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ABSTRACT

The utility of gestural technologies in broadening analytical-
and expressive-interface possibilities has been documented
extensively; both within the sphere of NIME and beyond.
Wearable gestural sensors have proved integral compo-

nents of many past NIMEs. Previous implementations have
typically made use of specialist, IMU and EMG based ges-
tural technologies. Few have proved, singularly, as popular
as the Myo armband. An informal review of the NIME
archives found that the Myo has featured in 21 NIME pub-
lications, since an initial declaration of the Myo’s promise as
“a new standard controller in the NIME community”by Ny-
omen et al. in 2015 [10]. Ten of those found were published
after the Myo’s discontinuation in 2018, including three as
recently as 2022 [7, 12, 15].
This paper details an assessment of smartwatch-based

IMU and audio logging as a ubiquitous, accessible alter-
native to the IMU capabilities of the Myo armband. Six
violinists were recorded performing a number of exercises
using VioLogger; a purpose-built application for the Ap-
ple Watch. Participants were simultaneously recorded us-
ing a Myo armband and a freestanding microphone. Initial
testing upon this pilot dataset indicated promising results
for the purposes of audio-gestural analysis; both implemen-
tations demonstrated similar efficacy for the purposes of
MLP-based bow-stroke classification.
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CCS Concepts

•Human-centered computing → Ubiquitous and mobile com-
puting; •Information systems→Multimedia information sys-
tems;
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1. BACKGROUND
If considering a musical performance to be the culmination
of a performer’s gestural execution, two avenues for analy-
sis emerge; these are the audible and gestural content. Just
as audible content may be quantified through the use of
a microphone, the gestural content of a performance may
be similarly quantified through the use of gestural sensors.
An abundance of such technologies exist, varying markedly
in both form and function [2]. Countless studies have ex-
plored the efficacy of implementing such, to both creative
and analytical ends.

1.1 Related Works
Produced by Thalmic labs between 2014 and 2018, the Myo
is a consumer device comprising of 8 EMG Sensors and a
9-DoF IMU sensor. Despite it’s short commercial life-span,
the demonstrable utility of the Myo as an interface for ges-
tural interaction has maintained its prevalence within the
NIME community, continuing to average around three ap-
pearances per year in NIME proceedings.

While the Myo’s suitability as a compositional and per-
formance tool has been documented extensively [7, 6, 8], the
device’s use as an analytical tool for purposes both musical
and otherwise has proved similarly effective.

Dalmazzo et al. [5] and Sarasúa et al. [13] both made
use of the Myo during studies of gestural execution in vi-
olin performance; the authors reported high classification
accuracies when using the Myo to identify a range of bow
articulation conditions within performed material. Dur-
ing integration within an HMM-based classification system,
Sarasúa et al. found that the inclusion of EMG data in-
creased early gestural recognition rates, but decreased over-
all gestural recognition rates when compared to classifica-
tion upon lone IMU data [13]. Dalmazzo et al. compared
the utility the Myo with an optoelectric system; reporting
respective classification accuracies of 99.847%, and 99.460%
through the use of a J48 Decision tree algorithm; the au-
thors noted a disparity in cost between the two implemented
technologies, asserting that “this result shows that it is pos-
sible to develop music-gesture learning applications based
on low-cost technology which can be used in home environ-
ments for self-learning practitioners” [5].

A similar methodology was employed by Auepanwiriyakul
et al. [1]. while assessing the utility of the Apple Watch for
the purposes of hospital inpatient monitoring. The authors
compared these to a “gold standard” optoelectronic Opti-
Track system, in addition to a number of specialist IMU
sensors, concluding that “with relatively few drawbacks,
consumer-grade smartwatches can be objectively used within
a clinical- and research-grade setting”



2. METHODOLOGY
A methodology was devised based upon a prior study [17],
wherein the utility of the Myo was previously investigated
for the purposes of violin bowstroke classification using an
existing dataset.

2.1 Data Capture Methodology
A pilot dataset was collected comprising of synchronous ges-
tural and audio recordings; the development of two distinct
recording mechanisms was necessitated for this purpose.
Recording via two Myos and a freestanding DPA4090 mi-

crophone was triggered via a Python script; this was devel-
oped through use of the PyoMyo api [16]. Recorded IMU
data comprised of three-dimensional accelerometer and gy-
roscopic data, Euler angles and 4-unit quaternions, at a
sample rate of 50Hz; EMG data was recorded at 200Hz.
Due to hardware constraints, these are the highest sample
rates at which the respective data types may be recorded
using the Myo [11]. Audio was recorded at 44.1KHz.
An purpose-built application for the Apple Watch was de-

veloped for the logging of IMU and Audio data, based upon
Logger7 by GitHub user Shakshi3104 [14]. In addition to
three-dimensional accelerometer and gyroscopic data, de-
rived Euler angles and 4-unit quaternions are also logged,
paralleling the IMU data-types offered by the Myo, albeit at
a sample rate of 100Hz. Audio is recorded simultaneously
at 44.1KHz.
Data was timestamped extensively for the purposes of

time alignment. An initial timestamp was taken as audio
recording commenced, while a second timestamp was taken
upon its termination. Individual audio timestamps were
later interpolated between these. Gestural samples were
timestamped individually upon receipt.
Six violinists were recorded performing two-octave G and

D major scales. These scales were chosen with the inten-
tion to capture a comprehensive range of both the violin’s
typical performance register, and movement along the four
strings. Participants were required to play each note twice,
such that both an up-bow and a down-bow were captured
on each note; each bow-stroke one beat in duration, at a
tempo of 110BPM. Each scale was performed in two bow-
articulation techniques; Spiccato and Legato. Three takes
of each exercise were recorded. Participants were sourced
from the student body of the Royal Birmingham conserva-
toire, comprising of both undergraduate and postgraduate
students and alumni.

2.2 Analysis Methodology
Synchronous recorded signals were first trimmed to their
maximum concurrent length, such that any samples pre-
ceding the latest initial sample of any one data type was
discarded; similarly, any samples following the earliest final
sample of any one data type were discarded.
Recorded concurrent signals were then trimmed further,

to remove silence or unwanted noise at the start and end of
each recording; this was automated as follows. An initial
RMS envelope was first computed; subsequently a threshold
value was calculated for each, equal to 0.6x the mean of
each RMS envelope. Two low-pass filters were subsequently
applied to the initial envelope, with respective cutoffs of 0.5
and 2.0 Hz. Trimming signals initially to the first and last
intersections of the threshold with the prior filtered envelope
was found to effectively remove transient sounds prior to any
playing. Subsequently trimming signals similarly, to the
threshold’s intersection with the second filtered envelope,
was found to effectively remove any remaining unwanted

silence. The trimmed audio signals were then normalised.
A linear de-trend function was applied to each channel of

IMU data to counteract drift - Kok et al. [9] note the pres-
ence of drift to be characteristic of IMU sensors, attributing
this to accumulated error over time.

Proportional normalisation was applied to the IMU data
such that the maximum magnitude of a signal was bounded
by 1, while the proportional difference in maximum mag-
nitude between concurrent channels of data (e.g. IMU Ac-
celerometer signals X, Y, Z) was maintained.

A system was developed wherein each recording was seg-
mented into a series of individual bow-strokes. Use of the
Madmom bi-directional RNN onset detector [3] provided
sample indices within the audio data at which point note-
onsets were likely to have occurred. Of the interpolated
audio timestamps, those corresponding to these sample in-
dices were then identified. These audio timestamps were
then used to split all data-types into individual series of
inter-onset-intervals at the closest timestamped samples.

Following this, MIR features were derived from the audio
data, intending to reduce the resolution of the data. For
each segment of audio data, sequential arrays of MFCCs,
Delta-MFCCs, Delta-Delta-MFCCs, and Chroma coefficie-
nts were calculated. These were intended to depict both
timbral and pitch characteristics of each note, while pre-
serving temporality.

Three bow-stroke classification tasks were completed thr-
ough use of an MLP neural network trained upon various
data-type combinations. Participant identification was ap-
proached as a multi-class classification problem, while bow-
articulation and scale-belonging were approached as binary
classification problems given the availability of only two
classes.

3. RESULTS
Through inspection of the classification accuracies depicted
in Table 1, a number of trends can be observed. Classi-
fication accuracies were highest in the “Bow Articulation”
task, wherein segmented bowstrokes were classified as being
either Spiccato or Legato, with a mean accuracy of 97.89%
achieved across all data-types.

Figure 1: Apple Watch IMU+MIR Features TPR Confusion
Matrix - Participant Identification

Of the three tasks, the lowest accuracies were achieved in
the “Scale Belonging” task, wherein segmented bow-strokes
were classified as having occurred in either of the recorded
scales. In this instance, lone gestural data-types performed
poorly, exhibiting accuracies approximating that of random
classification. The inclusion of audio-derived MIR features



Table 1: MLP Classification Accuracies

Classification Task Test-Accuracies

Training Data Types Participant Identification Bow Articulation Scale Belonging

Watch IMU 94.79% 97.30% 49.65%

Watch MIR Features 82.63% 100.0% 96.96%

Watch IMU + Watch MIR Features 95.54% 100.0% 98.48%

Myo IMU 88.81% 88.61% 50.68%

Myo EMG 90.07% 95.18% 50.98%

MIR Features 89.45% 100.0% 98.48%

Myo IMU + Myo EMG 91.19% 100.0% 50.99%

Myo IMU + MIR Features 91.49% 100.0% 95.28%

Myo IMU + Myo EMG + MIR Features 91.60% 100.0% 99.39%

increased classification accuracies markedly, however; data-
type combinations wherein MIR features were included av-
eraged 97.71%.
Of the two recording mechanisms, differences between the

observed classification accuracies proved negligible. Dur-
ing participant identification, slightly higher classification
accuracies were achieved through the use of the watch’s
combined audio and IMU datatypes. Using these same
combined data types, classification accuracies in the “Bow
Articulation” task proved consistently high between both
devices. Although further incorporation of EMG data in
the “Scale Belonging” task saw the Myo outperform the
Watch by 0.91%, Myo classification accuracies were 3.2%
lower through the use of IMU and audio data types alone.

4. DISCUSSION
The previously detailed results demonstrate the prospec-
tive utility of the smartwatch as an alternative to the IMU
capabilities of the Myo Armband. Considering the Apple
Watch’s lack of EMG sensing functionality, it is arguable
that a true parallel cannot be drawn between devices; while
wearable IMU technologies are well suited towards the anal-
ysis of bowing - a gross motor skill - it is likely that such
utility would be diminished while attempting analysis of fine
motor skills such as fingering. For such analyses, EMG data
would be better suited, given the efficacy demonstrated by
Dalmazzo et al. [4].
Further considering the native functionalities of each de-

vice, the lack of an integrated microphone within the Myo
armband necessitates the use of additional hardware for the
purposes of audio-gestural analyses.
While the affordability of the Apple Watch may prove de-

batable, since discontinuation the Myo may be considered
a specialist device; significant technical knowledge was re-
quired to facilitate recording, through the circumvention of
now-outdated drivers. As the smartwatch may be consid-
ered to be comparatively ubiquitous, its utility could help to
democratise both the conduction of audio-gestural research
and the products thereof.
Remote distribution of VioLogger may allow participants

to engage with future works globally, facilitating the devel-
opment of a larger dataset for the purposes of more com-
prehensive analyses. While its offline recording mechanism
may limit VioLogger’s current utility, largely, to analytical
ends, the introduction of a real-time data-transfer function-
ality may prove to facilitate its use as a tool for augmented
performance or practice feedback tool.

5. CONCLUSION
Our findings indicate that the smartwatch could prove to be
a perhaps surprisingly capable interface for musical audio-
gestural analyses and interaction. Previously favoured tech-
nologies have presented obstacles in practicality, usability
and accessibility; consequently, research artefacts developed
for use with such systems have often lacked transferability
due to their reliance upon inherently specialist hardware. It
is hoped that through the use of such relatively ubiquitous
hardware, replicability, engagement, and collaboration may
be accommodated further during future works.
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