training of the performance rendering models.

Another part is the user interface. The goal is to keep
it minimal while making it more robust, user-friendly, and
inviting. We would like to explore different visualization
options that would complement and properly frame the mu-
sical functionality of the application.

Designing the system as a web application is a trade-
off between the system accessibility and the complexity of
the backend. Each active user currently consumes a non-
negligible amount of compute resources on the backend for
audio rendering and the expressive performance model that
needs to be sustained. We will explore approaches to make
the system financially viable.

‘While the current system shows promising results, its real
value is yet to be validated. Human evaluation of the system
is an important part of the future research.

7. CONCLUSIONS

In this work, we have presented a highly accessible interac-
tive system for the co-creation of expressive music perfor-
mances using speech and gestures. It allows users to inter-
act with an autonomous, deep learning based piano perfor-
mance rendering model in real-time through a mobile web
application coupled with a backend. Our approach is able to
integrate verbal and non-verbal human expressiveness, al-
lowing people to project emotions and affects through mu-
sic using the expressive language they practice every day.
This makes our system accessible to people without musi-
cal training or the ability to play musical instruments, and
makes complex musical works more widely available for per-
formance and interpretation.

We believe that this work will contribute to the field of
interactive music creation and performance, and allow a
greater number of people to experience the joy of musical
expression. We hope that the system can be used in educa-
tional contexts and make the musical tradition and practice
more accessible, tangible, and engaging for young people.
Since the web application does not require any setup on the
user’s part, our system is easy to try out. If it produces
interesting results right away, it has a chance of being used
by many people. Music therapy is another area where we
hope to contribute to.
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