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ABSTRACT

This paper presents an affordable and accessible wearable
technology for wind musicians which provides real-time bio-
feedback on their breathing. We developed the abdominal
thoracic expansion measurement prototype wearable tech-
nology (ATEM-P), to measure a wind musician’s breathing-
induced expansion and contraction while they are playing.
Our first study validates the ATEM-P with the gold stan-

dard of medical grade respiratory exertion measurement de-
vices, the respiratory plethysmography inductance system
(RIP). The results show that the ATEM-P has a strong
correlation to the RIP system.
Our second study provides quantitative and qualitative

data about the correlation between a musician’s breathing
technique and the quality of their performance. For the
purpose of this research, we defined quality of performance
(QOP), as sound quality, breath control, and use of vibrato.
We expected the results to show a correlation between the
ATEM-P peak amplitudes and QOP, however this was not
the case. The results did show that there is a correlation
between a musician’s QOP and breath period.
Results from the studies show that the ATEM-P has po-

tential as an affordable and accessible wearable technology
for wind musicians: a performance enhancement tool and
an educational tool.
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1. INTRODUCTION
The use of wearable technology today is ubiquitous, and
plays an important role in fields such as medicine and sports,
helping individuals with the physicality of their movements.
Wearable technology does not have the same presence in the
field of music, and yet the physicality of playing a musical in-
strument would benefit from wearable technology solutions.
Better physical movement broadens a musician’s ability to
be expressive and enhance their musical narrative. Can
computer sensing and measurement tools be used to help
musicians improve their physical movements while playing
and thereby achieve a better quality of performance? For
the purpose of this research, we defined quality of perfor-
mance (QOP), as sound quality, breath control, and use of
vibrato.

If we look at musicians and athletes, there are notewor-
thy areas of similarity: both musician and athlete require
highly nuanced motor skills built by intense and enduring
practice [9], skills that require agility, flexibility, neuromus-
cular coordination, and muscular endurance and strength
[17]; both are performers, bringing expression and skill to
their stage and are assessed by their technical proficiency
and artistic presentation.

Evidence supports the benefits that athletes gain in per-
formance and in injury prevention by using technology in
their training routine [11] [6]. Wearable technologies mea-
sure and analyze the athlete’s physical movements in order
to guide them to improved technical proficiency, enabling
a more expressive performance. The question is whether
wearable technology customized for musicians can do the
same: improve technical proficiency resulting in a higher
QOP.

The scope of this research is breathing technique for wind
instrumentalists. The need for efficient and effective breath-
ing technique is undeniable; to perform long uninterrupted
phrases, wind instrumentalists need supported airways [5,
3]. The importance of strong respiratory muscles as the
power source for sound production is established [20]. It is
accepted, though not empirically verified, that breath con-
trol and technique has a direct impact on sound quality and
consequently performance [7, 8].

To address this issue, we have developed an affordable
and accessible wearable device that provides meaningful in-
formation, the abdominal thoracic expansion measurement
prototype (ATEM-P). The ATEM-P measures breathing-
induced expansion and contraction, and provides real-time



biofeedback while the musician is playing their instrument.
The ATEM-P is portable and affordable, making it suitable
for individual use and also as part of music school programs.
We have done two studies for this research, a valida-

tion study with the gold standard of respiratory exertion
measurements, the respiratory inductance plethysmography
system (RIP), and an observational study with 43 flutists
to determine the correlation between breathing and QOP.
The validation study results show a strong correlation

between the ATEM-P and the gold standard RIP.
The observational study revealed a correlation between

breath period and QOP.
The results of the observational study were not what we

expected. We expected that there would be a strong cor-
relation between the breathing-induced expansion and con-
traction measurements and a musician’s QOP. What the
results showed instead is a correlation between the breath
period and QOP, and to a lesser extent, between dynamic
range and QOP.

2. BACKGROUND

2.1 Technology for musicians and athletes
Given the physicality of playing an instrument, it stands to
reason that musicians, like athletes, can benefit from tools
that precisely measure and analyze movements for perfor-
mance improvement.
Studies show that technology has had a profound impact

on how athletes train, and the results are evident in con-
sistent improvements in performance [6], and reduction in
injury [4, 18]. In professional athletics, technology is used
to enhance performance through data-gathering wearables,
data analytics, and virtual-reality-based practice [11].
For musicians, there is nothing resembling the sophisti-

cated training technologies that are available for athletes.
Where the athlete has access to 21st century technologies,
the musician’s training kit consists of tools carried over from
the 20th century, such as a metronome and tuner. There are
apps available to help students with tuning (e.g. Cleartune,
TonalEnergy, iStroboSoft, Tunable , insTuner), tempo (e.g.
Metronome Plus, Tempo/Tempo Advance, Time Guru, Dr.
Betotte, Metronomic), and note learning (e.g. smartmusic,
musictheory.net, Noteflight), but these are not designed to
teach correct physical movement or posture while playing
an instrument - they simply help with learning the music,
notes, rhythms and intonation.
Musicians’ physical demands can be compared to those

experienced by professional athletes and can therefore ben-
efit from the data measurement and analysis technologies
like those available for athletes. The need for innovative
and cutting-edge technology for the musician is on par with
that for the athlete, and yet the same depth of research, im-
plementation and usage does not exist for today’s musician.

2.2 BREATHING PEDAGOGY
“..everyone breathes, and today, few of us

breathe well. Those with the worst anxieties
consistently suffer from the worst breathing habits.”
[16]

Teaching proper breathing technique to music students is
fundamental for wind players, brass players, and vocalists.
Yet the issue of inconsistent and incorrect guidance given to
music students continues to be a problem and underlines the
need for clarification in the pedagogical documentation and
techniques [5, 21, 13]. Could wearable technology offer con-
sistency and accuracy in breathing training for musicians?

2.3 Respiratory Training Tools For Musicians
There are devices on the market used by musicians for im-
proving breathing technique by strengthening respiratory
muscles. These devices are founded on the principle that
respiratory muscle training (RMT), is beneficial for healthy
individuals as well as those suffering from respiratory, car-
diac, and neuromuscular health issues [15, 19, 12]. Some of
the respiratory training tools used by musicians include The
Breather®, the Breath Builder®, and Expand-A-Lung®,
ranging in price from $25-$60.

2.4 Respiratory Measurement Tools
There are two respiratory measurement tools on the market
that were considered for this research.

2.4.1 Piezoelectric Respiration Sensor (PZT)
According to the PZT datasheet, using multiple PZT sen-
sors simultaneously, provides biofeedback for diaphragmatic
and thoracic breathing measurements. While PZT sensors
seem like a good option for this research, the $2000 pricetag
does not satisfy the affordability goal of this research. Ad-
ditionally, the PZT requires proprietary components and
therefore does not meet the accessibility goal of this re-
search.

2.4.2 Respiratory Inductance Plethysmography (RIP)
RIP is the gold standard of respiratory measurement and
is of medical grade. According to the Sleep Centre’s med-
ical staff, a portable RIP system costs more than $20,000,
making the RIP unsuitable for this research.

2.5 Discussion
RMT devices are used by musicians and athletes with the
goal of improving breathing through respiratory muscle train-
ing (RMT), both inspiratory (IMT) and expiratory (EMT).
Research has validated that IMT produces statistically sig-
nificant improvements in performance, but the data for EMT
improvements is not as conclusive [15]. The RMT devices
provide a means to strengthen respiratory muscles, but there
is no measurement or analysis taking place during playing,
i.e. no real-time biofeedback.

Respiratory measurement devices such as the PZT and
RIP, take accurate respiratory exertion measurements, but
are too costly and are not accessible.

This is where affordable and accessible wearable tech-
nology can make an impact with music training tools, by
providing real-time biofeedback at an affordable price and
without proprietary limitations.

3. ATEM-P DESIGN FOR MUSICIANS

3.1 Materials and Sensors
We performed preliminary tests to determine which ma-
terial and sensor were best suited for the ATEM-P. The
material needs to change properties with the breathing-
induced change in body shape; it must have adequate elas-
ticity to provide reliable repeatability; it must be affordable
for broad deployment in schools with music programs.

Tests using conductive rubber cord showed good respon-
siveness and reliable repeatability. Therefore, conductive
rubber cord was chosen as the sensing material for the
ATEM-P. The rubber cord can be stretched 50-70% longer
than the resting length, without losing the retraction. Addi-
tionally, the cost is reasonable with a 1-meter length priced



at approximately $15, providing sufficient material for 5
belts.
The abdominal belt and the ribcage belt each use a Switch-

able Voltage Divider phidget [1], model #1134, $15 each.
The sensors act as the variable resistors in these circuits.
As the rubber cord stretches and contracts during inhala-
tion and exhalation, resistance variation is tracked, provid-
ing the measurement data. The Phidget Interface Kit, a
USB based controller that allows for analog, digital, and
USB inputs/outputs, was used to connect the sensors to a
Windows laptop for processing.
Max/MSP was used to program the ATEM-P application.

The cost for an annual academic Max/MSP subscription
is $59 USD. This programming could also be done using
PureData, which is free software.

3.2 Construction
The ATEM-P wearable device consists of an abdominal belt
worn at the waist and a ribcage belt worn across the chest,
under the armpits. The belts are constructed from 2.5cm
webbing, with parachute clips for sizing. The rubber cord
is backed by a strip of 2.5cm wide elastic for support.
One end of the wires connects the phidget sensors to the

phidget interface kit and the other end of the wires attaches
to the conductive rubber cord ends. The rubber cord ends
are attached to small rings that are sewn onto the belt web-
bing material, refer to Figures 1 and 2.

Figure 1: Phidgets: On the left, 2 switchable voltage
divider phidgets, model #1134 lead to ATEM-P belts; on

the right, phidget interface kit for A/D conversion.

The Max/MSP patch gathers analog data from the sen-
sors in each of the belts, as the subject inhales and exhales.
The program samples at a rate of 20 Hz.

4. STUDY 1: VALIDATION STUDY
The purpose of study 1 is to validate the ATEM-P wear-
able device with RIP, the gold standard of respiratory ex-
ertion measurement systems. We want to verify that the
breathing-induced abdominal and thoracic expansion and
contraction measurements generated by the ATEM-P have
a strong correlation to the breathing-induced abdominal
and thoracic expansion and contraction measurements gen-
erated by the RIP.

4.1 METHODOLOGY
For this research study, we followed the methodology of
Løberg et.al[14]. The research goal of Løberg et al. was to
allow people to perform a low-cost first step home diagnosis
test for sleep apnea detection by utilizing smartphones, low-
cost consumer-grade sensors, and data mining techniques.

Figure 2: ATEM-P abdominal (blue) and ribcage (red)
belts.

They evaluated the uncalibrated signal quality of four respi-
ratory effort sensors, using a RIP sensor from NOX Medical
as the gold standard.

4.1.1 Recruitment
We identified potential participants through their involve-
ment in music groups. All recruitment materials provided
an accurate description of the purpose of the research, study
conditions, the foreseeable risks and/or potential benefits of
participation.

Due to COVID-19 pandemic restrictions, this study was
run as a pilot study with 10 participants rather than the
originally planned 40 participants.

Participants were between the ages of 22–72, identified as
male, female, and non-binary, and consisted of woodwind
players, string players, and non-musicians. All participants
were in general good health.

4.1.2 Study Steps
This study was run in March 2022 at the Foothills Medi-
cal Centre Sleep Centre, Calgary, Canada, using their RIP
system.

Each participant was fitted with an ATEM-P abdominal
belt and ribcage belt, over-top of their clothing. The RIP
abdominal and ribcage belts were placed over-top of the
ATEM-P belts. The participant remained standing for the
duration of the study.

The Max/MSP patch displayed timed breathing cues for
the participant, a real-time visual biofeedback on partic-
ipant’s breathing-induced expansion and contraction, and
wrote the voltage data to files.

Participants performed the breathing exercises to the best
of their ability, while the ATEM-P and RIP belts took mea-
surements, refer to Table 1.

4.1.3 Data Treatment
We wrote Python programs to clean up and analyze the
data.

• ATEM-P Max/MSP patch samples at 20 Hz: interpo-



Table 1: Study 1 Breathing Steps

Duration(s) Breathing Instruction
60s normal
30s deep
30s normal
30s abdominal
30s normal
30s ribcage
30s normal
30s abdominal and ribcage
30s normal
60s inhale, hold breath; repeat

lated data to provide data at 50ms intervals.

• RIP samples at 100 Hz: Down-sampled RIP data by
a factor of 5 to provide data at 50ms intervals.

• With the ATEM-P data, the valleys reflect expansion,
and the peaks reflect contraction. As this is the re-
verse of the RIP system, the ATEM-P datasets were
multiplied by -1. Now both RIP and ATEM-P peaks
and valleys represent the same states of expansion and
contraction.

4.1.4 RIP and ATEM-P Data Alignment
The RIP and ATEM-P systems were started manually by
two individuals, and therefore required alignment and trim-
ming.
Aligned and trimmed RIP and ATEM-P datasets as fol-

lows:

• Determine the time offset by visually matching a well-
defined peak from the RIP data to the matching well-
defined peak in the ATEM-P data.

• Isolate a small slice of data from both RIP and ATEM-
P, and run though a program to determine, with more
precision, the exact timestamps of the matching ATEM-
P and RIP peaks.

• With the exact time offset established, trim and align
both data sets.

4.1.5 Data Analysis
Measuring the similarity between the ATEM-P and RIP
data files proved challenging as the belts were not cali-
brated and thus could not be compared directly. Further-
more, respiratory effort signals are by definition, not repro-
ducible [14]. Both ATEM-P and RIP data had a consider-
able amount of noise, making it challenging to identify the
peaks that were the actual inhalations. Therefore, we first
identified actual breaths from the RIP system as the base-
line. Next, we obtained breath detection accuracy metrics
similar to Løberg et al. through the following steps:

1. Peaks and Peak Amplitudes

(a) Processed data to extract peaks from both RIP
belts.

(b) Processed data to extract peaks from both ATEM-
P belts.

(c) From the peaks captured in step-a, calculate peak
amplitudes from both RIP belts.

(d) From the peaks captured in step-b, calculate peak
amplitudes from both ATEM-P belts

2. Sensitivity and Positive Predictive Value (PPV)
For the sensitivity and PPV equations, the following
terminology was used:

• TP: True peaks as a result of breath-induced in-
halation.

• FN: False negative peaks are those that were miss-
ing in the measurements.

• FP: False positive peaks.

Once the breath peaks were identified, the sensitivity
and the positive predictive values of the RIP and the
ATEM-P sensors were calculated for each participant.

Sensitivity measures the proportion of real breaths de-
tected by the sensors.

SENSITIV ITY =
TP

(TP + FN)

Positive Predictive Value (PPV) measures the propor-
tion of detected breaths that are real.

PPV =
TP

(TP + FP )

Note that Løberg et al. next calculated the breath
amplitude accuracy metrics. For these metrics, they
used the weighted absolute percentage error (WAPE)
metric, also known as the MAD/mean ratio. At this
point in our analysis, we deviated from Løberg et al.,
since we were not able to reproduce the WAPE met-
rics. We continued our analysis with the following
metrics:

3. Cosine Similarity is the cosine of the angle between two
vectors. Vectors that are the same (point in the same
direction) have a cosine similarity of one. Unrelated,
orthogonal signals have a cosine similarity of zero [2].

Calculated the cosine similarity between the ATEM-P
data and the RIP data for each participant, based on
a sampling rate of 1 per second, refer to Table 5.

4. Wavelet Coherence analysis provides meaningful infor-
mation on the coherence of the ATEM-P and the RIP
signal data .

To measure the wavelet coherence between the RIP
and the ATEM-P signals, Dr. Jeffrey Boyd generated
3 plots for each participant:

(a) Raw signal data from the ATEM-P and RIP ab-
dominal and ribcage belts for reference, refer to
Figure 3.

(b) Wavelet coherence plot of 1) RIP versus ATEM-P
abdominal belts 2) RIP versus ATEM-P ribcage
belts, refer to Figure 4.

(c) Wavelet coherence plot of RIP ribcage belt versus
RIP abdominal belt, refer to Figure 5.

There are similar plots for each participant but due to
space limitations these are not included in this paper.

4.2 RESULTS
Tables 2, 3, and 4 shows a summary of the sensitivity values
and PPV values for all of the 10 participants.

Tables 5 and 6 provide a summary of the cosine similarity
values for each participant’s ATEM-P and RIP belts, and
the mean values.



Table 2: Sensitivity and PPV Values: Ribcage Belt

ID Device TP FP FN Sens.% PPV%
2G2FK RIP 52 0 0 100 100

ATEM-P 52 1 0 100 98.11
65NGJ RIP 44 0 0 100 100

ATEM-P 44 5 0 100 89.79
ASWP6 RIP 78 4 0 100 95.12

ATEM-P 78 0 0 100 100
B8UNY RIP 41 0 0 100 100

ATEM-P 41 7 0 100 85.42
CLE7T RIP 80 0 0 100 100

ATEM-P 80 2 0 100 97.56
H6HXH RIP 36 0 0 100 100

ATEM-P 36 10 0 100 78.26
PY7YN RIP 76 0 0 100 100

ATEM-P 76 0 0 100 100
SQ44Y RIP 75 1 0 100 98.68

ATEM-P 75 4 0 100 94.93
TDX52 RIP 42 0 0 100 100

ATEM-P 42 3 0 100 93.33
ZW4YZ RIP 50 0 0 100 100

ATEM-P 50 1 0 100 98.03

Table 3: Sensitivity and PPV Values: Abdominal Belt

ID Device TP FP FN Sens.% PPV%
2G2FK RIP 54 0 0 100 100

ATEM-P 54 0 0 100 100
65NGJ RIP 45 0 0 100 100

ATEM-P 45 3 0 100 93.75
ASWP6 RIP 73 0 0 100 100

ATEM-P 73 5 0 100 93.58
B8UNY RIP 41 0 0 100 100

ATEM-P 41 5 0 100 89.13
CLE7T RIP 78 0 0 100 100

ATEM-P 78 0 0 100 100
H6HXH RIP 38 0 0 100 100

ATEM-P 38 3 0 100 92.68
PY7YN RIP 75 0 0 100 100

ATEM-P 75 1 0 100 98.68
SQ44Y RIP 78 0 0 100 100

ATEM-P 78 1 0 100 98.73
TDX52 RIP 43 2 0 100 95.55

ATEM-P 43 7 0 100 86
ZW4YZ RIP 49 0 0 100 100

ATEM-P 49 5 0 100 90.74

See Figure 3 for participant 2G2FK’s raw ATEM-P and
RIP signal data plot, Figure 4 for wavelet coherence between
ATEM-P and RIP, and Figure 5 for wavelet coherence be-
tween RIP abdominal belt and ribcage belt.
To interpret the wavelet coherence plots, note the follow-

ing:

• Arrows in the plots represent the lead/lag phase rela-
tions between the two series. A zero-phase difference
means that the two series move together on a partic-
ular scale.

Table 4: Sensitivity and PPV Means of All Participants

Device Sensitivity Mean % PPV Mean %
RIP 100 99.47
ATEM-P 100 93.94

Table 5: Cosine Similarity ATEM-P and RIP

Participant ID Ribcage Abdomen
2G2FK 0.90 0.90
65NGJ 0.93 0.97
ASWP6 0.93 0.97
B8UNY 0.94 0.95
CLE7T 0.95 0.96
H6HXH 0.92 0.91
PY7YN 0.95 0.94
SQ44Y 0.96 0.96
TDX52 0.89 0.93
Z4WYZ 0.99 0.99

Table 6: Cosine Similarity ATEM-P and RIP Mean

ATEM-P and RIP Belt Mean Of All Participants
Ribcage 0.93
Abdomen 0.95

Figure 3: ATEM-P and RIP signal data for participant
2G2FK. y-axis = ATEM-P (top) and RIP (bottom) signal

data measurements; x-axis = time(s).

Figure 4: ATEM-P and RIP Wavelet coherence plots for
participant 2G2FK.



Figure 5: RIP ribcage belt versus RIP abdominal belt
wavelet coherence plots for participant 2G2FK. This shows
the wavelet coherence of the RIP system with itself, by

comparing rib with abdomen.

• Arrows point right when the time series are in phase.

• Arrows point left when the time series are in opposite
phase.

4.3 DISCUSSION
The sensitivity and PPV values from our study show strong
similarity to the sensitivity and PPV values from Løberg et
al.’s study. The mean sensitivity values from Løberg et
al.’s study range from 97.3% to 99.61%. From our study,
the mean sensitivity values are 100% for both the ATEM-P
and the RIP. The mean PPV values from Løberg et al.’s
study range from 86.64% to 99.16%. The mean PPV values
from our study are 99.47% for the RIP and 93.94% for the
ATEM-P.
The cosine similarity values for each participant’s ATEM-

P and RIP belts is high, with only one out of the 20 values
being below 0.9. The mean cosine similarity for all partic-
ipants is greater than 0.9 for both abdominal and ribcage
belts, and therefore the ATEM-P signal data has a strong
similarity to the RIP signal data.
A visual analysis of the wavelet coherence plots confirms

that there is good coherence between the ATEM-P belts
and the RIP belts. For example, from Figure 4, the period
of 4-8 seconds, the participant’s first breath, shows strong
coherence. The period around 69 seconds also shows strong
coherence and for a longer duration, approximately 100 sec-
onds. This is the pacing of the sections of the test.
The ATEM-P is not intended as a medical grade device,

but rather, as an educational device for musicians. There-
fore, 100% correlation to the RIP measurements is not nec-
essary, but a good correlation is enough to validate the
ATEM-P for the purpose it is intended. The results show
that there is a good correlation between the gold standard
RIP signal data and the ATEM-P signal data.

5. STUDY 2: OBSERVATIONAL STUDY
The purpose of study 2 is to determine whether the ATEM-
P’s breathing-induced measurements of thoracic and ab-
dominal expansion have a correlation to a wind instrumen-
talist’s sound quality and breath control.

5.1 METHODOLOGY

5.1.1 Recruitment
We identified potential participants through their involve-
ment in music groups. All recruitment materials provided
an accurate description of the purpose of the research, study
conditions, the foreseeable risks and/or potential benefits of
participation.

The 43 participants were between the ages of 14–72, and
were in general good health. The participants’ playing ex-
perience ranged from 2-58 years, and skill level ranged from
beginner to professional.

5.1.2 Study Setup
The study took place in the Telemedia Arts Lab at the
University of Calgary, Alberta, Canada during April and
May 2022. COVID-19 protocols were followed in accordance
with Alberta Health Services and the University of Calgary.

RME Fireface UFX was used as the audio interface with
two AKG C414 condenser microphones. Logic Pro X soft-
ware was used to export the audio files as 24-bit wave files,
providing mastering grade quality recordings for this study.
No processing was done on the audio files.

We wrote a Max/MSP patch for the ATEM-P applica-
tion. The Max/MSP patch uses the anticipatory score fol-
lowing component antescofo, a real-time module for Max/-
MSP. The antescofo module accepts a symbolic music score
and in real-time, listens to a musician (via a microphone)
following their position in the score [10]. The Max/MSP
patch does the following:

• Display the participant’s breathing-induced expansion
and contraction as captured by the ATEM-P belts.

• Display the participant’s position in the score indi-
cated by the cursor on the displayed antescofo score.

• Write the sensors’ voltage readings to file.

5.1.3 Study Steps
Each participant ran through the study with only the re-
searcher and the recording assistant present. The recording
equipment was set up identically for each participant.

Each participant was fitted with an ATEM-P abdominal
belt and ribcage belt. In a standing position, the participant
played a set of predefined exercises that they had been given
at least one week prior to doing the study. The ATEM-P
belts generated breathing-induced measurement data, and
an audio recording was made of each participant’s session.

Each participant played the following exercises, to the
best of their ability:

• Four F major scales: 2 octaves, recommended tempo
ˇ “=80

1. piano, no vibrato

2. forte, no vibrato

3. piano, vibrato

4. forte, vibrato

• Six Long Tones: hold note as long as possible, no
vibrato

1. low register G, piano

2. low register G, forte

3. middle register G, piano



4. middle register G, forte

5. high register G, piano

6. high register G, forte

• The Swan by Camille Saint-Saëns: add dynamics and
phrasing as desired, breath when necessary

1. Play from paper score.

2. Play from projected antescofo score.

5.1.4 Data Treatment
We wrote Python programs to cleanup and analyze data.

• When breathing-induced expansion occurs, the volt-
age readings decrease and when contraction occurs,
the voltage readings increase. To reflect increased
physical expansion and contraction with peaks and
troughs respectively, the ATEM-P belt data were mul-
tiplied by -1.

• To align the ATEM-P data and the audio record-
ing, we first identified well-presented audio record-
ing breaths and the corresponding ATEM-P breaths.
Then we lined up the audio recording with the ATEM-
P data. The ATEM-P program was started before the
recording, therefore excess data was removed from the
beginning of the ATEM-P datasets where necessary.

• The ATEM-P belts are not calibrated, therefore we
normalized the ATEM-P belts’ data to fall in the range
of 0 - 1.

5.1.5 Data Analysis
From the audio recording, the following quantitative mea-
surements were derived:

1. Breath period: Counted breaths taken while the par-
ticipant was playing and then calculated the breath
periods.

2. Dynamic range: Extracted the dynamic range in dB,
by subtracting the minimum dB from the maximum
dB, a feature of Audacity Audio Recording and Editing
Software.

3. Pitch variability: Using a KORG Orchestral Tuner
OT-120, observed the minimum and maximum pitch
Hz measurements. Calculated pitch variation; lower
value indicates more stable pitch control.

We recruited a professional flutist and clarinetist to pro-
vide measures for the qualitative components of this study.
The experts listened to the audio recordings and scored the
following items:

1. Sound Quality: The experts assigned each participant
a score from 1 - 5 with 1 being the lowest quality and
5 being the highest quality, refer to Table 7.

2. Breath control and vibrato: The experts assigned each
participant a score from 1 - 5 with 1 being the lowest
quality and 5 being the highest quality, refer to Table
7.

The following measurements were derived from the ATEM-
P belts’ signal data:

• Captured maximum peak amplitudes for scales, long-
tones, and both versions of The Swan.

Table 7: Expert’s Scoring Guidelines

Sc. Sound Breath & Vibrato
1 no support, breathy, thin no vib., no taper
2 no support, breathy, full some vib., no taper
3 supported, breathy, thin some vib., no taper
4 supported, clear, thin some vib., taper
5 supported, clear, full full vib., taper

• Calculated the breath periods for scales, long-tones,
and The Swan.

Limitations:
During the study, the antescofo score-following component
proved to be unreliable and distracting for the participants
and was therefore disabled by the 18th participant. The
participants continued to play The Swan twice, but now
they read the piece from the paper score both times.

5.2 RESULTS
The scatterplots look at ATEM-P and RIP breath peri-
ods, expert scores, dynamic range, and ATEM-P signal data
peak amplitudes. Refer to Figures, 6, 7, 8, 9, 10, and 11.
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Figure 6: x-axis = recording mean breath period; y-axis =
ATEM-P belts’ mean breath period; Spearman rank

coefficient: 0.790 ; Pearson correlation coefficient:0.848.
Samples are correlated.

Tables 8, 9, 10, and 11 give a summary of the Spearman
rank coefficient values and the Pearson correlation coeffi-
cient values.

5.3 DISCUSSION
The Spearman and Pearson coefficient values between the
experts’ scores are all above 0.8 and thus show a high cor-
relation, see Table 8. From these values, we know that the
experts listened for similar qualities in the participants’ per-
formance.

At the start of this study we expected to find a high cor-
relation between the ATEM-P breathing-induced expansion
measurements and the QOP: more expansion leads to better



Table 8: Spearman rank coefficient and/or Pearson: High correlation coefficient values, coefficient equal to or greater than
0.7. Legend: FltExp=flute expert, ClarExp=clarinet expert, sc=score, SND=sound, BRVIB=breath-vibrato.

Spearman Rank Pearson correlation
x-axis y-axis coefficient p-value coefficient p-value

ClarExp SND sc FltExp SND sc 0.802 0.000 0.814 0.000
ClarExp BRVIB sc FltExp BRVIB sc 0.897 0.000 0.895 0.000
ATEM-P mean breath period Recording mean breath period 0.782 0.000 0.842 0.000

Table 9: Spearman rank coefficient and/or Pearson: Moderate correlation coefficient values, coefficient between 0.5 and 0.7.
Legend: Exps=experts, FltExp=flute expert, ClarExp=clarinet expert, sc=score, SND=sound, BRVIB=breath-vibrato.

Spearman Rank Pearson correlation
x-axis y-axis coefficient p-value coefficient p-value

ATEM-P belts
mean breath
period

FltExp SND sc 0.526 0.000 0.526 0.000
Exps mean BRVIB sc 0.512 0.000 0.540 0.000
ClarExp BRVIB sc 0.510 0.000 0.559 0.000
Exps mean SND sc 0.495 0.001 0.558 0.000
ClarExp SND sc 0.477 0.001 0.538 0.000

Recording mean
breath period

Exps mean SND sc 0.653 0.000 0.692 0.000
ClarExp SND sc 0.602 0.000 0.634 0.000
FltExp SND sc 0.691 0.000 0.681 0.000
Exps mean BRVIB sc 0.655 0.000 0.661 0.000
ClarExp BRVIB sc 0.618 0.000 0.650 0.000
FltExp BRVIB sc 0.668 0.000 0.668 0.000
Recording mean dynamic range 0.580 0.000 0.614 0.000

Table 10: Spearman rank and/or Pearson: Low correlation coefficient values, coefficient between 0.3 and 0.5.
Legend: FltExp=flute expert, sc=score, BRVIB=breath-vibrato.

Spearman Rank Pearson correlation
x-axis y-axis coefficient p-value coefficient p-value

ATEM-P belts
mean breath
period

FltExp BRVIB sc 0.493 0.001 0.494 0.001
Recording mean dynamic range 0.475 0.001 0.475 0.001
Pitch variation mean -0.326 0.035 -0.307 0.048
Pitch variation median -03.26 0.035 -0.321 0.038

Recording mean
breath period

Pitch variation mean -0.323 0.037 -0.301 0.053
Pitch variation median -0.294 0.059 -0.279 0.073

Table 11: Spearman rank coefficient and/or Pearson: No correlation.
Legend: Exps=experts, sc=score, SND=sound, BRVIB=breath-vibrato.

Spearman Rank Pearson correlation
x-axis y-axis coefficient p-value coefficient p-value

Exps mean SND sc ATEM-P AbBelt mean peak amplitude -0.003 0.987 -0.062 0.696
Exps mean SND sc ATEM-P RibBelt mean peak amplitude 0.070 0.658 0.098 0.538
Exps mean BRVIB sc ATEM-P AbBelt mean peak amplitude -0.101 0.524 -0.111 0.484
Exps mean BRVIB sc ATEM-P RibBelt mean peak amplitude 0.027 0.867 0.048 0.764
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Figure 7: x-axis = ATEM-P belts’ mean breath period;
y-axis = Experts’ mean breath-vibrato score; Spearman

rank coefficient: 0.504; Pearson correlation
coefficient:0.542. Samples are correlated.
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Figure 8: x-axis = ATEM-P belts’ mean breath period;
y-axis = Experts’ mean sound score; Spearman rank
coefficient: 0.494; Pearson correlation coefficient:0.566.

Samples are correlated.

sound quality, breath control, and use of vibrato. This was
not the case, those measurements were not correlated. The
Spearman and Pearson coefficient values for the ATEM-P
belts and the experts’ scores range from -0.111 to 0.098,
values that show there is no correlation, see Table 11.
The measurements that do show a correlation to the ex-

perts’ QOP scores are the breath period of the ATEM-P
and the breath period of the audio recording, both show a
moderate correlation, see Table 9.
The ATEM-P breath period shows a low correlation to

4 6 8 10 12

ATMMnBrPer (s)

2

4

6

8

10

Dy
Rn

ge
M

n 
(d

B)

Dynamic range and ATEM-P mean breath period

Figure 9: x-axis = ATEM-P belts’ mean breath period;
y-axis = Dynamic range; Spearman rank coefficient: 0.464;

Pearson correlation coefficient: 0.470. Samples are
correlated.
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Figure 10: x-axis = Expert mean sound score; y-axis =
ATEM-P ribcage belt mean maximum amplitude

(normalized between 0-1); Spearman rank coefficient:
0.066; Pearson correlation coefficient: 0.094. Samples are

uncorrelated.

the dynamic range measurements while the recording breath
period shows a moderate correlation. The breath period
of both ATEM-P and the recording show an inverse, low
correlation to the pitch stability, e.g. a lower number means
more pitch stability, see Tables 10 and 9.

From these results, we see that by means of the breath
period, the ATEM-P does provide information about QOP.
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Figure 11: x-axis = Expert mean sound score; y-axis =
ATEM-P abdominal belt mean maximum amplitude
(normalized between 0-1); Spearman rank coefficient:

-0.002; Pearson correlation coefficient: -0.060. Samples are
uncorrelated.

6. CONCLUSION
Wearable technology for musicians is an area of research
that has great potential. With wearable technology, musi-
cian’s physical movements can be measured, and analyzed
with the goal of improved technical proficiency. With bet-
ter physical movement a musician’s performance narrative
becomes enhanced and the QOP improves.
This research developed an affordable, accessible, and

meaningful wearable device for musicians, the ATEM-P.
By measuring breathing-induced expansion and contraction
and providing real-time biofeedback on the musician’s breath-
ing technique, the ATEM-P brings innovative wearable tech-
nology to the world of music, a training tool and perfor-
mance enhancer for the 21st century musician.
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