
Leveraging Android Phones to Democratize Low-level
Audio Programming

Carla Sophie Tapparo
Independent Researcher
Buenos Aires, Argentina

sophiecarlatapparo@gmail.com

Brooke Chalmers
Northeastern University

Boston, MA, USA
chalmers.b@northeastern.edu

Victor Zappi
Northeastern University

Boston, MA, USA
v.zappi@northeastern.edu

ABSTRACT

In this work we introduce LDSP, a novel technology capa-
ble of turning any Android phone into a high-performance
embedded platform for digital musical instrument (DMI)
design. Embedded platforms are powerful technologies that
changed the way we design and even think of DMIs. Their
widespread adoption has popularized low-level audio pro-
gramming, enabling engineers and artists alike to create
highly responsive, self-contained digital musical instruments
that have direct access to hardware resources. However,
if we shift our focus away from the wealthy countries of
the Global North, embedded platforms become a commod-
ity that only a few can afford. DMI researchers, artists and
students from Latin America have discussed at great lengths
the effects that the lack of access to these otherwise common
resources have on their practices. And while some solutions
have been proposed, a large gap can still be perceived. By
means of appropriating possibly the most widespread and
accessible technology in the world (Android) and turn it into
an embedded platform, LDSP creates an effective opportu-
nity to close this gap. Throughout the paper, we provide
technical details of the full LDSP environment, along with
insights on the surprising performances of the first DMIs
that have been designed with it.

Author Keywords

Embedded audio, sensors, mobile, Android, LATAM, eq-
uity, sustainability

CCS Concepts

•Applied computing→ Sound and music computing; •Human-
centered computing→ Smartphones; •Social and professional
topics → Cultural characteristics;

1. INTRODUCTION
Latin America (LATAM) is a pluralistic territory thriving
with music and musical instruments. The cosmovisiones
found across this large geographical area are diverse but

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

share similar colonization and migrations processes, with
the socio-economical and political consequences those en-
tail. LATAM musicians, researchers and designers have
largely contributed to NIME through both the similarities
and the specificities of this landscape, by blending technol-
ogy with cultural heritage [16, 27] and often re-inventing
the very concept of technological innovation [33, 35]. How-
ever, we cannot ignore that in LATAM the mere process of
designing a digital musical instrument (DMI) comes with
a set of challenges that are mostly unheard of within the
rest of the NIME community. In particular, we refer to the
increased difficulties in accessing technologies and compo-
nents due to unfavorable local currency value, dispropor-
tionate import taxes and shipping costs/times, as well as a
general scarcity of materials that in other regions are plenty
available off the shelf [3, 33, 35].
One of the most conspicuous embodiments of this di-

vide with the Global North is access to embedded plat-
forms. Over the last decade, these technologies have rad-
ically changed the DMI ecosystem [6, 19], by introducing
new best practices and performance standards that are of-
ten out of reach for designers located in LATAM. And while
not applying to professionals or to creatives supported by
institutional funding (see for example [27]), this gap has
been openly lamented by individual researchers, indepen-
dent artists and students alike [3].
As much as this can be understood as solely an economic

issue that LATAM faces, we can understand it as well as
an epistemological issue in which technology-based or elec-
tronic arts at NIME—but in general too—are usually tied
to the notion of progress, of ‘new is better’; and therefore, to
capitalism and coloniality. This is clearly an unsustainable
relationship [2], as the process of creating new technologies
and their discard negatively affects land, water, air and in
turn all living beings, including us.
In line with the much needed streams of environmental

and socio-cultural awareness that have pervaded NIME over
the last few years [11, 31, 33, 26], in this work we present
LDSP, a novel sustainable technology aimed at democratiz-
ing embedded DMI design and audio programming beyond
the confines of the Global North. LDSP is a free, open-
source environment designed to repurpose Android phones
as embedded audio programmable platforms, and capable
of obtaining impressive computational and musical perfor-
mance even from devices that are deemed obsolete, and
would otherwise be discarded in the pile of ever-growing
e-waste.



2. BACKGROUND

2.1 Embedded DMI Platforms
Several embedded platforms for DMI development are avail-
able today, stemming from both academia and the industry.
A non-exhaustive list may include fully open-source/open-
hardware solutions like Axoloti1, Bela [19] and Prynth [13],
that leverage custom as well as off-the-shelf embedded hard-
ware. Alternative options are the Oopsie-Daisy combo [37]
and the recent RNBO2, both enabling to run code deriving
from the Max ecosystem on embedded boards. A further
notable entry in this list is Elk Audio OS3, an advanced
open-source operative system (OS) that runs on both the
Raspberry Pi and custom boards, and that is geared to-
wards embedded VST design as well as wireless connectivity
[34].

Many of these platforms allow for low-level audio pro-
gramming. With ‘low-level’ we refer to the capability of
applications to communicate almost directly with the au-
dio hardware. In technical terms, this means that the de-
signed code reads and writes samples to and from the very
memory buffers that are used by the audio driver in kernel
space [19]. This scenario is in stark contrast with the case
of general purpose devices like laptops and mobile phones
[40, 36], where the presence of several intermediate layers
(e.g., audio servers, USB drivers) may heavily impinge on
the timing of such audio data exchange. The ‘simpler’, more
direct implementations of embedded platforms allow for au-
dio applications to run with much smaller buffer sizes and,
in some cases, to bring down latency below 1 ms [19, 34].

The ability to run code very close to the hardware is par-
ticularly convenient in the context of DMI design. Many
embedded boards are equipped with general purpose in-
put/output pins, that connect directly into the CPU and
allow user applications to interface with a variety of ex-
ternal analog and digital devices, like sensors, motors and
custom circuitry. When timed by the tight scheduling of
the embedded audio pipeline, the transfer of signals to and
from such external devices may happen in an isochronous
fashion [39, 24], minimizing jitter and providing an almost
instantaneous response to any control input [20].

2.2 Democratization, Needs and Resources
The release of DMI development platforms is part of a larger
process, often referred to as democratization of DMIs [5,
15]. In the context of NIME, this term has slowly become
synonym of growing availability/accessibility of technology
and knowledge pertaining to the design and to the use of
DMIs [22]. And while benefiting the whole community, this
practical—as well as political—agenda has particularly tar-
geted those people that have been historically underserved,
due to factors like socioeconomic status, geographical loca-
tion or gender. From a hardware standpoint, the inception
of DMI democratization can be traced back to the early
2010s, when technological breakthroughs brought to the ex-
plosion of mobile phones and game controllers. Such popu-
lar consumer devices provided, for the first time, wide access
to refined sensors outside the realm of academic research
[30]. In a similar fashion, the availability of embedded DMI
platforms that arose in the following years started democ-
ratizing the exploration of a new generation of musical de-
vices, characterized by self-contained and highly responsive
designs [6, 23].

1http://www.axoloti.com/
2https://cycling74.com/products/rnbo
3https://www.elk.audio/how-elk-audio-os-works

However, the impact of embedded platforms appears to
be heterogeneous across populations of designers and mu-
sicians with different needs and resources. Marasco dis-
cusses the use of single board computers in laptop orchestras
[18] and underlines how, in this context, many of their ad-
vantages are outweighed by the lack of screens, keyboards
and trackpads. As opposed, “on a laptop or mobile de-
vice, these features provide intuitive means for interacting
with virtual instruments [...] during performances”. Cale-
gario et al. deem embedded platforms not ideal to turn
design concepts into functional prototypes, mainly due to
long design/deployment/test time frames and to high tech-
nical requirements [9]. To ease this important aspect of the
DMI crafting process, they propose a toolkit for comput-
ers/laptops composed of a set of configurable sensors and
modular structures, and reproducible via widely available
digital fabrication techniques.
When shifting the focus to DMI designers and creatives

located in the Global South, the major issue associated with
the adoption of embedded platforms becomes sheer inacces-
sibility. In line with what discussed in Section 1, Tragten-
berg et al. explain how in many LATAM countries the
price tags of the more advanced embedded platforms are
simply beyond reach for most of the population [33], while
Vieira and Schiavoni provide a dramatic numerical compar-
ison between the minimal wages in Brazil and the prices of
off-the-shelf music technologies sold in the domestic market
[35]. In light of these analyses, it is not surprising that in
the survey distributed by Avila et al. in 2021 [3] low-level
audio and sensor programming does not emerge as a very
common practice within the LATAM NIME community.

2.3 Technological Disobedience
LATAM designers often resort to build their instruments us-
ing technologies that are perceived as inferior compared to
the“leading edge”embedded solutions favored by the Global
North—and by NIME in general [3]. Nonetheless, the pres-
ence of LATAM authors in NIME have been consistent over
the last years [15], with many works celebrating the “resis-
tance to the scarcity of material resources and technological
access” [33]. Such technological disobedience can be ap-
preciated in Arango and Iazzetta’s PICO [1], an embedded
audio effect for guitar that“would run with less latency with
the Bela device”; yet the authors put accessibility and cul-
tural meaning above sheer performance (“the truth is that
these materials are really hard to find in the region where
PICO has a sense and where its possible constructors live”).
Vieira and Schiavoni go a step forward, and with Fliperama
release the blueprint for a do-it-yourself MIDI controller
that is economically and technologically viable even to the
poorest populations [35].

Another common approach reported in the literature is
the musical appropriation of old/obsolete technology, often
times not even functional anymore. Tragtenberg et al. de-
scribe two LATAM DMIs belonging to this category [33]:
the first one is an old phone turned into MIDI controller,
with in-ear monitor and sampling capabilities via the origi-
nal handset; the second one consists of a foot-stomp sound
trigger, with a custom pressure sensor embedded in insoles
and made out of the anti-static foam that wraps electronic
components during shipping. It is though interesting to
note that this type of musical appropriation and hardware
hacking is not an exclusive prerogative of LATAM designs
(see for example [31] or [41]), and it can be root-traced back
to the invention of now popular acoustic as well as electric
instruments [33, 42].



2.4 Android Phones and DMI Design
Android phones are powerful and accessible devices that
have the potential to become a gateway to low-level audio
and sensor programming across the Global South. However,
their use in NIME and DMI design is limited due to various
issues.

Android is one of the most widely adopted OSs for con-
sumer devices [4, 7, 28], with billions of users. It is also the
most prevalent OS in LATAM4, where possessing an An-
droid phone is more common than owning a computer in
the least privileged areas of the region5. It is worth noting
that even the more affordable Android phones have CPU
and memory specifications that compare with or top those
of many DMI platforms. Additionally, every device comes
equipped with a plethora of built-in sensors, ‘output de-
vices’ (e.g., LEDs/flashlight, vibration motor) and network
capabilities.

From a software perspective, Android may be considered
as a ‘modified’ version of Linux, with which it shares the
kernel and most of the file system. All its components are
open-source, except for vendor blobs that may be required to
support hardware-specific functionalities, such as accessing
the camera sensor or the audio card. Every Android ROM
(i.e., the combination of firmware and OS) comes with an
application framework that makes development effectively
hardware-agnostic. This has been an attractive feature to
DMI designers since the release of the first Android phones,
and helped stem a new branch of NIME research that fo-
cuses on mobile music making [29, 12].

Several environments and applications have been released
that are capable of turning Android phones into platforms
for DMI development. Some examples are Nexus [32], ex-
clusively based on web-technologies, and MoMubPlat [17],
that capitalizes on Pure Data and libpd. Yet, the project
that possibly makes the most of the capabilities of Android
and smartphones overall is faust2api [21], which provides a
convenient pipeline for the deployment of Faust programs on
mobile phones. The application supports optimized Faust
audio/sensors processing code as well as graphical user in-
terfaces, and it is geared towards the exploration of the
‘mechanical’ and acoustic features of handheld devices.

However, an important issue with the development of ap-
plications targeting Android is related to latency. On de-
vices pre-dating 2016, the measured audio latency is“dread-
ful [...] (greater than 200ms), discarding any potential use
in a musical context” [21]. Even on newer devices, only
a handful of models seem to be able to stay below the 20
ms markfootnotehttps://superpowered.com/latency [Ac-
cessed on 2023/4/07]. This issue has been known to DMI
design communities for a long time (see for example [8]) and
is at odds with widely accepted NIME discourses on respon-
siveness and intimacy [20, 39]. The reason behind this tech-
nical limit is well explained by Villing et al. [36], and it boils
down to the structure of the very application framework
that grants hardware-agnostic development. More specifi-
cally, even what appears to be native code (like programs
written in Faust, or even in C++ directly using the Android
NDK) has to go through a multi-layer audio stack before
eventually being able to exchange samples with the audio
driver in kernel space. During interaction, the scheduling
inconsistencies caused by this mechanism are perceived as

4https://www.canalys.com/newsroom/
latam-smartphone-market-Q1-2022 [Accessed on
2023/04/07]
5This has been personally witnessed by the first author
(who is originally from a LATAM country) and confirmed
by other members of the LATAM NIME community during
informal conversations with the rest of the LDSP team.

latency that is both very large and highly variable. The
same Villing et al. propose a solution to keep latency devi-
ation within a 16 ms range, but do not address the actual
magnitude of the perceived delay.
More recently, Balsini et al. [4] have described a promis-

ing technique to bring down latency to values that may
satisfy the requirements of DMIs. Experiments carried out
on a high-end HiKey 960 board report an impressive de-
crease of one-way audio latency (output buffer only) from
26.67 ms to 2.7 ms. However, this solution works only on
devices running Android 8.0 and above, and no tests have
been carried out on actual phones.

3. LDSP
LDSP is a novel environment designed to turn Android mo-
bile phones into accessible and high-performance embedded
DMI platforms. In light of what discussed in the previous
section, this target can be achieved if the following three
major requirements are fulfilled: (1) the environment should
grant low-level access to the hardware, to maximize resource
utilization and minimize latency (ideally matching the cur-
rent stat-of-the-art [4]); (2) it should be compatible with
the largest number possible of phones and Android versions
(much like [17] or [32]); and (3) it should include a soft-
ware framework specifically designed to facilitate synthesis,
processing and interaction (similar to what accomplished in
[21]).
What we propose is a set of tools that allow developers to

completely by-pass the Android application framework and
write native C++ audio code that can be invoked via com-
mand line. Instead of creating an app that is forced to run
on top of the audio stack (and within the boundaries of the
Android Run-Time Environment/Dalvik Virtual Machine),
LDSP builds Linux ELF (Executable and Linkable Format)
files that are dealt with directly by the kernel, and have po-
tential access to memory and drivers/hardware resources.
In other words, LDSP permits to use Android phones as
generic Linux embedded boards, the only caveat being that
the phone needs to be rooted. This approach has a tremen-
dous impact on the overall performance of the written code.
At the current stage of development, LDSP is meant to

be downloaded to a host computer. Developers can use it to
cross-compile their native application and then deploy it to
their Android phone. The main component of the environ-
ment is a C++ framework, with a simple API and including
libraries as well as examples tailored to mobile audio de-
velopment (more on this in Section 3.2). The compilation
process uses a set of scripts based on CMake and Ninja6,
and requires the installation of the Android NDK. The lat-
ter is needed to link the executable against Android’s stan-
dard libraries. All these tools are free and cross-platform;
as a result, LDSP seamlessly runs on Linux, macOS and
Windows. Furthermore, they can be easily accessed via
code editors or integrated development environments, al-
lowing developers to include LDSP in their preferred cod-
ing pipeline. The LDSP environment can be accessed here:
https://github.com/victorzappi/LDSP.git.

3.1 C++ Framework: Audio and Control
At the core of the LDSP C++ framework lies a custom
audio engine. It is built around the TinyALSA library7

and it is designed to control directly the Advanced Linux
Audio Architecture (ALSA) kernel drivers. More specifi-
cally, the audio engine provides an API to open any of the

6https://ninja-build.org/
7https://github.com/tinyalsa/tinyalsa



capture and playback devices available on the phone, to
synchronize them and to set up a user-defined audio call-
back function—called ‘render’. This render function runs
on a top-priority dedicated thread; it is tightly synchronized
with the hardware audio buffering mechanism and includes
pointers to the regions of memory (buffers) used by the
driver to exchange samples with the devices. Figure 1 de-
picts the equivalent audio stack and compares it with that of
the modern Android AAudio API. Thanks to LDSP’s ‘sim-
ple’ audio implementation, the use of the phones’ resources
can be optimized to run fairly advanced audio algorithms
and/or buffer sizes that are typically prohibitive for Android
apps (see next section). The first version of Android that
included support for ALSA was Android 2.3 (Gingerbread),
which was released in December 2010. This means that, at
the time of writing, audio code written in LDSP can poten-
tially run both on brand new phones and on phones that
are 13 years old.

Figure 1: Audio stack comparison: LDSP stack (on the right)
and simplified AAudio stack (on the left). Diagram adapted
from [4].

The LDSP API exposes functions to read input data
incoming from the built-in sensors too. As soon as it is
launched, any LDSP application probes the hardware it is
running on, with the aim to detect what sensors are present
on the phone. We started by adding support for the most
basic sensors, including: accelerometer, magnetometer, gy-
roscope, light sensor, proximity sensor, power/volume but-
tons (also via audio jack) and multitouch screen. However,
virtually any sensor present in the Android NDK can be
easily added to the framework, due to the fact that LDSP
accesses sensors via the same library (libandroid) and the
same device nodes used by the Android run-time environ-
ment. The main advantage of this approach is the com-
plete portability of the code across phones, for vendor blobs
are transparently used in the process. However, as a result
sensors are sampled via a dedicated thread that runs asyn-
chronously to the audio thread, making isochronous audio
output and control input not possible. This issue (namely
jitter) is though partially mitigated on LDSP by always
polling sensors at their maximum supported rate, and by
allowing for relatively small audio buffer sizes.

A second control component of the API deals with output
data streams. These control outputs can target the built-in

flashlight, the LCD screen back-light, the status LED (in-
cluding separate RGB channels where available), the vibra-
tion motor and even the back-light of the front touch but-
tons that Android phones used to have before 2013. Differ-
ently from the case of sensors, LDSP includes a custom low-
level algorithm to locate and write to output device nodes,
that does not rely on vendor blobs. The implementation
grants direct control of the output drivers, while still maxi-
mizing portability. As a result, any control data written by
the application is dispatched right at the end of the render
function, allowing for what we could call ‘soft isochrony’ of
audio and control outputs.

3.2 Libraries, Examples and Configuration
The last component of the C++ framework is a set of li-
braries designed to support user application design. At
the current stage of development, this set includes libraries
for audio (e.g., audio file read/write, filters) and libraries
for data transfer/management (e.g., Open Sound Control,
JSON, XML). Since many phones can interface with MIDI
controllers via USB On-The-Go, a MIDI library is also part
of the framework.
LDSP also comes with a set of example projects, rang-

ing from a basic sinusoidal bleep to fully fledged interactive
applications. Developers can build and run them on their
phone, but also inspect and re-use their source code. The
minimal component of both user and example projects is
a render file, whose template includes an empty definition
of the render function (see Section 3.1). This detail, along
with the overall arrangement of libraries and examples, is
inspired to Bela’s code structure [19].
A single entry-point script allows developers to quickly

configure CMake to build a chosen LDSP project. Two
main arguments need to be passed to the script: the path
to the project and the version of Android running on the
target phone. The script also requires the path to a hard-
ware configuration file, that needs to be populated by the
developer. This small file is based on a predefined JSON
template (available in the LDSP environment) and lists im-
portant hardware details of the target phone’s model, that
are necessary at both compile and run time. The most rel-
evant entries are the labels that the manufacturer gave to
the hardware mixer presets for audio routing. They can be
found in a standard Android XML file stored on the phone,
and represent the paths to line-output, built-in speaker and
handset speaker (for output streams), and from line-input,
built-in mic and handset mic (for input streams). The la-
bels are also hard-coded in the vendor blobs, along with
the exact procedure to recall the presets and switch paths
on and off. But, unfortunately, this part of the blobs can-
not be accessed via libandroid. We solved this problem by
reverse-engineering the mixer preset algorithms, leveraging
the low-level mixer capabilities of TinyALSA. As a result,
once the labels are in place, developers can choose to run
their LDSP applications with any combination of input and
output paths, regardless of the selected playback and cap-
ture devices.
The creation of the configuration file is probably the only

non-straightforward operation required to use LDSP. To
ease this process, the environment includes a set of sim-
ple scripts that are meant to be run on the phone and that
help extract relevant information from the hardware. More-
over, we are gradually creating a collection of ready-made
configuration files that cover all the phones where LDSP
have been tested, organized by brands and models.
To deploy and test their application, developers can use

the main entry-point script. The script uses the Android



Debug Bridge (which needs to be installed on the host ma-
chine) to push the LDSP executable to the connected phone
and run it. Once testing is complete, any terminal emula-
tor can be used to run and stop LDSP applications directly
from the phone, without the need for a USB cable con-
nection. An alternative workflow consists of using SSH (a
secure shell) to move files to the phone and run executables
remotely—a common scenario when programming generic
embedded boards. This requires to install one of the many
SSH server apps that are available for Android and that can
leverage the WiFi capabilities at disposal on virtually any
phone.

4. LDSP EXAMPLE DMIS
Aside from technical details, we believe that the best way to
showcase LDSP’s potential is to introduce some DMIs de-
signed with it. As emerging from the experience of Villing et
al. [36], the performance of mobile devices largely depends
on the specific hardware that powers them. And more in
general, the unique set of features and limitations that char-
acterize a phone may make its use particularly convenient
in a specific use-case scenario, while totally unsuitable in
another one [21]. Intrigued by these challenges, over the
month prior to the writing of this work, we decided to use
LDSP first to probe the characteristics of three Android
phones and then to build simple DMIs with them. The
intent was to discover where the specific features of these
phone could shine in the context of mobile music, and de-
velop interesting designs that could capitalize on them.

The first phone we worked on is an LG G2 Mini (Figure
2), that used to belong to one of the authors. It runs a Lin-
eage OS 14.1 custom ROM (equivalent to Android 7.1.2).
This phone was released in April 2014 and has a very ‘low-
spec’ design compared to more modern devices. Nonethe-
less, after little experimentation we realized that on this
phone LDSP is capable of running full-duplex audio appli-
cations with buffer size of 64 sample, at a sample rate of
48 kHz. Put down in numbers, this roughly translates into
2.7 ms of round-trip latency8. Such an unexpected result
pushed us to turn this phone into a programmable effects
pedal for guitar (Figure 3). We called this device LDSPowl,
as a tribute to Rebel Technology’s OWL pedal [38].

Figure 2: The two LG G2 Mini phones used for DMI design,
running Lineage OS 14.1 (on the left) and stock Android 4.4
(on the right).

Our LDSPowl pedal includes a bare-bone impedance-bridg-
ing circuit, composed of two buffers and four jack sockets,
that permits to transfer the audio signal from the guitar

8This number reflects the latency due to the buffering mech-
anism only; more experiments are planned to measure the
impact of hardware routing and codecs.

to the phone’s line-input and then from the phone’s line-
output to an amplifier. An inexpensive combo-jack splitter
is used to separate input and output channels of the phone.
The full setup is depicted in Figure 4. The first ‘patch’ that
we tried out is a simple delay, whose feedback control is con-
trolled by the x-axis tilt of the phone. In pure gambiarra
style [33], we hooked up the phone to the guitarist’s foot
with an elastic band.

Figure 3: A guitarist playing with the LDSPowl pro-
grammable effects pedal.

The second DMI we designed is built on another LG G2
Mini that was donated to us (Figure 2). Its hardware is
identical to the first phone, but it still runs the 2014 stock
ROM it was shipped with (Android 4.4). This detail seems
enough to alter its audio performance, for on this second
phone the smallest buffer size that LDSP can support in
full-duplex mode is 128 samples. However, when audio cap-
ture is disabled and the phone runs as a playback device
only, LDSP applications are again capable of reaching the
64 sample mark (equal to an output buffer period of 1.4
ms). We then decided to turn this device into a synthesizer
and more specifically into a touch-controlled granular syn-
thesizer, called DedoGranular. The application loads from
memory two audio files and uses the granulator available in
the LDSP library to generate a continuous audio stream.
The synthesis is triggered by the presence of the finger on
the touchscreen; its y-location determines the time location
of the grains, while by changing it x-location is possible to
cross-fade between the granulation of the two files.

Figure 4: The do-it-yourself bidirectional direct-input box
that is part of LDSPowl.

The third phone was again donated to us and consists of
a 2015 Huawei P8 Lite, with a stock Android 5.0 ROM. De-
spite running on more modern hardware (64-bit octa-core



Cortex-A53 @ 1.2 GHz), this device showcased some quirks
when tested with LDSP. The only audio device present on
this phone seems capable of sustaining smooth audio play-
back only with a buffer of 960 samples at 48 kHz, regard-
less of the CPU load. Latency and jitter resulting from
this configuration are hard to accept in the context of em-
bedded DMI design. We then decided to turn this phone
into a wireless controller. By discarding any audio output
capability, we were able to run LDSP with a buffer of 512
samples, and leverage the resulting audio loop to read and
transmit sensor data via Open Sound Control at a steady
rate of 93.75 Hz—very close to the optimal interval em-
pirically found by McPherson et al. [20]. As pointed out
by the same authors, controllers—and in particular wireless
ones—are by their very nature incapable of high degrees of
responsiveness. Their ideal use-case consists of sound appli-
cations that are not too time-critical, like the sonification of
continuous gestures. We followed this lead, and completed
our design by mapping the data picked up by the 3-axis
magnetometer built into the phone to timbral controls of a
simple Max for Live project, running on a laptop connected
to the same WiFi network as the phone. The result is the
MagSniffer, a tetherless application for the sonification of
magnetic fields (Figure 5). The device provides also vibra-
tory feedback to signal the overall magnitude of the field
being picked up. Short demos of the MagSniffer, as well as
of LDSPowl and DedoGranular can be watched at this link:
https://youtu.be/y35tPl5mjGo.

Figure 5: The Huawei P8 Lite running the MagSniffer to
sonify the magnetic field generated by audio equipment.

5. CONCLUSIONS
In this paper we presented LDSP, a free and open-source en-
vironment that turns Android phones into embedded plat-
forms for DMI design. Many examples of musical appro-
priation of tools and materials have long been discussed in
the context of NIME [14, 42]. Yet, very few allow designers
to subvert an entire system [10] like LDSP does with An-
droid. Although at the current stage of development some
elements of its workflow may still feel like a hack (e.g., root-
ing the phone, peeping into configuration files), this type of
practices are no strangers to creatives in LATAM, where a
tradition of technological disobedience fosters wild hacking
and repurposing of technologies—out of necessity or choice
[25, 33, 35].

Currently, most of our efforts are geared towards improv-
ing LDSP’s usability and accessibility. We are working on
extending libraries and examples, as well as on the creation
of how-to guides. And since some phone manufacturers may
employ firmware that diverges from Android standards, it is
imperative to test LDSP on as many brands and models as

possible. This is being accomplished thanks to both phone
donations and remote collaborations.

The future development of LDSP revolves around mov-
ing the environment to the phones. We are starting the
design of an app that will combine the compilation tools
and the framework, allowing development both from a host
computer and from the phone itself. This will simplify the
configuration process, while making LDSP accessible even
to creatives that do not own a computer.

6. ACKNOWLEDGMENTS
We are very grateful to João Tragtenberg, Juan Pablo Mar-
tinez Avila and the whole LATAMNIME community for the
continuous support. We would like to thank also Spencer
Rosenfeld and Jason Hoopes for their help during the de-
velopment of the first LDSP DMIs.

7. ETHICAL STANDARDS
This project stems from the awareness of the uneven dis-
tribution of hardware according to geopolitical location as
well as from the importance of creating more sustainable
NIMEs. For this reason, this project actively targets equity
and accessibility through the use of Android phones. The
aforementioned awareness is rooted in the needs we found
in LATAM, considering the experiences of one of the au-
thors who is from Argentina, as well as the literature and
examples we have cited. It is important to note that even if
we are focusing on the LATAM experiences, other ‘souths’
might have similar experiences with the appropriation of
technology. Our worlds are complex, where the periphery
and center are no longer so identifiable or clear cut, so we
believe this project can have an impactful effect in other
places as well. Hopefully appropriated by the people that
use it.

Our current system of manufacturing technology thrives
on producing more by discarding more easily and frequently.
To insist on designing and manufacturing like this is to
choose not to see our limited resources and the damage this
cycle creates. Designing for a different set of values, knowl-
edges and approaches from different geographies, such as
the ones discussed above, can allow us to reimagine and re-
construct more sustainable worlds. The NIME community
has considered the importance of discussing sustainability
in our practices, and we believe environmental issues are
addressed in our project as a part of the material design of
the artifact.

8. REFERENCES
[1] J. J. Arango and F. Iazzetta. Pico: A portable audio

effect box for traditional plucked-string instruments.
In NIME 2019, pages 355–360, 2019.

[2] Z. Argabrite, J. Murphy, S. J. Norman, and
D. Carnegie. Technology is land: Strategies towards
decolonisation of technology in artmaking. In NIME
2022, 2022.

[3] J. P. M. Avila, J. Tragtenberg, F. Calegario,
X. Alarcon, L. P. C. Hinojosa, I. Corintha,
T. Dannemann, J. Jaimovich, A. Marquez-Borbon,
M. M. Lerner, et al. Being (a) part of nime:
Embracing latin american perspectives. In NIME
2022, 2022.

[4] A. Balsini, T. Cucinotta, L. Abeni, J. Fernandes,
P. Burk, P. Bellasi, and M. Rasmussen.
Energy-efficient low-latency audio on android. Journal
of Systems and Software, 152:182–195, 2019.



[5] T. J. Barraclough, D. A. Carnegie, and A. Kapur.
Musical instrument design process for mobile
technology. In NIME 2015, pages 289–292, 2015.

[6] E. Berdahl and W. Ju. 2011: Satellite ccrma: A
musical interaction and sound synthesis platform. In
A NIME Reader, pages 373–389. Springer, 2017.

[7] M. Butler. Android: Changing the mobile landscape.
IEEE Pervasive Computing, 10(1):4–7, 2011.

[8] B. Cahill and S. Serafin. Guitar simulator: An
audio-haptic instrument for android smartphones. In
The Seventh International Workshop on Haptic and
Audio Interaction Design August 23-24 2012 Lund,
Sweden, pages 19–20, 2012.

[9] F. Calegario, M. M. Wanderley, S. Huot, G. Cabral,
and G. Ramalho. A method and toolkit for digital
musical instruments: generating ideas and prototypes.
IEEE MultiMedia, 24(1):63–71, 2017.

[10] A. Dix. Designing for appropriation. In Proceedings of
HCI 2007 The 21st British HCI Group Annual
Conference University of Lancaster, UK 21, pages
1–4, 2007.

[11] E. Dorigatti and R. Masu. Circuit bending and
environmental sustainability: Current situation and
steps forward. In NIME 2022, 2022.

[12] G. Essl and S. W. Lee. Mobile devices as musical
instruments-state of the art and future prospects. In
Music Technology with Swing: 13th International
Symposium, CMMR 2017, Matosinhos, Portugal,
September 25-28, 2017, Revised Selected Papers 13,
pages 525–539. Springer, 2018.

[13] I. Franco and M. M. Wanderley. Prynth: A
framework for self-contained digital music
instruments. In Bridging People and Sound: 12th
International Symposium, CMMR 2016, São Paulo,
Brazil, July 5–8, 2016, Revised Selected Papers 12,
pages 357–370. Springer, 2017.

[14] M. Gurevich, P. Stapleton, and A. Marquez-Borbon.
Style and constraint in electronic musical instruments.
In NIME, pages 106–111, 2010.

[15] L. Hayes and A. Marquez-Borbon. Nuanced and
interrelated mediations and exigencies (nime):
addressing the prevailing political and epistemological
crises. In NIME 2020, 2020.

[16] L. P. C. Hinojosa. Kanchay yupana: Tangible rhythm
sequencer inspired by ancestral andean technologies.
In NIME 2022, 2022.

[17] D. Iglesia and I. Intermedia. The mobility is the
message: The development and uses of mobmuplat. In
Pure Data Conference (PdCon16). New York, 2016.

[18] A. T. Marasco. Approaching the norns shield as a
laptop alternative for democratizing music technology
ensembles. In NIME 2022, 2022.

[19] A. McPherson. Bela: An embedded platform for
low-latency feedback control of sound. The Journal of
the Acoustical Society of America, 141(5):3618–3618,
2017.

[20] A. P. McPherson, R. H. Jack, G. Moro, et al.
Action-sound latency: Are our tools fast enough? In
NIME 2016, 2016.

[21] R. Michon, Y. Orlarey, S. Letz, D. Fober, and
C. Dumitrascu. Mobile music with the faust
programming language. In Perception,
Representations, Image, Sound, Music: 14th
International Symposium, CMMR 2019, Marseille,
France, October 14–18, 2019, Revised Selected Papers,
pages 307–318, 2021.

[22] F. Morreale, A. Bin, A. McPherson, P. Stapleton, and
M. Wanderley. A nime of the times: developing an
outward-looking political agenda for this community.
In NIME 2020, 2020.

[23] F. Morreale, G. Moro, A. Chamberlain, S. Benford,
and A. P. McPherson. Building a maker community
around an open hardware platform. In CHI 2017,
pages 6948–6959, 2017.

[24] M. Neupert and C. Wegener. Isochronous control+
audio streams for acoustic interfaces. In Proceedings
of the 17th Linux Audio Conference (LAC-19), 2019.

[25] I. Orobitg, A. Subieta, F. Uslenghi, and F. Wiman. El
desarrollo de la música electroacústica en buenos
aires. 2003.

[26] L. Pardue and S. A. Bin. The other hegemony: Effects
of software development culture on music software,
and what we can do about it. In NIME 2022, 2022.

[27] J. Ramos, E. R. Calcagno, R. oscar Vergara, P. Riera,
and J. Rizza. Nime 2022. In NIME 2022, 2022.

[28] A. A. Sheikh, P. T. Ganai, N. A. Malik, and K. A.
Dar. Smartphone: Android vs ios. The SIJ
Transactions on Computer Science Engineering & its
Applications (CSEA), 1(4):141–148, 2013.

[29] A. Tanaka. Mobile music making. In NIME 2004,
pages 154–156, 2004.

[30] A. Tanaka. Mapping out instruments, affordances,
and mobiles. In NIME 2010, 2010.

[31] T. Tate. The concentric sampler: A musical
instrument from a repurposed floppy disk drive. In
NIME 2022, 2022.

[32] B. Taylor, J. T. Allison, W. Conlin, Y. Oh, and
D. Holmes. Simplified expressive mobile development
with nexusui, nexusup, and nexusdrop. In NIME
2014, pages 257–262, 2014.

[33] J. Tragtenberg, G. Albuquerque, and F. Calegario.
Gambiarra and techno-vernacular creativity in nime
research. In NIME 2021, 2021.

[34] L. Turchet, S. J. Willis, G. Andersson, A. Gianelli,
and M. Benincaso. On making physical the control of
audio plugins: the case of the retrologue hardware
synthesizer. In Proceedings of the 15th International
Conference on Audio Mostly, pages 146–151, 2020.

[35] R. Vieira and F. Schiavoni. Fliperama: An affordable
arduino based midi controller. In NIME 2020, 2020.

[36] R. Villing, V. Lazzarini, D. Czesak, S. O’Leary, and
J. Timoney. Approaches for constant audio latency on
android. In DAFx-15, 2015.

[37] G. Wakefield. A streamlined workflow from max/gen˜
to modular hardware. In NIME 2021, 2021.

[38] T. Webster, G. LeNost, and M. Klang. The owl
programmable stage effects pedal: Revising the
concept of the on-stage computer for live music
performance. In NIME 2014, pages 621–624, 2014.

[39] D. Wessel and M. Wright. 2001: Problems and
prospects for intimate musical control of computers.
In A NIME Reader, pages 15–27. Springer, 2017.

[40] M. Wright, R. J. Cassidy, and M. Zbyszynski. Audio
and gesture latency measurements on linux and osx.
In ICMC, 2004.

[41] K. Yerkes, G. Shear, and M. Wright. Disky: a diy
rotational interface with inherent dynamics. In NIME
2010, pages 150–155, 2010.

[42] V. Zappi and A. P. McPherson. Dimensionality and
appropriation in digital musical instrument design. In
NIME 2014, pages 455–460, 2014.


