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ABSTRACT

The steelpan is a pitched percussion instrument that al-
though generally known by listeners is typically not in-
cluded in music instrument audio datasets. This means
that it is usually underrepresented when training existing
data-driven deep learning models for fundamental frequency
estimation. Furthermore, the steelpan has complex acous-
tic properties that make fundamental frequency estimation
challenging when using deep learning models for general
fundamental frequency estimation that are trained to work
with any music instrument. Fundamental frequency estima-
tion or pitch detection is a core task in music information
retrieval and it is interesting to explore methods that are
tailored to specific instruments and whether they can out-
perform more general methods. To address this, we present
SASS-E, the Steelpan Analysis Sample Set for Evaluation
that can be used to train steel-pan specific pitch detection
algorithms as well as propose a custom-trained deep learn-
ing model for steelpan fundamental frequency estimation.
This model outperforms general state-of-the-art methods
such as PYIN and CREPE on steelpan audio - even while
having significantly fewer parameters and operating on a
shorter analysis window. This reduces minimum system la-
tency, allowing for deployment to a real-time system that
can be used in live music contexts.
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•Computing methodologies → Neural networks; •Applied
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The pitch of a melodic instrument is a primary character-
istic of a musical sound. Pitch detection, also referred to
as fundamental frequency estimation, is an important task
for audio processing and analysis. General pitch detection
methods, such as PYIN and CREPE, work well in many sit-
uations, but there are many tasks for which custom-tailored
methods may perform better [13], [7]. In these situations,
a dataset of appropriate audio is needed in order to design
a solution.

Performing pitch detection on the Caribbean steelpan is a
situation in which a custom solution can outperform state-
of-the-art methods such as PYIN and CREPE. In this pa-
per we present SASS-E, the Steelpan Audio Sample Set
for Evaluation, and propose Steelpan-Pitch, a deep learn-
ing model for steelpan pitch detection. The architecture for
Steelpan-Pitch is designed to minimize latency so that it can
be implemented in realtime processing for live audio. SASS-
E is open for public use for training and analysis of steel-
pan audio. We evaluate Steelpan-Pitch on the test set from
SASS-E and compare the results with PYIN and CREPE.
The evaluation shows that our instrument-specific solution,
Steelpan-Pitch, outperforms the baseline state-of-the-art so-
lutions. To further show that the Steelpan-Pitch algorithm
generalizes beyond the steelpan data represented in SASS-
E, it is also evaluated on steelpan samples taken from the
commercial sample library Andy Narell Steel Pans produced
by Ilio. We also conduct an experiment to find the bal-
ancing point between minimizing latency and maintaining
accuracy. Although Steelpan-Pitch is designed for pitch de-
tection on steelpans, our methodology can be used as a tem-
plate for developing other custom instrument-specific pitch
detectors. With a suitable training dataset the Steelpan-
Pitch architecture can be adapted to achieve low latency,
and high accuracy pitch detection for other musical instru-
ments.

The paper is structured as follows: Section 2 presents
background information on the steelpan and pitch detec-
tion. Section 3 presents the details of the SASS-E dataset.
Section 4 presents the proposed architecture of Steelpan-
Pitch. The experiments and results are discussed in Section
5. Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 The Steelpan
The steelpan was invented and developed in Trinidad and
Tobago in the 1930’s and 40’s. Its precursors were made
from old frying pans and biscuit tins, but modern versions
are made from 55-gallon oil drums. The family of steel-
pan instruments comprises about six main voice ranges with
many variations within each voice. The tenor steelpan is the
highest voiced instrument consisting of a single pan. Several



Figure 1: A low-C tenor steelpan.

variations of the tenor steelpan exist, but the most common
layout arranges the notes in the circle of fifths as in Fig. 2.
This note layout is commonly referred to as the“fourths and
fifths” or spiderweb layout. In North America, tenor steel-
pan’s typcially have a range of C4-E6 while in Trinidad it is
more common for tenor steelpans to have a range of D4-F6.
Other tenor steelpan layouts can have different ranges and
completely different note placements. Bass steelpans are
the lowest voiced instruments in the steelpan family. Dif-
ferent configurations consist of between 6 and 12 pans for a
single instrument. Outside of Trinidad, six bass is the most
common with a range of Bb1-Eb3.

Figure 2: Low C tenor steelpan note layout.

The construction process for steelpans is complex. First,
the bottom of the oil drum is sunk through hammering to
create a bowl. Then the builder hammers upward on the
underside of the bowl to create small convex areas for the
individual notes. An “outline” of each note is scored into
the metal to help acoustically isolate the notes. The pan is
then heat treated and the notes are tuned. The skirt of the
oil barrel is also cut to a suitable length for the instrument
range – about 10 cm for tenor steelpans to nearly the full oil
barrel for bass steelpans. Construction is typically finished
by painting or chroming to prevent rusting [15].
The acoustics of the steelpan are complex due to several

factors. The notes have flat (or semi-flat) elliptical shapes.
All of the notes of a single steelpan are acoustically coupled

since they share a common vibrating surface. This cou-
pling causes significant acoustic interference between notes.
Striking a note activates nearby notes that are harmonically
related. There is also nonsinusoidal motion in the struck
note. Due to this, the vibrational behavior of the steelpan
is complicated and non-linear [1], [18]. Tuners typically
tune a vibrational mode of a note to the second harmonic
(an octave above the fundamental). Sometimes a second
vibrational mode can be tuned to the third harmonic (an
octave and a fifth above the fundamental), but, especially
in the high range of the instrument, the higher vibrational
modes will vibrate at unrelated partials [19].

2.2 Pitch Detection Methods
The pitch of an audio signal is a perceptual property that
generally has a strong relationship to its fundamental fre-
quency (F0). This relationship is so strong that the two
terms are often used interchangeably. As a fundamental
property of a signal, pitch detection has received signif-
icant attention and many different approaches have been
proposed.

There are three main categories of approaches: time-
domain, frequency-domain, and data-driven. Most time-
domain approaches are based on the autocorrelation func-
tion where a signal is correlated with itself at various time
lags [21]. Such methods were implemented in digital hard-
ware as early as 1976 [5]. The average magnitude difference
function was proposed as a variation on autocorrelation that
eliminates multiplication operations by using the absolute
value of the difference between the signal and itself at var-
ious time delays [17]. The YIN algorithm was proposed
as a further refinement of the autocorrelation method that
combines it with various methods of error prevention to im-
prove accuracy [4]. Subsequently, PYIN was developed as
a probabilistic version of YIN that uses multiple pitch can-
didates and a Viterbi-decoded hidden Markov model [13].
In contrast to the autocorrelation-based methods, SWIPE
compares the input signal’s spectrum with the spectra of
sawtooth waveforms [3]. The Cepstrum approach uses the
cepstrum of a signal (the power spectrum of the logarithm
of the power spectrum) to perform pitch detection [16]. In
2018, CREPE (Convolutional REpresentation for Pitch Es-
timation) was proposed and it was shown that a data-driven
machine learning method could outpeform the more traditi-
nal digital signal processing methods that were previously
used [7].

Historically, most pitch detection methods generate pitch
candidates algorithmically and use heuristics for selecting
the final output. The best performing of this group of
algorithms was PYIN. In 2018, CREPE presented a new
approach to pitch detection by designing a convolutional
neural network that takes a raw audio signal as input and
outputs a fundamental frequency estimation based on how
it was trained. In their landmark paper, Kim et al. show
that CREPE significantly outperforms PYIN and SWIPE
on the RWC-synth and MedlyDB-stem-synth audio datasets
[7]. This confirms that a data-driven approach to pitch de-
tection is a viable method. There have also been prelimi-
nary explorations of applying these techniques to the steel-
pan [10], [11], [12]. Singh et al. showed that the number
of network parameters of CREPE could be reduced while
simultaneously improving performance by increasing the fil-
ter kernel size and using residual blocks [20]. The CREPE
architecture and variants of it have been re-used in other
audio machine learning contexts and performed well [23].



Figure 3: Sample recording session.

3. SASS-E V1.0
The SASS-E1 (steelpan audio sample set for evaluation) is
a new audio dataset constructed for evaluating music infor-
mation retrieval tasks on steelpan audio. SASS-E includes
samples from three steelpans that are the personal instru-
ments of the first author and were all recently tuned before
recording the audio samples. One is a professional quality
instrument built by Kyle Dunleavy in the United States. It
is a semi-bore, chrome-plated steelpan. This means each
note has four small holes drilled around it. Its range is
C3-F6 (30 notes). The second instrument is a full-bore,
nickel-plated steelpan from Trinidad. The final instrument
is a non-bore, painted steelpan of unknown origin.
The three instruments were recorded at different times

over the course of several years, but all in the same profes-
sional quality recording studio. Microphones used for the
sessions included the Earthworks M50 measurement micro-
phone, Beyerdynamic M 160 ribbon microphone, and the
Schoeps CMC 6 small diaphragm condenser microphone
with MK 4 cardioid capsule. The M 160 and CMC 6 were
positioned underneath the bowl of the steelpans while the
M50 was positioned above the steelpan. The microphone
positions are informed by the recommendations in [14] as
well as the author’s own extensive experience performing
on and recording steelpans. All instruments were recorded
using a Focusrite RedNet 4 audio interface with a smapler-
ate of 96 kHz and bit depth of 24.
Approximately 50 strikes were recorded per note per in-

strument. The strikes were recorded at dynamic levels vary-
ing from pianissimo to fortissimo. The performer attempted
to strike the notes in a variety of locations in order to cap-
ture all of the possible timbral nuances of each note. Notes
in the high range of the steelpan sometimes do not fully ac-
tivate when struck. Non-activating hits were not included
in the dataset.
The samples from the three instruments are mixed in

the dataset. The files identify their source note at the
beginning of their filename. The filenames are formatted
in the form <MIDI note number>_<set>_<instrument la-

bel>_sample_<number>.wav where <MIDI note number>

1https://doi.org/10.5281/zenodo.7803316

refers to the integer MIDI value of the note’s fundamental
frequency, <set> can be “train”, “val”, or “test” depending
on which pre-set split it belongs to, <instrument label> la-
bels the source instrument, and <number> assigns a unique
number to each sample at a given MIDI note value. The au-
dio samples are pre-split into training, validation, and test
sets with 7,931 samples in the training set, 2,680 samples
in the validation set, and 2,702 samples in the test set. The
dataset contains 13,313 samples for a total of 9 hours and 25
minutes of audio. The audio samples are trimmed so there
is minimal leading silence and allows for the full release of
each note to ring out with some trailing silence. Depending
on the situation, users of the dataset should use automatic
trimming on the samples. The shortest audio sample is 1.19
s and the longest is 12.46 s long.

4. PROPOSED ARCHITECTURE
The proposed architecture of Steelpan-Pitch2 is based on
the CREPE architecture, but modified to reduce both the
number of parameters and the minimum latency of the sys-
tem. Steelpan-Pitch is a deep convolutional neural network
that takes a mono time-domain audio signal as input and
produces a pitch estimation as output. Figure 4 shows a
block diagram of the proposed architecture. The input is a
128-sample audio frame at a samplerate of 16 kHz (repre-
sented on the far left of Fig. 4). There are six convolutional
layers and then the network terminates with a fully con-
nected layer. Each triangle in Fig. 4 gives the details for
the layers from left to right. The first convolutional layer
consists of 512 filters of size 64. The second through fourth
layers each consist of 64 filters of size 16, 16, and 8 respec-
tively. The fifth and sixth layers increase the number of
filters to 128 and 256 – both of size 4. After every con-
volutional layer there is a maxpooling layer of size 2. The
output of the final convolutional layer is flattened to a 512-
dimensional latent representation. The fully connected out-
put layer consists of 360 neurons with sigmoid activations
as in [7]. The output vector from the fully connect layer, ŷ,
is used to calculate the final pitch estimate.

Based on [7], the 360 output nodes of the fully connected
layer represent frequency bins with 20 cent logarithmic spac-
ing. The 360 bins are denoted as c1, c2, . . . , c360 and span
six octaves of audio from note C1 (32.70 Hz) to B7 (1975.5
Hz). The output of the system, ĉ, is the frequency estima-
tion given by the weighted mean of the bin frequencies by
the corresponding values of the output vector, ŷ:

ĉ =

∑360
i=1 ŷici∑360
i=1 ŷi

. (1)

The pitch estimate, f̂ , is then given by

f̂ = fref · 2ĉ/1200 (2)

where fref is the reference frequency of 10 Hz.
The network is trained using Gaussian blurring on the

target vectors, ŷ, to encourage the system to prefer nearly
correct predictions when it does make an incorrect predic-
tion [2]. The bin corresponding to the ground truth is given
a value of one and then decays over the surrounding bins
with a standard deviation of 25 cents according to

yi = exp

(
− (ci − ctrue)

2

2 · 252

)
. (3)

Steelpan-Pitch uses a binary cross entropy loss function
to determine the error between the target, y, and the pre-

2https://github.com/malloyca/steelpan-pitch

https://doi.org/10.5281/zenodo.7803316
https://github.com/malloyca/steelpan-pitch


Figure 4: The network architecture of Steelpan-Pitch.

diction, ŷ, as in Equation 4.

L (y, ŷ) =

360∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (4)

The model is optimized using the Adam optimizer with a
learning rate of 0.0002 [8]. Batch normalization [6] and
dropout [22] are used at each convolutional layer as well.
The dropout layers have a dropout probability of 0.25. The
architecture was implemented in TensorFlow using Keras
and trained using Google Colab GPUs.
Although the proposed architecture is based on CREPE,

there are some significant differences. One of the most im-
portant differences in the architecture is the accepted input
signal. CREPE uses a 1,024-sample audio frame as input
while our architecture uses a 128-sample frame. Both sys-
tems use a samplerate of 16 kHz. Thus when operating in
a realtime system, this reduces the minimum latency of the
system from 64 ms for 1,024 samples to 8 ms for 128 sam-
ples. In the original CREPE architecture, a stride of 4 was
used at the first layer and a stride of 1 for each subsequent
layer. Since the input frame to Steelpan-Pitch is smaller,
it uses a stride of 1 for all layers and instead relies solely
on maxpooling for downsampling in the network. The next
main difference is the size of the latent representation at the
end of the convolutional portion of the network. CREPE
has a 2048-dimensional latent space while Steelpan-Pitch
has a 512-dimensional latent space. Steelpan-Pitch also uses
fewer filters per convolutional layer than CREPE. All of this
results in significantly fewer parameters. The proposed ar-
chitecture for Steelpan-Pitch has 1,009,320 total parameters
whereas CREPE has over 22 million.
CREPE also uses a hidden Markov model with the Viterbi

algorithm to probabilistically determine the most likely out-
put. This method is the “p” in the PYIN algorithm. How-
ever, hidden Markov models are computationally expensive.
We chose to omit the hidden Markov model in Steelpan-
Pitch’s architecture because it is designed to be useable in
realtime processing.

5. EXPERIMENTS

5.1 Training Dataset
Steelpan-Pitch was trained solely on the training set from
SASS-E. The recording sessions for constructing SASS-E
were scheduled for shortly after the steelpans were tuned by
a professional steelpan tuner. As such, we make the simpli-
fying assumption that the notes can act as a representative
of notes from their respective pitch classes. In this way, we

treat this as more of a classification task despite estimating
intermediate values at the final output.

The SASS-E dataset was augmented for training using
pitch shifting. A copy of each note in the dataset was ran-
domly pitch shifted up or down between 20 cents and 2
semitones in 20 cent increments. Since the steelpan sam-
ples in SASS-E are all tuned to integer MIDI values, this
allowed us to train the system on intermediate values as
well. Augmenting the core SASS-E training set in this way
effectively doubles the training set size to nearly 19 hours
of audio. Each audio sample has the leading and trailing
silence trimmed and is then sliced into 128-sample audio
frames (8 ms at 16 kHz samplerate) with a step size of 4
ms. This resulted in 3,521,632 training audio frames and
611,197 validation audio frames.

5.2 Methodology
SASS-E is pre-split into training, validation, and test sets
using a 60/20/20 random split. We used these sets for those
purposes. All three sets contain instances of every note from
every instrument in SASS-E. The danger here will be that
the model may overfit the dataset and not generalize to
other steelpans. We address this in Section 5.5. The model
is evaluated in terms of both raw pitch accuracy (RPA)
and raw chroma accuracy (RCA) with 50, 25, and 10 cent
thresholds. Raw Pith Accuracy (RPA) measures the per-
centage of estimations that are within 50, 25, and 10 cents
of the target. Raw Chroma Accuracy (RCA) measures the
percentage of estimations that are within 50, 25, and 10
cents of a member of the target’s pitch class. In other words,
RCA accounts for octave errors.

We compare Steelpan-Pitch against CREPE and pYin.
These methods are the current state-of-the-art machine learn-
ing (CREPE) and time-domain (PYIN) methods available.
For reference, PYIN is evaluated with frame lengths of both
1,024 samples and 128 samples. CREPE only operates with
a frame length of 1,024 samples while Steelpan-Pitch only
operates with a frame length of 128 samples. All three
methods are evaluated on the test set from SASS-E.

5.3 Results
Table 1 shows the RPA results for the pitch detection meth-
ods on the SASS-E test set. We can see that Steelpan-
Pitch significantly outperforms both PYIN (at both frame
lengths) and CREPE. At the 50 cent threshold, Steelpan-
Pitch beats the next best performer by 22 percentage points.
A surprising result here is that PYIN performed somewhat
better with the shorter frame length. Table 2 shows the raw



Model
Frame
length

Params 50 cents
RPA Threshold

25 cents
10 cents

PYIN 128 - 0.761 ± 0.0009 0.688 ± 0.0010 0.523 ± 0.0012
PYIN 1024 - 0.731 ± 0.0015 0.699 ± 0.0016 0.599 ± 0.0017
CREPE 1024 22.2M 0.738 ± 0.0015 0.727 ± 0.0015 0.626 ± 0.0016

Steelpan-Pitch 128 1M 0.982 ± 0.0003 0.976 ± 0.0004 0.948 ± 0.0005

Table 1: Raw Pitch Accuracies and their standard deviations.

Model
Frame
length

Params 50 cents
RCA Threshold

25 cents
10 cents

PYIN 128 - 0.774 ± 0.0001 0.713 ± 0.0010 0.589 ± 0.0011
PYIN 1024 - 0.739 ± 0.0015 0.709 ± 0.0016 0.620 ± 0.0017
CREPE 1024 22.2M 0.773 ± 0.0014 0.761 ± 0.0014 0.668 ± 0.0016

Steelpan-Pitch 128 1M 0.992 ± 0.0002 0.988 ± 0.0003 0.970 ± 0.0004

Table 2: Raw Chroma Accuracies and their standard deviations.

chroma accuracies on the SASS-E test set. In Table 2, we
can see similar results as in Table 1. Steelpan-Pitch once
again outperforms PYIN and CREPE by over 21 percentage
points. An important point to reiterate here is that CREPE
and PYIN both use Hidden Markov Models to probabilisti-
cally predict the next value.
These results are stark, but also understandable. Steelpan-

Pitch was tested on audio samples from the same instru-
ments that it was trained on. In order to show that Steelpan-
Pitch has the potential to generalize beyond the training
instruments, we present another experiment in Section 5.5.

5.4 Frame Length Comparison
In adapting Steelpan-Pitch from Crepe’s architecture, one
of the most important changes made was changing the frame
length of the input signal from 1,024 samples to 128 sam-
ples. The networks are designed to work on audio with a
samplerate of 16 kHz. At this samplerate, 1,024 samples
is 64 milliseconds. This is well beyond the generally ac-
cepted 20 ms threshold for human perception of a signal. If
one were to implement CREPE in a realtime situation, the
minimum latency would be 64 ms which is readily apparent
to human users. In designing Steelpan-Pitch, we decided
to work towards making a system that is ready for realtime
processing situations by reducing the size of the input frame
length while still maintaining a high level of accuracy.
To demonstrate this, we trained different versions of the

Steelpan-Pitch architecture on SASS-E. All versions of the
system are based on the proposed architecture as in Fig.
4. For each different version, the size of the input layer is
changed to a value from [64, 128, 256, 512, 1024] while the
rest of the architecture remains the same. The change in in-
put size causes a change in the dimensions at each layer, but
the number of filters at each layer, the filter sizes, maxpool-
ing, and other parameters are all kept consistent in order
to make the models as comparable as possible. Each of the
architecture were then trained on the SASS-E training set
with the pitch shifting data augmentation as in 5.1 using
appropriately sized audio frames.
The results of the experiment are shown in Table 3. As

expected, the longer the input frame length, the better the
network performs. However, we can see that there is not a
significant reduction in 50-cent raw pitch accuracy until the
frame length is reduced to 64 samples. With a 50-cent raw
pitch accuracy of 0.982 and raw chroma accuracy of 0.992,
a frame length of 128 samples was selected as the optimal
balance between latency and accuracy. At the system’s 16
kHz samplerate, 128 samples is 8 ms in length which is well

within the tolerance of human perception for latency. Table
3 also shows that reducing the frame length can also signifi-
cantly reduce the number of network parameters. Reducing
the frame length from 1,024 samples to 128 results in a 56%
reduction in parameters while sacrificing less than two per-
centage points of 50-cent threshold raw pitch accuracy. A
frame length of 64 samples was not selected because, despite
further reducing the latency to 4 ms, there is a significant
drop in accuracy and only a 4% more reduction in param-
eters than a 128 sample frame length. Due to these factors
we determined a frame length of 128 samples to be the opti-
mal balance between accuracy, number of parameters, and
latency.

5.5 Generalization
In order to demonstrate the ability for Steelpan-pitch to
generalize to other instruments outside of SASS-E, we also
evaluated it on samples recorded from the commercial sam-
ple library Andy Narell Steel Pans – The Ellie Mannette
Collection produced by Ilio. These samples were recorded
at eight velocity levels per note across the entire range of
the instrument in Ableton Live at 48 kHz/24 bits and later
downsampled to 16 kHz. This set totaled 232 audio sam-
ples. Since this is a commercial sample library, we cannot
include the audio in SASS-E and only use it to demonstrate
Steelpan-Pitch’s performance on a steelpan it never ana-
lyzed in training.

The results of this test are shown in Table 4.
Although CREPE slightly outperforms Steelpan-Pitch at

the RPA 50 cent metrics, Steelpan-Pitch performs the best
for the rest of the metric categories. Furthermore, Steelpan-
Pitch’s performance drops off the significantly less than
PYIN’s and CREPE’s at 10 cent thresholds. The accuracy
of Steelpan-Pitch does drop somewhat from its performance
on the SASS-E test set. However, the results here show that
Steelpan-Pitch does generalize to other steelpans beyond
those in SASS-E. Steelpan-Pitch’s RCA results in particu-
lar are excellent with 95.9% accuracy within 50 cents of the
chroma value. This shows a significant portion of Steelpan-
Pitch’s errors on this instrument are octave errors. This
further validates our initial simplifying assumption for gen-
erating the training targets. The ability for Steelpan-Pitch
to generalize will likely continue to improve as SASS-E is
expanded and Steelpan-Pitch is trained on a wider variety
of steelpans.

6. CONCLUSION AND FUTURE WORK



Frame length
(samples)

Frame length
(ms)

Params
Threshold
(cents)

RPA RCA

64 4 0.9 M
50
25
10

0.912 ± 0.00065
0.910 ± 0.00067
0.872 ± 0.00086

0.949 ± 0.00051
0.935 ± 0.00057
0.899 ± 0.00070

128 8 1.0 M
50
25
10

0.982 ± 0.00031
0.976 ± 0.00036
0.949 ± 0.00052

0.992 ± 0.00021
0.988 ± 0.00025
0.970 ± 0.00040

256 16 1.2 M
50
25
10

0.996 ± 0.00015
0.996 ± 0.00016
0.951 ± 0.00051

0.998 ± 0.00010
0.998 ± 0.00011
0.980 ± 0.00034

512 32 1.6 M
50
25
10

0.999 ± 0.00008
0.999 ± 0.00008
0.984 ± 0.00030

0.999 ± 0.00007
0.999 ± 0.00007
0.993 ± 0.00020

1024 64 2.3 M
50
25
10

0.999 ± 0.00016
0.999 ± 0.00016
0.990 ± 0.00062

0.999 ± 0.00015
0.999 ± 0.00015
0.996 ± 0.00036

Table 3: Comparison of RPA and RCA for different frame lengths (results for the chosen architecture in bold).

Model Frame Length Metric 50 cents
Threshold
25 cents

10 cents

PYIN 128
RPA
RCA

0.848 ± 0.0032
0.858 ± 0.0032

0.726 ± 0.0041
0.762 ± 0.0039

0.502 ± 0.0046
0.594 ± 0.0044

PYIN 1024
RPA
RCA

0.825 ± 0.0097
0.825 ± 0.0097

0.765 ± 0.0108
0.767 ± 0.0108

0.607 ± 0.0125
0.650 ± 0.0122

CREPE 1024
RPA
RCA

0.872 ± 0.0046
0.916 ± 0.0039

0.815 ± 0.0054
0.838 ± 0.0051

0.627 ± 0.0067
0.662 ± 0.0066

Steelpan-Pitch 128
RPA
RCA

0.862 ± 0.0048
0.959 ± 0.0028

0.833 ± 0.0052
0.945 ± 0.0032

0.723 ± 0.0062
0.880 ± 0.0045

Table 4: RPA and RCA accuracies and standard deviations of PYIN, CREPE, and Steelpan-Pitch on novel steelpan samples.

In this paper we presented a new steelpan-specific data-
driven method for pitch detection and a new audio dataset
consisting of steelpan audio samples. We show that by lim-
iting the scope of the pitch detection system, it can outper-
form state-of-the-art systems like CREPE and PYIN de-
spite working on short audio frames with 8 ms of audio.
We further show that while the performance does suffer to
an extent, Steelpan-Pitch is not simply overfitting to the
dataset since it achieves acceptable results on an instance
from outside the dataset.

6.1 Future of SASS-E
In the future we plan to expand the SASS-E dataset by
adding more instances of tenor steelpans, instances of all
members of the steelpan family, and to add more articu-
lation types for all instruments. The tenor steelpan is the
main melodic instrument in the steelpan family and the
most common, but the other variations should also be rep-
resented. Since the acoustics of each different instrument
and note layout vary, it will be ideal to include at least 2-
3 instances of each type of steelpan as it is added to the
dataset. The other primary members of the steelpan fam-
ily of instruments include (from high to low voice): double
tenor, double second, guitar, cello, tenor bass, and bass
steelpans.
The type of mallet used to activate a steelpan note can

have a drastic effect on the timbre of the instrument [9].
Steelpans are typically played with rubber tipped mallets,
but there are many alternatives that are becoming increas-
ingly common in performance such as cardboard tubing,
chopsticks, brushes, yarn-wrapped mallets, and bundle rods.
The dataset should also be augmented to include samples
with as wide a variety of mallets as well.

6.2 Steelpan-Pitch
The accuracy results for Steelpan-Pitch demonstrate that a
custom-trained neural net for instrument-specific pitch de-
tector can significantly outperform general pitch methods
such as PYIN or CREPE. The next step for Steelpan-Pitch,
however, is to further train it on a wider variety of steelpans
covering the full range of the steelpan family. This is nec-
essary in order to improve the generalization of the system
to all types of steelpans. While the model currently per-
forms well on other instances of tenor steelpans, it is likely
that Steelpan-Pitch will not perform well on lower voiced
steelpans.

Steelpan-Pitch is trained only on recently tuned instru-
ments, but old, “janky” steelpans have an iconic sound of
their own. The overtones are often wildly out of tune from
the fundamental, but humans can still generally recognize
the pitches. We do not yet have any samples from such
instruments in our dataset to evaluate any of the pitch de-
tection methods on, but in all likelihood the accuracy will
suffer. With a data-driven approach like in Steelpan-Pitch,
we can incorporate these kinds of sounds into the repre-
sentation when representative data is added to the dataset.
After enough instruments of this type have been included,
the system should be able to perform well on these instru-
ments as well. Due to the esoteric nature and availability
of these instruments, they are also unlikely to gain repre-
sentation in general audio datasets.

The goal for Steelpan-Pitch is to maintain a well perform-
ing, but lightweight model that can be used for realtime
pitch detection. The reason for this is that Colin Malloy,
one of the authors, is a regular performer of electroacoustic
steelpan music. His longterm goal is to build a low latency,
realtime steelpan pitch transcription system that can an-



alyze his playing live and perform audio processing tasks
based on what he plays.
Steelpan-Pitch is provided as a pre-trained model for an-

alyzing steelpan audio. However, another plan is to extend
the system so that another performer can easily customize
the model for their specific instrument. In this case, the pro-
vided pre-trained weights would be used for transfer learn-
ing. The final training for the system would be on audio
provided by the performer from their specific audio setup
to improve adaptability to other instruments and audio sit-
uations.

6.3 Other Future Work
An important question raised in the course of this work,
but that is beyond the scope of this research, is in regard
to the relationship between a general pitch detector versus
an instrument-specific pitch detector. How does the trade
off between generalization and instrument-specific accuracy
work? If SASS-E were incorporated into CREPE’s training
set, would it perform as well on steelpan audio as Steelpan-
Pitch? Or, even if SASS-E were incorporated into the train-
ing corpus, would the general, mixed nature of the training
set prevent it from achieving state of the art results in such
a specific situation? Typically, systems that are designed to
work well in the general case lose accuracy in specific cases.
Whether this is necessarily the case for data-driven pitch
detectors deserves further research.
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