SHARP: Supporting Exploration and Rapid State
Navigation in Live Coding Music

Douglas Bowman Jr.
School of Computer Science
Virginia Polytechnic Institute

and State University
Blacksburg, VA
drewb00@vt.edu

ABSTRACT

How do live coders simultaneously develop new creations
and master previous ones? Using findings drawn from pre-
vious studies about exploratory programming and our expe-
rience practicing live coding, we identified a need to support
creation and mastery in the live coding space — specifi-
cally in the realm of live coding music We developed a tool,
SHARP, which attempts to empower live coders in both
their exploration and performances. SHARP is a code edi-
tor extension that visualizes the history of each instrument
that the live coder creates; the visualization can then be
used to revisit the previous states of the algorithm and cre-
ate new ones from it. We believe that this extension will
support live coders’ exploration in practice as well as enable
novel musical aesthetics in performance contexts. We did
an initial evaluation of SHARP using an auto-ethnographic
approach where one researcher used the tool over multiple
sessions to compose a piece. From our reflection, we saw
that SHARP supported composition by making it easier to
explore different musical ideas and revisit past states. Our
analysis also hints at new possible features, such as being
able to combine multiple previous states using SHARP.

Author Keywords

live coding, exploratory programming, creative support tools

CCS Concepts

eApplied computing — Sound and music computing; Per-
forming arts; eHuman-centered computing — Graph draw-
ings;

1. INTRODUCTION

As the applications of computer programming have contin-
ued to expand and diversify, one particularly fascinating
area of growth is live coding, which is any process of creat-
ing things such as music or graphics through code that is
done live, usually in front of an audience [5, |1]. An example

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).

NIME’23, 31 May-2 June, 2023, Mexico City, Mexico.

Daniel Manesh
School of Computer Science
Virginia Polytechnic Institute

and State University
Blacksburg, VA
danielmanesh@vt.edu

Sang Won Lee
School of Computer Science
Virginia Polytechnic Institute

and State University
Blacksburg, VA
sangwonlee@vt.edu

is a coding demo that is done live in front of an audience
where graphics or music is created through code on the spot.
Live coding in front of an audience can be time-consuming
because precision is needed in every line of code and the
time it takes to craft an algorithm is not as immediate as a
gesture-based musical instrument [11].

Furthermore, while live coders perform, they need to keep
track of multiple sounds that are being played at that mo-
ment and the code associated with each sound. However,
due to the delay it takes for someone to write an algorithmic
pattern, the sound and code may not necessarily match; the
code that generated what is being played may not be on the
screen anymore. Swift et al. labeled this as a discrepancy
between the code that associated with the currently gener-
ated sound, the State of World (SoW), and the code that
is currently on the screen, the State of Code (SoC), in their
work [12]. It is important that a live coder keep track of
the SoC and SoW during a performance; however, main-
taining a mental map of each instrument’s SoC and SoW in
performance can be a tall task for a live coder.

When live coders are practicing, they are often exploring
new sounds, techniques, instruments, and effects—trying
to create something original or novel [11]. In live cod-
ing, exploratory programming is the process of live coding
that involves experimentation to create something new. Ex-
ploratory programming in live coding can involve code that
constitutes complex musical styles, i.e., adding or taking
away instruments, adding effects, changing pitch or tempo.
Live coders use certain techniques while practicing to re-
member their exploration, such as saving the resulting code
or a snapshot of the code or taking a screen recording [9).
However, creating a variation of some code usually means
overwriting previous versions of that code, therefore a live
coder will lose the SoC unless you want to duplicate the code
for every variation. These difficulties in saving exploratory
programming make reusing code for future practices or per-
formances more difficult.

Our new tool, SHARP(State-History Augmentation for
Rapid Programming) aims to alleviate some of these pres-
sures and allow live coders more freedom to experiment in
and out of performances. It is built as an add-on pack-
age to the Atom (and Pulsar) editor and is specifically de-
signed for the TidalCycles (or Tidal for short) live-coding
language [10]. SHARP is a tool to support exploratory pro-
gramming and to facilitate fast navigation between code
states in a live-coding environment. SHARP is a code editor
extension that visualizes the history of each instrument that
the live coder creates; the visualization can then be used to
revisit the previous states of the algorithm and create new
ones from it. We believe that this extension will support live
coders’ exploration in practice as well as enable novel musi-
cal aesthetics in performance contexts. With SHARP, live

coders will be able to freely explore without fear of losing
any of their explorations and quickly move between states
for more robust performances.

2. RELATED WORK

Researchers have worked on developing various tools that
can support exploratory programming in general program-
ming context [2]. Kery et al. |7][8] previously explored the
improvisational ways that programmers perform informal
version control on their exploratory code, such as comment-
ing out old code or creating new files. Their suggested sys-
tem, Variolite, explored local version control and used a
version graph for programmers to have multiple versions
of smaller chunks of code (e.g., multiple versions of one
helper function). While the graph version control system
in Variolite is similar to our proposed tool for live coding,
SHARP focuses more on the needs of live coders: having to
quickly navigate and understand the branch history in tem-
poral dimensions. Specifically, our representation provides
rapid ways to preview and navigate states and automati-
cally create version histories for each instrument based on
their execution history.

Practicing live coding can be a challenging task for a live
coder. Nilson [11] reflected upon how live coders should
practice their music. He suggested that only so much could
be achieved through live coding performances starting from
scratch, and that practice was a vital part of expanding
what live coding could accomplish. Nilson’s ideas pushed
us to create a state-history management system that not
only supports rapid changes needed for performance but
also aids practice. Lee and Essl have created a real-time
text recording in a text editor for the sake of reproducing a
particular performance asynchronously |9]. SHARP differs
from the previous work in that it maintains history per each
track and does not store the keystroke-level data.

Swift et al. [12] have researched the idea of a distinction
between the SoC and SoW. They argue that an automatic
updating of the SOW to match the changing SoC is usually
undesirable since it means any intermediate SoC, while be-
ing moved from a previous state to a new state, will also be
executed. Swift et al., therefore, argue for manual control
over code evaluation and execution, even if this results in a
divergence of SoC and SoW. The authors attempt to create
tools to help the live coder with this potential divergence.
SHARP aims to address this concern by notifying the live
coder when a split between a sound’s SoC and SoW occurs.

3. SHARP SYSTEM OVERVIEW

SHARP aims to improve the exploratory process of the
live coder by handling state-history management for them,
which enables the live coder to focus more on exploration
and rapid state changes. SHARP improves this process
through its per-instrument version tree, its SoC indicator,
and its node-tagging feature. We will now dive into these
features in detail. In the following sections, state-history
node and variation are used interchangeably.

3.1 Run code to create a version tree

When a user runs Tidal code, SHARP will create or update
a state-history box corresponding to that Tidal pattern (i.e.,
instrument). These state-history boxes contain nodes rep-
resenting different points in the history of the state of that
block.

Nodes, as represented by a circle, will be automatically
created, and a history tree is built as you continually run a

pattern with differing elements. This tree lets the live coder
focus on the piece without remembering the previous code
state and the difference between the two code states. Nodes
are automatically created and extended from the currently
selected state. Branching nodes can be created by selecting
the node, or variation, you want to branch from and running
a new version of the code block (Figures and [2). The
temporal order of execution is also preserved based on how
far a node is from the initial node; the rightmost node will
be the most recent code state executed.

dl $ s "bd ~ bd ~" # crush 2|

Figure 2: Once the variation you want to branch from is
selected, you can run the code with the branching text to
create a new branching node.

Hovering the mouse over a node will preview how the
block of code below will change if the hovered-over variation
is selected. Clicking that variation will permanently change
that block of code to the selected state (Figure [3]).

[4 1§ s "bd ~ bd ~" # crush 5 # gain

Figure 3: Hovering over a state-history node preview that
state’s text in the editor over top of the previous text.

3.2 Keep Track of SoC and SoW

Whenever a live coder modifies code after executing a line
of code, there will be a difference between SoC and SoW.
We created an indicator on the line number, which lights up
when the SoC for a specific pattern differs from the SoW,
which is code that generates sounds at the moment as part
of the live-coding piece (Figure [). In this way, the live
coder always knows if the code in the editor for a pattern
represents the code currently running or a variation thereof.

3.3 Explore Freely with State Navigation

The pressure of live-coding performances can often discour-
age exploratory programming and confine performers to
previously practiced methods and sounds. Furthermore, ex-
ploratory programming in live-coding practices can be hin-
dered by a lack of formal versioning and an inability to save
sounds you want to perform later.

SHARP’s state-history management and version trees en-
able live coders to freely explore pieces they are developing
or performing by ensuring that all states of each instrument
are saved and inserted into the version tree for quick access.

dl $ s "bd ~ bd ~" # crush 5 #extra added text|

Figure 4: The yellow bordered container on line number 4
is lit here because the extra text has been typed since the
last execution of the block, indicating a disparity between
the SoC and SoW.

Live coders are then freed to focus on exploration instead
of keeping track of all the potential states they may want
to reuse.

Additionally, a node-tagging feature allows live coders to
mark special states they are likely to refer back to with
a custom color. This is useful for exploration and perfor-
mance to make important states easy to locate, especially in
a large tree with many branches containing multiple nodes
(Figure [5).

31 $ jux rev $ s "bd ~ bd ~" # crush 5

Figure 5: A state-history node tagged in green.

3.4 Implementation Details

SHARP is implemented in JavaScript and CSS, using the
Atom editor package framework, and it relies on the existing
TidalCycles package. Atom is an open-source code editor
developed by GitHub, and it is designed to be very flexible
by offering a package system to manipulate the editor to
your needs. SHARP is meant to be used with TidalCycles, a
live-coding language written in Haskell [10], and is currently
not compatible with but certainly expandable to other live-
coding languages.

4. INITIAL EVALUATION

4.1 Methodology

To evaluate SHARP, we took an auto-ethnographic approach
where one of the authors used SHARP every day over the
course of 10 days and kept a diary of their reflections. The
researcher had a goal of developing a 10-minute piece which
they recorded via screen capture at the end of the study.
The live coding sessions lasted a minimum of 30 minutes
each. Afterward, we analyzed the diary entries for emer-
gent themes.

While autoethnography does not necessarily yield gener-
alizable results, it is still considered a useful starting point
in HCI research, as it is a way to get in-depth insights [3].
Within the NIME community, it has been argued that au-
toethnography is a valuable evaluation tool for the so-called
“researcher-practitioner” [4]. Because of the limited scope
and duration of our diary study, we consider these results a
preliminary stepping stone that will help orient our future
work on the project.

The researcher in question had some basic experience
with live coding using TidalCycles before the experiment,
but they do not regularly perform live coding. Otherwise,
they have a background both in software engineering and

I

6

in music performance, primarily as a classical pianist.

4.2 Results

4.2.1 Facilitating Exploration

The researcher felt that SHARP proved beneficial for easily
trying out different code. During the first few sessions, the
researcher noticed they were hesitant to alter or delete code
— without SHARP, they would have made a copy of the
existing code block and edited the copy instead, preserving
the older version. They felt that using SHARP was better,
both because it was faster and it reduced clutter in the text
editor.

On one occasion, the researcher had two different varia-
tions of a code block and wanted to experiment with how
they could smoothly transition from one to the other. Us-
ing SHARP, the researcher tagged both variations to keep
track of them, and so they could quickly switch back and
forth between them and other new things they tried. On
the other hand, they found that things got slightly confus-
ing because, with SHARP, the order in which the variations
were laid out in the version tree was the order in which they
were explored during practice but not necessarily the order
the researcher wanted them to unfold.

Finally, although SHARP is meant to add to the ver-
sion tree every time a code block is run, for the dura-
tion of the study, there was a bug where sending the code
to SHARP and sending the code to Tidal required two
different commands. While this was somewhat inconve-
nient, the researcher sometimes found themselves purpose-
fully running code without sending it to SHARP. This al-
lowed them to compare several different numerical parame-
ters to a function quickly without adding unnecessary clut-
ter to SHARP’s version tree. In practice, live coders may
want to maintain the version history tree selectively based
on their needs.

4.2.2 Changing Coding Strategies

The researcher reflected that using SHARP influenced how
they went about live coding. As previously mentioned, one
change was that they could rely on SHARP for versioning,
and did not have to fall back to ad-hoc versioning methods
like keeping multiple versions of a block of code around in
the editor or undoing multiple times to restore the previous
state of the code. In this case, the use of SHARP simply
replaced an old coding behavior.

Beyond just simplifying the way they coded, the researcher
realized they had adapted the way they coded in order to ac-
commodate SHARP. For example, at the start of the study,
they noticed they were combining several musical ideas into
one block of code, i.e., one code block was responsible for
a rhythm section, but there were three different types of
sound (or ’instruments’) defined in the code block. They
found that it was better to break up the code into sepa-
rate blocks so that they could use SHARP to keep track
of the versions for each of the three rhythmic instruments
separately. Because SHARP only does versioning at the
code-block level, SHARP encouraged them to decompose
code into modules.

4.2.3 Composition and Performance

While there are many ways to go about composing a live
coding piece in terms of the improvisation level, the re-
searcher opted for a planned approach where they created a
blueprint for the code which would be executed and the or-

der it would be executed in. In one of the first few sessions,
the researcher went back over the code they had written and
tagged all the versions they thought might be good to use
in their piece. Then, they copy-pasted the tagged versions
into a separate file that had all the code changes written
out in sequence. They reflected that it would be nice for
SHARP to have a way to export tagged versions automati-
cally, but also considered that there was no way to indicate
what order they should go in. The researcher imagined one
possible interaction where the versions could be used as a
palette, and a sequence of versions could be assembled by
dragging versions onto a timeline.

As part of their composition, the researcher wanted to
combine several previous versions into one. Specifically,
they wanted to write code that randomly alternated be-
tween running three different code blocks in SHARP’s ver-
sion tree. Using SHARP, this involved clicking on each
node, copying most of the code, and then pasting it into
a list, which could then be passed to another function in
Tidal. While SHARP did make it easy to switch between
nodes, the process was still somewhat slow, making it a
costly operation for a performance setting.

Finally, as part of their composition, the researcher planned
out a piece that involved periodically returning to the same
section, i.e., program state. The piece’s form was roughly
ABACADA. The researcher found that using SHARP was
particularly well-suited for quickly making the switch back
to the ‘A’ section, which just involved clicking a tagged node
on the version tree. The researcher’s performance recording
is submitted as supplementary material.

4.3 Future Considerations

From our preliminary study, SHARP appears to support
exploration in a live coding setting. But what comes next
after that exploration? SHARP does not currently offer any
specific functionality to aid in synthesizing the results from
a live coding practice session into a performance, a set of
notes summarizing the session, or something similar. More
work is needed to determine what types of functionality
along these lines live coders would want, if any.

The preliminary study also points to possible new affor-
dances for SHARP. For example, SHARP could offer a way
to speed up the process of combining multiple previous pro-
gram states. Additionally, SHARP could add a feature to
help live coders try out running their code in different or-
derings. It is likely that running a study with multiple live
coders may uncover the need for even more new features
along these lines.

5. CONCLUSIONS

Live coders face the pressures of an audience during a per-
formance and the pressures of maintaining mental maps of
their exploration during practice. SHARP aims to aid the
live coder in either scenario—helping them rapidly and ef-
ficiently manage a complex set of not necessarily linear ex-
ploratory ideas and keeping them privy to the SoW and
SoC for each of their instruments. SHARP’s ideas, while
contained to TidalCycles for this research, can be expanded
to any language for musical live coding. These ideas may
also be useful for other types of live coding, such as live
coding graphics.

Through our preliminary autoethnographic study, we have
seen that SHARP can aid in code exploration and enable
useful code switching affordances for performances. We also
uncovered several possible new features for SHARP, such as
the ability to merge multiple program states together into

something new. In the future, we hope to run a larger study
to get a better understanding of how SHARP can fit into
the general live coding practice.

6. ETHICS STATEMENT

Our research was conducted under our university’s com-
puter science department. This work was not supported
by any funding sources. No one was involved in the devel-
opment and validation other than the authors themselves.
The SHARP code is publicly available as open source at
https://web.pulsar-edit.dev/packages/tidal-sharp.

7. REFERENCES

[1] U. Attanayake, B. Swift, H. Gardner, and
A. Sorensen. Disruption and creativity in live coding.
In 2020 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 1-5.
IEEE, 2020.

[2] M. Beth Kery and B. A. Myers. Exploring
exploratory programming. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC), pages 25-29, 2017.

[3] A. Blandford, D. Furniss, and S. Makri. Qualitative
hci research: Going behind the scenes. Synthesis
lectures on human-centered informatics, 9(1):1-115,
2016.

[4] B. Carey and A. Johnston. Reflection on action in
nime research: Two complementary perspectives. 07
2016.

[5] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(03):321-330, 2003.

[6] N. K. Denzin and Y. S. Lincoln. The Sage handbook
of qualitative research. sage, 2011.

[7] M. B. Kery, A. Horvath, and B. A. Myers. Variolite:
Supporting exploratory programming by data
scientists. In CHI, volume 10, pages 3-025, 2017.

[8] M. B. Kery, M. Radensky, M. Arya, B. E. John, and
B. A. Myers. The story in the notebook: Exploratory
data science using a literate programming tool. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI ’18, page 1-11,
New York, NY, USA, 2018. Association for
Computing Machinery.

[9] S. W. Lee and G. Essl. Live writing: Asynchronous
playback of live coding and writing. In Proceedings of
International Conference on Live Coding, Leeds,
United Kingdom, 2015.

[10] A. McLean. Making programming languages to dance
to: live coding with tidal. In Proceedings of the 2nd
ACM SIGPLAN international workshop on
Functional art, music, modeling & design, pages
63-70, 2014.

[11] C. Nilson. Live coding practice. In Proceedings of the
7th International Conference on New Interfaces for
Musical Ezxpression, NIME ’07, page 112-117, New
York, NY, USA, 2007. Association for Computing
Machinery.

[12] B. Swift, A. Sorensen, H. Gardner, and J. Hosking.
Visual code annotations for cyberphysical
programming. In 2013 1st International Workshop on
Live Programming (LIVE), pages 27-30. IEEE, 2013.

https://web.pulsar-edit.dev/packages/tidal-sharp

	Introduction
	Related Work
	SHARP System Overview
	Run code to create a version tree
	Keep Track of SoC and SoW
	Explore Freely with State Navigation
	Implementation Details

	Initial Evaluation
	Methodology
	Results
	Facilitating Exploration
	Changing Coding Strategies
	Composition and Performance

	Future Considerations

	Conclusions
	Ethics Statement
	References

