
SnakeSynth:
New Interactions for Generative Audio Synthesis

Eric Easthope
University of British Columbia

Vancouver, British Columbia, Canada
eric@sequent.audio

ABSTRACT

I present SnakeSynth, a web-based lightweight audio synthe-
sizer that combines audio generated by a deep generative
model and real-time continuous two-dimensional (2D) in-
put to create and control variable-length generative sounds
through 2D interaction gestures. Interaction gestures are
touch and mobile-compatible and made with analogies to
strummed, bowed, brushed, and plucked musical instru-
ment controls. Point-and-click and drag-and-drop gestures
directly control audio playback length and intensity. I show
that I can modulate sound length and intensity by interact-
ing with a programmable 2D grid and leveraging the speed
and ubiquity of web browser-based audio and hardware ac-
celeration to generate time-varying high-fidelity sounds with
real-time interactivity. SnakeSynth adaptively reproduces
and interpolates between sounds encountered during model
training, notably without long training times, and I briefly
discuss possible futures for deep generative models as an
interactive paradigm for musical expression.

Author Keywords

audio synthesis, generative adversarial network, interaction,
gesture, musical expression, controller, 2D

CCS Concepts

•Applied computing → Sound and music computing;
Performing arts; •Computing methodologies → Neural
networks; •Human-centered computing → Interaction
techniques; Interaction paradigms;

1. INTRODUCTION
Interaction paradigms for deep generative models (DGMs)
have remained relatively shallow in contrast to the diver-
sity of interactions that are possible with musical inter-
faces and most research interest in DGMs still seems to
revolve around generation of fixed-size images and audio in
correspondence to fixed-size training data [12, 13]. These
models often work by learning a low-dimensional set of in-

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

puts that resemble the statistics of a training dataset en-
abling us to generate new samples through a small number
of controls significantly smaller than the size of training
data. In experimental contexts DGMs seem to be capable
of generating novel outputs and controllably interpolating
between training data features [6]. Recent developments
including the success of WaveNet [10] and GANsynth [2]
have revealed possibilities for how DGMs might be devel-
oped to be more expressive in terms of their outputs and
this has consolidated some interest in using DGMs as tools
for musical expression. Possibly the largest unified effort
to do this might be Magenta (https://research.google/
teams/brain/magenta/) at Google Research which lever-
ages DGMs as part of a larger effort to create music syn-
thetically using machine learning (ML) models.

Yet many projects featured for DGM-based music pro-
duction and performance still suffer from common struc-
tural limitations in DGMs and how they function. Auto-
regressive models [5] like WaveNet [10] inherently rely on
sequential and often somewhat random updates to inputs
to produce appreciable changes in outputs. In performance
contexts changes in sound in response to new inputs then
need to computed in real time or otherwise delayed. Setting
aside the challenges of computing DGM outputs in real-
time this breaks down an essential auditory feedback loop
between a performer and their instrument(s). Responses on
the part of the performer in response to an auto-regressive
DGM then have to be anticipated as inputs sequentially and
must randomly evolve towards more refined outputs.

This runs counter to how we think about musical instru-
ments and related interfaces. While we would not expect
a plucked string to resonate the same way every time the
same note is played, we do expect to hear the same note
and for it to resonate when we play it. Particularly there
is some expectation in performance being informed by an-
ticipation about where and how to sound the instrument
in a one-to-one way. This one-to-one-ness also ensures that
instruments play the same way today as they do tomor-
row. Perhaps regressive DGMs and randomness alone can-
not produce usable and less so re-usable ML-based digital
music tools.

Luckily not all deep generative models are regressive and
some are capable of producing inputs and outputs in a one-
to-one way. Generative Adversarial Networks (GANs) [4]
and variational auto-encoders [9] amongst other DGMs re-
quire only a single forward pass (“single-pass”) from in-
put to output making them better candidates for musi-
cal interfaces by enabling performers to learn relationships
between how they play digital instruments and what will
be sounded when they play them. Technically speaking
(input, output) pairs can be established and anticipated
during performance. To this end the development of audio-
based GANs like those by Donahue et al. [1] and Engel

https://research.google/teams/brain/magenta/
https://research.google/teams/brain/magenta/


et al. [2] have shown particular potential to generate novel
sounds and musical forms.
In broader performance contexts DGM-based instruments

should also exhibit compatible playing dynamics with re-
spect to player expectation. The application of more en-
ergy to the instrument, for example by “strumming” or
“bowing”with greater intensity, should correspondingly pro-
duce more albeit possibly cacophonous sound. Moving or
scanning to selectively “pluck” strings should not produce
unwanted sound. Continuous “bowed” sounds should cor-
respond to continuous movements, particularly mechanical
“driving” and resonance. Reversing the direction of move-
ment should reverse the sound in some way; on a string this
might correspond to differences in “down-picked” and “up-
picked” sounds. These are difficult to express with DGMs
and even neural networks broadly speaking due to the fixed
length of their outputs and so there is an opportunity here
for new designs. The key problem is making DGMs expres-
sive in ways beyond their capacity to yield different outputs.
Part of this is a matter of producing and controlling

continuous variable-length sounds with DGMs. Discrete
trigger-based controls for musical DGMs resembling MIDI
inputs are common but offer little to no control over the
length of output audio. This puts the burden of controlling
audio length on the underlying DGM(s) yet previous work
has done little to address the generation of variable-length
audio with DGMs despite the apparent utility of producing
variable-length sounds in music contexts. We can con-
catenate sounds to produce longer streams of audio but
results are often cacophonous (see algorithmic music from
Dadabots, https://dadabots.com). Thinking in terms
of a 2D image-based DGM architecture this is equivalent
to generating variable-width images by joining images
sequentially and is a temporary fix at best, making the
problem of generating variable-length audio with DGMs
an interesting gap in current work and a means to explore
DGM expressivity in creative settings as a performance
tool.
SnakeSynth (Figure 1) is an ML and web-based music

performance tool and interactive controller that bridges
the gap from discrete trigger-based DGM controls to
continuous variable-length controls to enable new forms
of musical expression and performance dynamics with
DGMs. Deriving its name and interactive paradigm from
the “Snake” video game genre, SnakeSynth uses real-time
2D point-and-click and drag-and-drop gestures to directly
control DGM audio playback length to generate variable-
length audio in creative contexts. Interactions with a
programmable 2D coordinate grid determine audio length
relieving DGMs of un-needed and even extraneous design
constraints and giving more control to performers as the
primary creative agent. By foregoing concatenation-based
approaches and modelling the variability of audio length
as an external interactive control over what is otherwise
a fixed-length DGM, SnakeSynth enables “strummed,”
“bowed,” “brushed,” and “plucked” playing gestures by
triggering different fixed-length DGM-generated sounds
and blending them through interaction to form longer
variable-length sounds.

2. DESIGN

2.1 Model

2.1.1 Generative Adversarial Network
I set up a GAN made of two networks, a generator and a
discriminator, configured as adversaries such that the gen-

erator network learns to generate “fake” but convincingly
real outputs that “fool” classifications by the discriminator.
As they train on new samples the generator improves its
weights by back-propagating its losses to produce more “re-
alistic” outputs that resemble the statistics of training data.
In turn the discriminator improves its weights to discern
fake samples from dataset samples. Any generator losses
are theoretical gains to the discriminator and vice versa so
both networks improve with training.

Particularly I use a modified Deep Convolutional GAN
(DCGAN) architecture but I reduce the DCGAN generator
[11] to only three convolutional layers and remove the batch
normalization layer following the fully-connected (dense)
layer. DCGANs have the advantage of using local convolu-
tional layers in place of exclusively dense layers [4] signif-
icantly reducing the total number of trainable parameters
and with it reducing total training time. Together the gen-
erator consists of a dense layer and three filter layers each
containing a convolutional and batch normalization layer
activated with a leaky rectified linear unit (leaky ReLU)
function. Batch normalization layers regularize training
samples to increase training stability [11, 7] and the fi-
nal convolutional layer is activated with a tanh function
amounting to a generator with roughly one million train-
able parameters (approximately 280 parameters per pixel).

I also use a Convolutional Neural Network (CNN)-based
discriminator but only two convolutional layers, no dropout
layers, and no batch normalization. Again this significantly
reduces the total number of trainable parameters leaving
two convolutional layers activated with leaky ReLU func-
tions and a dense layer with no activation function. Without
activation the dense layer outputs values outside of [−1, 1]
and the discriminator classifies directly from dense layer
logits.

Unlike the DCGAN authors I do not change network ini-
tialization weights before training and I use reshape and
flatten layers to transform square images to and from lay-
ers expecting flat inputs. Both networks are summarized
in Figure 2 for a 2D latent space to correspond with a 2D
cursor or touch-based input control space.

2.1.2 Dataset: 2D Spectral Images
This DCGAN is trained on square 64x64 pixel images made
from Mel-scaled spectral coefficients for a small collection
of human voice samples, only one of many possible train-
ing sets, in line with observations by Engel et al. [2] that
image-based GANs are capable of producing high-fidelity
audio from limited spectral information and are significantly
faster to train. Mel-scaled coefficients are also an effective
compression of spectral information in 2D that simultane-
ously accounts for human audio perception which I use to
significantly reduce overall GAN model dimensionality and
correspondingly the memory requirements for training com-
pared to 1D time series-based models like WaveGAN [1].

Sounds in SnakeSynth are made by inverting generated
2D spectral images to 1D time series through Griffin-Lim
inversion. Each sound is windowed using a cosine window
or similar to remove edge audio artifacts and as I choose the
number of sounds in the SnakeSynth interaction grid this
inversion is automated as part of post-processing. Faster
inversions could be realized in real-time interactive settings.

2.1.3 GAN Training
Generator outputs are initialized as Gaussian noise and I
train the DCGAN generator and discriminator in lockstep:
the generator first to produce new outputs and the discrim-

https://dadabots.com


Figure 1: The cursor-based SnakeSynth web interface. Interactions with the grid (left) are also touch-compatible supporting
tap-to-click and touch-and-drag gestures in correspondence to point-and-click and drag-and-drop cursor gestures. Mel spectra
(right) and time series (bottom) for individual sound samples are displayed and updated in real time during playback.

inator second to classify generator outputs against “real”
samples of training data. This training strategy is equiv-
alent to a zero-sum competitive game between two players
(or networks in this case) where generator losses amount
to discriminator gains and vice versa. Goodfellow et al. [4]
represents this with the objective function

L(G,D) = Ex∼X(x)[lnD(x)] + Ez∼Z(z)[ln(1−D(G(z))]

for a generator G and discriminator D with the expec-
tation value Ex∼X(x) that real samples (x) are from the
training data distribution X and expectation value Ez∼Z(z)

that fake samples (z) are from a random Gaussian (normal)
distribution Z. The generator and discriminator minimize
and maximize the objective function respectively to incur
a training “loss” that we back-propagate to update their
weights.
Training data is shuffled and separated into batch sizes

of one so that every image is seen during training and I
train for 300 epochs using the same objective function de-
fined by Goodfellow et al. [4]. Increasing the batch size
reduces training time and I find that a small 64x64 pixel
DCGAN model with a 2D generator latent space trains hun-
dreds of epochs within minutes on a standard MacBook Pro
(M1, 2020). Re-training on new samples takes only minutes
longer and trained models and sounds can be stored and
loaded for later use without further training.
Because the generator inputs are 2D we can directly ac-

cess and visualize the space of possible generator outputs
by passing 2D quantile values as coordinate inputs to the
generator latent space. This enables us to produce samples
from most of the generator output distribution using only a
2D and particularly finite grid-based interactive controller.

To do this we compute quantile values up to 95th percentile
outcomes from the inverse cumulative distribution function
for a 2D Gaussian distribution with zero mean (µ = 0) and
unit variance (σ2 = 1). Images generated from these quan-
tile values can then be plotted to produce a visualization of
nearly all possible generator outputs from a restriction of
the entire generator output distribution to arbitrary preci-
sion (Figure 3, right) helping us to consider controller de-
signs for underlying generator statistics.

2.2 Interactions
SnakeSynth affords a number of different interaction types
naturally through interactions with a two-dimensional N ×
N coordinate grid (Figure 3, left):

1. Click (or touch) gestures produce fixed-length audio
(resembles “plucking”).

2. Linear or near-linear gestures produce variable-length
audio (resembles “strumming”) (Figure 5). Gesture
distance determines sound length.

3. Suddenly changing movement direction creates sud-
den audio changes and corresponding audio attack (re-
sembles a “finite bow”) (Figure 6).

4. Continuous gestures create continuous audio (resem-
bles an“infinite bow”) (Figure 7). Particularly circular
or near-circular gestures produce continuous rhythmic
audio.

5. Chaotic gestures with many directional changes to lin-
ear and/or circular movements create cacophonous au-
dio (resembles “brushing”) (Figure 8).

Interactions 2-5 are shown in Appendix A.



Figure 2: A simplified Deep Convolutional GAN (DCGAN) [11] network architecture used to generate SnakeSynth sounds.
The generator inputs two values and outputs 64x64 pixel images activated with a tanh function layer. The discriminator inputs
these 64x64 pixel images and outputs one value to classify “real” dataset samples versus “fake” generator samples. Without an
activation function the discriminator outputs logit values outside of [−1, 1].

Figure 3: SnakeSynth generates spectral images from maps of quantile values sampled (in red) from two standard deviations
of a Gaussian (normal) distribution in an arbitrary 2D coordinate grid. Grid interactions sample outputs from a restriction of
the entire possible generator output distribution up to 95th percentile outcomes.



2.3 Synthesis
Instead of directly concatenating audio clips I trigger equal-
length clips asynchronously and sum them over time to
produce variable-length audio in response to interactions.
Each sound is windowed in post-processing to be function-
ally similar to the overlap-add method. Simulating gen-
erated sounds from three equally-spaced interactions with
the SnakeSynth grid shows they sum to produce a sin-
gle variable-length sound and the overlap of their windows
shows the amplitude of the combined sound increase with
greater sample overlap (Figure 4). This is chosen to produce
interaction analogies to mechanical “driving” and resonance
(as mentioned before) and other ways to blend overlapping
audio could be explored.

3. DISCUSSION
By foregoing concatenation-based approaches and mod-
elling the variability of audio length in terms of interaction
we lose the precision of a triggered fixed-size model and we
have to choose how to blend sounds in context. Still, what
we gain in flexibility in terms of modularity and greater
choice over DGMs should not be understated as it keeps
the abundance of fixed-length GAN models and ongoing
research available to us as design options. Non-generative
models of the same dimension would even suffice. Going
further this flexibility enables us to create novel controllers
for audio DGMs capable of generating variable-length
audio. This does not seem to be widely recognized as a
design interest and surprisingly I have seen little discussion
about it in previous work.
SnakeSynth offers one way around the problem by

treating audio length as a parameter of interactive control
outside of the generative model. This bridges the gap from
fixed-length audio DGMs to controller-driven variable-
length DGMs and even to DGM-based music performance
by recognizing that asynchronously triggering audio clips
over time is congruent to mapping user interactions over
time. Given the ubiquity of cursor movements and touch
in 2D digital coordinate spaces these seem to be an appro-
priate starting point for discussion and exploration of user
interaction as a means of DGM control and particularly
DGM control for musical expression.
Choices on how to map from the SnakeSynth coordinate

grid to generator latent space(s) raise interesting questions
about both the shape of the DGM latent spaces themselves
but also how to construct novel and/or non-trivial maps be-
tween them and the SnakeSynth grid. We are not required
to use quantile values as inputs either and interactions could
be readily extended to any interface that produces at least
two values in real time.
This is somewhere in the design of latent space-based con-

trol that existing human-computer interface principles like
Fitts’ law [3] could be applied such as knowledge about
distance to target, target size, cognitive load, etc. Simi-
larly the design of real-time sound blending beyond slowed
attacks and windowing, especially for asynchronously trig-
gered sounds, deserves further consideration. Semantically
some of these design choices would reflect different views of
the audio space or context at hand so as to be recogniz-
able and learnable by performers and reproducible in per-
formance settings.
DGM research continues to evolve at quick pace and

we are still finding new ways to train high-fidelity GANs
quickly enough, for example by progressively adding
layers during training [8], that it may soon be feasible to
train small GAN models in real time. This would enable
SnakeSynth and derived tools to “evolve” new auditory

spaces in response to real-time interactions and/or new
data. More importantly this removes us from the mindset
of fixed-length generative audio models and re-frames
digital musical instruments as things capable of evolving to
adapt to context and changing in turn how we might think
about digital music tools for performance.

4. CONCLUSION
I showed how SnakeSynth, demoed as a web-based audio
synthesizer, combines DGM audio and real-time continu-
ous 2D input to create and control variable-length genera-
tive sounds through several interaction gestures made with
analogies to strummed, bowed, brushed, and plucked musi-
cal instrument controls. I showed that I can modulate sound
length and intensity by interacting with a programmable
2D coordinate grid, demonstrating the real-time potential
for derived tools, and I briefly discussed possible futures for
DGMs as an interactive paradigm for musical expression.

5. ACKNOWLEDGMENTS
I thank Robert for his guidance and for pointing to the
novelty of real-time GAN synthesis in web browsers.

6. ETHICAL STANDARDS
The author is self-funded and reports no conflicts of interest.
No living subjects were studied in this work.

7. REFERENCES
[1] C. Donahue, J. McAuley, and M. Puckette.

Adversarial Audio Synthesis, Feb. 2019.
arXiv:1802.04208 [cs].

[2] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani,
C. Donahue, and A. Roberts. GANSynth: Adversarial
Neural Audio Synthesis, Apr. 2019. arXiv:1902.08710
[cs, eess, stat].

[3] P. M. Fitts. The information capacity of the human
motor system in controlling the amplitude of
movement. Journal of Experimental Psychology,
47(6):381–391, June 1954.

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative Adversarial Networks, June
2014. arXiv:1406.2661 [cs, stat].

[5] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and
D. Wierstra. Deep AutoRegressive Networks, May
2014. arXiv:1310.8499 [cs, stat].

[6] E. Härkönen, A. Hertzmann, J. Lehtinen, and
S. Paris. GANSpace: Discovering Interpretable GAN
Controls, Dec. 2020. arXiv:2004.02546 [cs].

[7] S. Ioffe and C. Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. In 32nd Intl. Conf. on
Machine Learning, pages 448–456. PMLR, June 2015.

[8] T. Karras, T. Aila, S. Laine, and J. Lehtinen.
Progressive Growing of GANs for Improved Quality,
Stability, and Variation, Feb. 2018. arXiv:1710.10196
[cs, stat].

[9] D. P. Kingma and M. Welling. Auto-Encoding
Variational Bayes, May 2014. arXiv:1312.6114 [cs,
stat].

[10] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,



Figure 4: Time-triggered sound samples (first three rows) generated, windowed, and summed over time to produce a single
variable-length sound (bottom row). Increasing amplitude by summing overlapping sound windows enables virtual mechanical
“driving” through the SnakeSynth controller to produce resonance-like effects. The amplitude of the combined sound increases
with greater sample overlap.

and K. Kavukcuoglu. WaveNet: A Generative Model
for Raw Audio, Sept. 2016. arXiv:1609.03499 [cs].

[11] A. Radford, L. Metz, and S. Chintala. Unsupervised
Representation Learning with Deep Convolutional
Generative Adversarial Networks, Jan. 2016.
arXiv:1511.06434 [cs].

[12] S. Shahriar. GAN computers generate arts? A survey
on visual arts, music, and literary text generation
using generative adversarial network. Displays,
73:102237, July 2022.

[13] H. Zhang, L. Xie, and K. Qi. Implement Music
Generation with GAN: A Systematic Review. In 2021
Intl. Conf. on Computer Engineering and Application,
pages 352–355. IEEE, June 2021.



APPENDIX

A. INTERACTIONS

Figure 5: Linear or near-linear gestures produce variable-
length audio (resembles “strumming”). Gesture distance de-
termines sound length.

Figure 6: Suddenly changing movement direction creates
sudden audio changes and corresponding audio attack (re-
sembles a “finite bow”).



Figure 7: Continuous gestures create continuous audio (re-
sembles an “infinite bow”). Particularly circular or near-
circular gestures produce continuous rhythmic audio.

Figure 8: Chaotic gestures with many directional changes to
linear and/or circular movements create cacophonous audio
(resembles “brushing”).


	Introduction
	Design
	Model
	Generative Adversarial Network
	Dataset: 2D Spectral Images
	GAN Training

	Interactions
	Synthesis

	Discussion
	Conclusion
	Acknowledgments
	Ethical Standards
	References
	Interactions

