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ABSTRACT

This article presents Jacdac-for-Max: a cross-platform, open-
source set of node.js scripts and custom Cycling ’74 Max
objects which enable the use of Jacdac, an open, modular
plug-and-play hardware prototyping platform, with Max vi-
sual programming language frequently used for audio-visual
applications. We discuss the design and implementation of
Jacdac-for-Max, and explore a number of example applica-
tions. Through this we show how Jacdac-for-Max can be
used to rapidly prototype digital musical interfaces based
on a range of input devices. Additionally, we discuss these
qualities within the context of established principles for de-
signing musical hardware, and the emerging concepts of
long-tail hardware and frugal innovation. We believe that
through Jacdac-for-Max, Jacdac provides a compelling ap-
proach to prototyping musical interfaces while supporting
the evolution beyond a prototype with more robust and
scalable solutions.

Author Keywords

NIME, musical hardware, prototyping toolkits, long-tail hard-
ware

CCS Concepts

•Applied computing→ Sound and music computing; •Hardware
→ PCB design and layout; •Human-centered computing →
User interface toolkits;

1. INTRODUCTION
Artists searching for new forms of musical expression of-
ten turn to creating their own instruments. But creating
a new instrument can involve a complex, time-consuming
and costly journey. Electronic prototyping platforms can
provide a more accessible route, and using these has be-
come easier with platforms such as LittleBits [5], Arduino
[1], Bela [28] and Raspberry Pi [32]. Indeed, the afore-
mentioned platforms have all been successfully used for de-
veloping new interfaces that support musical expression.
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However, working with electronics still requires technical
knowledge of components, circuit design and firmware—all
of which present barriers to less experienced users. Coupled
with this, users wishing to transition beyond the prototype
face additional complexities of redesigning devices for man-
ufacture, resulting in a large number of devices which never
realise their true impact. These issues have been discussed
most notably within the context of long-tail hardware [20,
21], but similar themes and challenges have been highlighted
within NIME-related work [14, 18, 19]. Thus, there are
shared demands for approaches to developing NIMEs which
can address at least some of the barriers to scale devices be-
yond the prototype stages.

Jacdac [16] is a recently-developed modular plug-and-play
prototyping platform that removes some of the complexity
of prototyping through both hardware and software abstrac-
tion. Furthermore, Jacdac modules can enforce design stan-
dards with manufacturability in mind [2], and these quali-
ties have been shown to make Jacdac a suitable platform to
evolve devices beyond the prototype stages [17].

This paper describes Jacdac-for-Max: a cross-platform
Max package that is closely coupled to Jacdac’s service spec-
ification and which extends Jacdac’s modular, plug-and-
play properties. It allows users to map events or values
received from Jacdac modules to other Max objects. We
explore the various forms devices can take by way of three
examples, which we discuss through three contexts: es-
tablished design principles for musical hardware controllers
[19], long-tail hardware [21] and frugal innovation [3]. We
highlight qualities common to these contexts and reflect on
how Jacdac-for-Max, coupled with Jacdac, presents a new
route for artists to create and adapt instruments. Addition-
ally, we explore Jacdac’s suitability to evolve devices beyond
prototypes [17], drawing attention to how issues associated
with long-tail hardware [20, 21] are related to contemporary
design guidelines for musical controllers [19].

2. RELATED WORK & MOTIVATION
This review of related work first considers embedded elec-
tronics, hardware prototyping toolkits and techniques, and
in particular discusses design principles for musical con-
texts. Secondly, there is relevant work covering the map-
ping of controllers to sound, exploring common frameworks
and popular methods, including some used in Max. For
clarity, we also provide a subsection describing the Jacdac
electronics prototyping platform and ways in which it can
be programmed. Lastly, we present the motivation of this
work.

2.1 Musical Interface Hardware Exploration
Embedded hardware has become increasingly accessible over
recent years with the rising popularity of hardware proto-



typing tools such as Raspberry Pi [32], Arduino, and many
other increasingly modular approaches such as Adafruit’s
STEMMA and Sparkfun’s Qwiic [6], as well as many others
[26]. As such, we see embedded hardware being used for
many different creative purposes, including music-making,
as exemplified by Bela [28], an embedded hardware platform
for low-latency control of sound. As well as Korg’s collab-
oration with littleBits [31] a collection of analog hardware
modules that can be linked together to construct new instru-
ments and interfaces. Probatio [10] is similar, open source,
toolkit that allows users to design and assemble their own
digital musical instruments from discrete blocks. Other ap-
proaches such as BlockJam [30], ReacTable [24] and MO [34]
further explore modularity to encourage ad-hoc construc-
tion of musical artefacts. Additionally, additive manufac-
turing approaches have been embraced to embed hardware
into 3D printed structures which can be used to rapidly
prototype, or augment existing instruments [11].
However, many of these prototyping approaches have draw-

backs such as: the complexity of initial setup for less ex-
perienced users, the required system configuration knowl-
edge when adjusting the hardware, and limits to the num-
ber of modules that may be connected at once. Moreover,
while getting to an initial prototype is achievable for most—
transitioning beyond this prototype to a device suitable for
low-volume deployment is extremely difficult [20, 21]. These
difficulties can relate to the complexity and cost associated
with the need to completely redesign a device from proto-
type to deployment, identifying and sourcing components as
well as manufacturing considerations. Some of these issues
have been discussed within the context of musical inter-
faces, mainly relating to issues of longevity in NIMEs [27,
29], resulting in a large number of DMIs (digital musical in-
terface) being abandoned soon after they are created. These
concerns have been underscored in work by Hattwick and
Wanderley [19], where they provide a set of principles, rein-
terpreted from those originally proposed by Perry Cook [12,
13]. Hattwick and Wanderley’s principles shift the focus to,
among other things, robustness, re-usability and manufac-
turability.
When considered in the context of barriers of long-tail

hardware [20, 21] and moving beyond the prototype [25],
there are clear, shared shortcomings preventing large num-
bers of musical interface prototypes from ever realising their
true impact.

2.2 Mapping Controllers to Sound
The mapping of different types of physical expression to pa-
rameters of the music generation process and other forms
of control is a central tenet of musical interface design [23].
There are different forms of mapping such as one-to-one,
one-to-many and many-to-many, where these define the re-
lationship between the physical control(s) and associated
parameter(s) [39]. In some cases, it is useful to create in-
termediate mappings, to support additional processing be-
tween controls and the resulting sounds [22].
There are many applications which showcase the value

of creating custom mappings. For example, an Ableton-
related project Mapper4Live [8], uses the Max-for-Live frame-
work to expose Ableton’s synthesis and control engines, to
allow users to map forms of interaction between controllers
and hardware/software synthesis. Mapping of sound to
hardware has also been shown to assist the visually impaired
in prototyping new devices [33].
Max has been used frequently, either to map external

hardware to elements in Max, such as mira [37] which facil-
itates control over elements in Max using a connected iPad.

Similarly Max has been used to program and control hard-
ware, a prominent example being Oopsy [38] which uses
Max/gen∼, along with an Arduino to program Eurorack
modular hardware. As well as the previously mentioned
MO [34], which presents both Arduino and Max as program-
ming routes. Max’s visual interface embodies this mapping
metaphor with objects connected together via patch cords.
Many software packages have built upon Max’s mapping
features like MnM [7] which allows users to map gestures
to forms of sound control. These examples demonstrate
Max’s pragmatism for mapping, both with respect to the
programming approach it encourages as well as the support
for varied external hardware.

2.3 Jacdac
Jacdac [16], an open-source, modular, plug-and-play de-
vice creation platform, addresses drawbacks associated with
some of the established hardware prototyping systems. Jac-
dac modules in the form of sensors, actuators, display ele-
ments etc., are coupled with a service-based model [4] that
provides abstractions over the hardware. This reduces com-
plexity in programming and debugging. In addition, Jac-
dac has been designed to support the construction of devices
that are more robust than a typical electronics prototype [2].
This has been explored in MakeDevice, a web-based tool
which allows users to generate custom carrier circuit boards
for permanently mounting Jacdac modules, and to design
enclosures for the resulting Jacdac devices [17].

Options for programming Jacdac include MakeCode [15],
a popular web-based drag-and-drop programming approach
which uses visual code blocks. Other options include Python
and TypeScript. If users want to explore crafting novel mu-
sical controllers for Max, this would require either writing
Max externals in C or an implementation of the Jacdac
TypeScript stack (Jacdac-ts) within Max’s node-for-max
framework.

2.4 Motivation
The core motivation for this work is addressing issues re-
lated to prototyping and developing new musical interfaces
with embedded hardware.

We aim to build on previously-demonstrated physical tools
for musical expression [9, 10, 30, 34], by addressing the need
for higher fidelity prototypes [14], as well as consideration
of how promising new solutions can be produced beyond
one-off prototypes to support adoption at scale [18, 19, 27,
29]. We believe that a route to addressing this gap is to
leverage the scalability features of Jacdac [2] and thereby
address the replication challenge of long-tail hardware [21].

Jacdac’s modular, plug-and-play nature has advantages
compared to other embedded hardware toolkits [16], cou-
pled with previous work exploring Jacdac beyond the pro-
totype [17]. We propose to extend Jacdac for use within
musical contexts, while maintaining and building upon its
modular, plug-and-play properties. Given the established
nature of Max within the creative community, and the flex-
ibility it provides in terms of objects and their mapping, we
believe this integration is a fruitful path of exploration.

3. DESIGN & IMPLEMENTATION
In this section we detail the design and implementation of
Jacdac-for-Max. This includes an overview of the architec-
ture and frameworks used, the node-for-max scripts, and
the Max objects we’ve created to represent each of the dif-
ferent Jacdac services. Additionally, we detail how our im-



plementation automatically generates node.js snippets and
the required Max objects directly from the Jacdac service
specification.

Figure 1: Architecture of Jacdac-for-Max. A [node.script]
object connects to and receives packets from the Jacdac Bus,
formats these and then sends them to all [JDService] objects.
These filter the relevant data, and route it to specified out-
lets.

3.1 Jacdac-for-Max Object

Figure 2: Example of how Jacdac-for-Max is used within
a patch. (a) A [jacdac-for-max] object with some common
commands used to interface with it. (b) A [JDServiceRo-
taryEncoder] object which serves as an end-point for data
from a connected Jacdac slider.

The [jacdac-for-max] object is the first object the user
will instantiate. As shown in Figure 1, it contains: the
node.js scripts for connecting and processing messages from
the Jacdac bus, a [dict] object storing a map of connected
devices and a [js] object for creating/deleting [JDService]

// get (register to REPORT_UPDATE event to enable background
refresh)

const positionReg = service.register(RotaryEncoderReg.
Position);

positionReg.on(REPORT_UPDATE, () => {
const [position] = positionReg.unpackedValue;
maxApi.outlet([service.maxID.toString(), "position",

position.toString()]);
});

Figure 3: A TypeScript code snippet that shows how event
listeners are generated for the position register of the rotary
encoder service.

objects. It can receive a number of commands to connec-
t/disconnect or restart the Jacdac connection, as well as
generate [JDService] objects (see Figure 2a).

3.2 Jacdac and Node-for-Max
A node implementation of Jacdac-ts presents a straight-
forward route to expose the Jacdac bus in the node-for-
max framework. Jacdac-for-Max leverages Jacdac’s service
model [4], resulting in a total of 39 sensor-based supported
services. Each Jacdac sensor service is represented as a
function within the [node.script] object seen in Figure 1.

These functions all follow a similar design pattern: cre-
ating an event listener for any register or event changes,
formatting these event messages as arrays of strings, and
adding the ID specific to that service instance. The result
is emitted from the [node.script] objects outlet. Figure 3
provides an example function for reporting updates to the
position register of a rotary encoder service. All messages
are sent using Max’s [send] object and each [JDService] re-
ceives all messages.

3.3 Max Objects for Jacdac Services

Figure 4: Jacdac Button service patch, showing how mes-
sages for register values and events are routed and directed
to individual outlets.

3.3.1 Structure of JDService objects
For each of the 39 supported Jacdac services, there is a
Max object to represent it. These all follow the naming
convention of [JDServiceX], where X is the service’s full
name; these are represented as [JDService] in Figure 1. An



example of how these objects are instantiated within a Max
patch can be seen in Figure 2. Additionally, Figure 4 shows
the internal sub-patch of a Max object for a Jacdac button
service; this conforms tightly to the service specification,
exposing read-only registers specific to that service.

3.3.2 Filtering received messages
As multiple connected devices can provide the same service,
we create Max objects for each unique device and service
combination. This is achieved by passing the friendly name
of a service as a parameter into a Jacdac-for-Max service
object. In Figure 2(b) the [JDServiceRotaryEncoder] ob-
ject has the parameter ‘UG40 2’, and any messages received
without that ID are not processed by the given JDService
object.

3.3.3 Spawning or removing JDService objects
To promote plug-and-play with Jacdac-for-Max, we provide
users with the ability to automatically spawn [JDService]
objects for all of their connected modules. To keep track of
which services and modules are present, a [dict] Max object
stores a mapping between the friendlyName of a service and
its full name. This updates automatically as the state of the
Jacdac bus updates, see Figure 5 for an example.
When the user requests to generate [JDService] objects,

these values are passed a Max [js] object, which will create
or delete [JDService] objects within the main Max patch.
The full service name stored in the [dict] object is used to
identify which [JDService] object to create, and the friend-
lyName is passed as a parameter to that object.

{
UG40_0 : control,
UG40_1 : rotary encoder,
UG40_2 : button
}

Figure 5: A dictionary stores the mappings between services’
friendly names (unique identifiers) and the corresponding
long names.

3.4 Generation from Service Specification
Both the functions used to create event listeners for events
and registers (section 3.2), and the JDService Max objects
(section 3.3), follow consistent design patterns. This al-
lows Jacdac-for-Max to generate all of these objects directly
from the Jacdac service specification. This is done primar-
ily to promote a strong coupling between Jacdac-for-Max
implementation and the Jacdac service specification. This
means that few, if any, changes are required to Jacdac-for-
Max’s implementation when new Jacdac sensor services are
created. Additionally, this supports maintainability of the
code, reducing the points at which errors could arise, com-
pared to the manual implementation of services.

3.5 Performance
Jacdac’s performance has been previously documented [4],
as such we’ll draw heavily from this work. One aspect of
Jacdac highlighted by this work is it’s intended use, that is:
”to create an embedded system from a small network of low-
bandwidth sensors and actuators, with one to two handfuls
of devices (modules and brain)” [4]. So while latency may
not be as low when compared to other hardware, robust-
ness and ease of implementation is prioritised. That being

said, Ball et al’s 2023 work includes information key for
NIME contexts. With respect to latency : the time between
a Jacdac module sending a packet and it being received
is under 500µs. In relation to streaming intervals, sensor
stream data is the largest user of wire time, so the advised
streaming interval for Jacdac is no more than 50Hz.

While an evaluation of Jacdac-for-Max has not yet taken
place, we have conducted preliminary measurements of gesture-
to-sound latency with Jacdac-for-Max. For our experimen-
tal setup we chose to emulate a previous approach [40]. We
created a simple Jacdac-for-Max patch, where a Jacdac but-
ton press was used to trigger a click audio impulse, the au-
dio was recorded through an external microphone into a
different computer. The Jacdac brain used was an RP2040,
connected via USB-C over serial connection, the computer
used was a 2020 MacBook with an M1 processor and 16GB
of RAM. To calculate latency we measured the time between
the sound the button press and the click sound generated
in Max. To provide a comparison, we did the same test
but instead a keyboard press which triggered the click. We
repeated this 10 times in order to generate an average. In
our setup Jacdac-for-Max had an average gesture-to-sound
latency of 47ms, with a range of 40-60ms, for comparison
the latency from a keyboard key press was an average of
38ms with a range of 30-50ms. It is worth noting our ex-
perimental setup does not account for additional hardware
latencies. From the results, Jacdac-for-Max adds an average
gesture-to-sound latency of 9ms.

While these results are preliminary, a wide-ranging analy-
sis of performance and user evaluation is planned for future
work, but the results presented here should provide an ad-
equate reference point. We expect that the performance of
Jacdac-for-Max will be worse compared to lower level ap-
proaches such as Bela [28], with the trade-off being the
modularity and service-level abstraction providing an eas-
ier entry point to novices who wish to prototype musical
interfaces.

4. EXPLORING JACDAC-FOR-MAX
To demonstrate the range of applications made possible
through Jacdac-for-Max, we present 3 examples. We have
selected these to express the range in both functionality
that Jacdac-for-Max unlocks, as well as the form the result-
ing interfaces can take.

4.1 Wired Prototyping
We start with a simple buffer sampler with controls for
changing the buffer start position, sample length, pitch and
volume. We’ve used Jacdac-for-Max to map these controls
to a number of Jacdac modules. You can see a Figure of
the patch in presentation mode in Figure 6. We show here
how values received from JDService objects, can be scaled
and used within a Max patch.

In Figure 7, we show a set of wired Jacdac modules which
are used to control various aspects of the simple buffer sam-
pler patch shown in Figure 6. This form of Jacdac is the
simplest and most common, where modules are connected
together using Jacdac cables. This maximizes flexibility, al-
lowing users to plug or unplug modules when iterating on
a prototype.

4.2 Evolving Beyond the Prototype
Previous work has discussed the barriers faced when moving
beyond a desktop prototype, to a more robust device suit-
able for deployment [25]. This is especially true when scal-



Figure 6: Buffer example Max patch, showing how data re-
ceived from Jacdac modules can be scaled and mapped to
other parameters.

Figure 7: A wired Jacdac device. Modules here are used
to control the parameters of the buffer sampler seen in Fig-
ure 6. The modules pictured are: a Jacdac micro:bit adapter
connected to a micro:bit, a button/rotary encoder, and two
sliders.

Figure 8: An automatically-designed carrier board with Jac-
dac modules screwed to it. There are two Jacdac sliders, a
rotary control and an adapter for connecting a micro:bit (not
shown).

ing to tens or more copies of a prototype device, when cost
starts to be a concern too. A common approach involves the
transition to a custom-designed circuit, but this can require
a lot of time, skill and money. Elements of Jacdac have
been designed with overcoming these barriers in mind. For
example, the module mounting holes not only support phys-
ical mounting, but also provide a way to connect modules
electrically as an alternative to using Jacdac cables. This
makes it possible to mount Jacdac modules onto a ‘carrier’
circuit board that provides electrical connectivity between
modules using traces, as explored by MakeDevice [17]. This
work also demonstrates how enclosures for the resulting Jac-
dac devices can be generated semi-automatically to further
facilitate deployment.

The resulting device is of a consistent, often smaller form
factor. The features described here allow for exploration of
devices in higher fidelities, with more robust and compact
construction. This has not only been discussed as a core
need in research [14, 18], but is also instrumental in live
performance contexts [36].

In Figure 8 we show how Jacdac modules can be arranged
on and screwed to a carrier board, eliminating the need for
cables. The figure shows the same device detailed in Sec-
tion 4.1—with two sliders and a rotary control to modulate
aspects of a buffer sampler—implemented in this more de-
ployable form.

4.3 Augmenting Instruments

Figure 9: An electric guitar augmented with a Jacdac slider,
rotary control and light sensor. The person pictured is using
the Jacdac slider on the left to modulate the dry/wet mix of
a delay effect in Max.

The final example we include here is how Jacdac mod-
ules, along with Jacdac-for-Max can be used to augment
an existing instrument. We show in 9, a guitar with slider,
rotary control and light sensor modules attached by velcro,
and connected together using Jacdac wires. In this instance,
they are used to control a series of effects within Max. The
rotary and slider modules are used to control delay effect
times and amounts. The light sensor is used to modulate,
with a hand, the amount of tremolo, acting as an analogue
to a traditional tremolo or ‘whammy’ bar.

This example can be extended in a similar way to the
example shown in Section 4.2. Instead of attaching mod-
ules to the front of an instrument and connecting them via
Jacdac cables, they could be mounted onto a carrier PCB
and placed inside the instrument.

5. DISCUSSION
In this section we discuss the wider values of Jacdac and
Jacdac-for-Max. We reflect on the work presented here
within the context of established design principles for mu-
sical hardware and long-tail hardware. Finally, we discuss



our work in relation to this year’s conference theme of frugal
innovation.

5.1 Unlocking a Long Tail of Musical Inter-

faces
While new prototyping methods and tools for new interfaces
for musical expression have previously been demonstrated
[9, 10], there is still a need for exploration of higher fidelity
prototypes [14] as well as consideration for the longevity
and replication [27, 29].
As discussed in the motivation (Section 2.4) and men-

tioned again with our examples (Section 4.2), developers
of new musical interfaces can face significant barriers when
making this transition from a hardware prototype to some-
thing suitable for deployment or replication [25]. Beyond
this, further manufacturing considerations may need to be
taken into account to support adoption at scale [18, 19].
These barriers are shared with those identified in previous
work on the concept of long-tail hardware [21]. Indeed, a
number of key design principles outlined in previous work
but underscored by Hattwick and Wanderley are related to
issues associated with long-tail hardware—in particular the
principles of re-usability, robustness and manufacturability.
Here we will discuss how Jacdac and Jacdac-for-Max can
address these.
Firstly, in relation to re-usability, Jacdac’s modularity

and service-based representation [4] means that rotary mod-
ules from different manufacturers will behave equivalently,
as long as they present the same Jacdac service. This means
that people with Jacdac modules from different manufac-
turers can easily replicate each others devices. This re-
usability extends to Jacdac-for-Max too; because the Max
objects provided are strongly coupled to the Jacdac service
model, a patch shared between users will work seamlessly.
In this way, we promote Jacdac and Jacdac-for-Max as a
way for users to easily share and collaborate on creative
devices, thereby removing the complexity associated with
the today’s frequent need to replicate exact hardware im-
plementations. However, Jacdac in its wired desktop form,
if orientation and position of modules is key to a device, re-
usability may be hampered. But using concepts discussed
in 4.2 and outlined in previous work [17], modules can be
screwed down to a custom carrier board. In this way, a
consistency of orientation and position of modules is en-
forced, ensuring re-usability and replicability of a device.
These points also relate to supporting robustness, not just
of devices in the prototyping stage, but also beyond it. Jac-
dac modules, specifically those supporting the EC30 form
factor [2], make it easier to design enclosures for Jacdac de-
vices. Such that devices can be designed to withstand shock
or harsh conditions (e.g. in a live performance setting).
These aspects additionally inform manufacturability, with
Jacdac’s EC30 form factor [2] promoting surface mounting
of modules to carrier PCBs as shown with MakeDevice [17],
and in Section 4.2. While methods for transitioning Jacdac
to a form which prioritises manufacturability and scalabil-
ity is in it’s early stages, there is scope to use Jacdac as a
vehicle to explore the flattening of individual modules onto
a single PCB, removing redundant components and gener-
ating a new but equivalent PCB design which can be easily
manufactured at scale.

5.2 Frugal Innovation
Considering the theme of NIME 2023, we thought it valu-
able to reflect on how Jacdac-for-Max can lower, but also

present barriers in using Jacdac for frugal music innovation.
We do this with particular reference to the core competen-
cies outlined by Santa Clara University’s Frugal Innovation
Hub [3].

Firstly, Jacdac’s protocol supports implementation on rel-
atively low-priced micro-controllers [16], resulting in a end
price which is affordable and certainly comparable to other
modular prototyping platforms, if not lower. Although the
use of one MCU per sensor does have a negative impact
on overall cost. Additionally, Jacdac-for-Max’s reliance on
proprietary, paid software (Max) does present a barrier to
use, although Jacdac-for-Max as a package will be released
for free and open source. Jacdac, with its modular form and
intuitive plug-and-play approach is human-centric, in that
it builds on previous tools and work showing that modu-
larity fosters creativity in the crafting process [35]. Clear
roles and services of modules, present a simplicity in cre-
ating multi-functional devices, as has been reinforced by a
previous evaluation of Jacdac [16]. Jacdac-for-Max embod-
ies this model, providing a straightforward way for users
to connect and use Jacdac modules within Max. Addition-
ally, by exposing individual service/device combinations as
Max objects, we conform both to Jacdac’s service model
and typical Max practices. This also brings a level of high
adaptability, both in how users can chain together physi-
cal Jacdac modules, and how they can map these values to
various Max objects. Jacdac modules are lightweight and
mobile, as shown in Section 4.3 and great for augmenting
existing instruments. Albeit, Jacdac-for-Max’s requirement
for a computer running Max can reduce its suitability in
these, as well as rugged contexts. However, as shown in the
example in Section 4.2, and discussed further in the context
long-tail hardware in Section 2.4: Jacdac’s form factor and
design choices make assembly with carrier PCBs, design for
enclosures easier to achieve [17]. These aspects could be ex-
tended further to include IP rated enclosures, more suitable
for rugged deployments. It is worth noting another aspect
of Jacdac which go against the qualities of frugal innova-
tion. that having one MCU per sensor is by no means a
green approach to developing hardware.

6. FUTURE WORK & CONCLUSION
As for future work, we wish to build and integrate a wider
range of musical interfaces based on Jacdac, as well as in-
crease the number of sensors and actuators which can be
used with Jacdac-for-Max. We would also like to explore
further how Jacdac-for-Max can be used to ease the cre-
ation of novel musical controllers and their integration into
enclosures. We plan to explore these concepts further, co-
designing with artists to evolve a Jacdac prototype, which
uses Jacdac-for-Max, into forms suitable for low-volume de-
ployment and use in performance. Additionally, in Novem-
ber 2022, Cycling ’74 announced RNBO1, a new Max-like
workflow, which lets users to export RNBO patches to tar-
gets including VST,Web Assembly and Raspberry Pi. Given
RNBO is unlocking possibilities for how hardware can be
used in musical interfaces, we are interested in extending
RNBO to support Jacdac as a compilation target. While
the current selection of Jacdac brains don’t offer the pro-
cessing capabilities to support RNBO, there is scope for
developing a Jacdac brain which can. This would allow a
Jacdac solution which combines Jacdac modules like slid-
ers and rotary controls with a Jacdac audio output module
and a Jacdac processor module configured using Jacdac-
for-Max, would remove the need for a computer, increasing

1cycling74.com/products/rnbo



deployment options.
In conclusion, this work has presented Jacdac-for-Max,

a package which extends Jacdac’s, modular, plug-and-play
characteristics to Max. Allowing users to prototype and de-
velop new forms of musical controllers within Max, without
in-depth knowledge of embedded hardware. We have ex-
plored how users can construct devices using Jacdac, and
program musical controllers using Jacdac-for-Max, by way
of three examples. Additionally, we discussed the value this
work holds in relation to established design principles [19],
and drew parallels with work relating to the long-tail of
hardware [21] and frugal innovation [3]. We have high-
lighted how characteristics of Jacdac, which are built upon
with Jacdac-for-Max, might help artists in designing and
prototyping devices. We believe the platforms presented
make it easier for users to explore, among other things, re-
usability, robustness and manufacturability. We reflected on
how these qualities help users in exploring devices at higher
fidelities and in more robust forms, unlocking a long tail of
musical interfaces.
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