
LiveLily: An Expressive Live Sequencing and Live Scoring
System Through Live Coding With the Lilypond Language

Alexandros Drymonitis
PhD, Independent scholar
alexdrymonitis@gmail.com

ABSTRACT

LiveLily is an open-source system for live sequencing and
live scoring through live coding in a subset of the Lilypond
language. It is written in openFrameworks and consists of
four distinct parts, the text editor, the language parser, the
sequencer, and the music score. It supports the MIDI and
OSC protocols to communicate the sequencer with other
software or hardware, as LiveLily does not produce any
sound. It can be combined with audio synthesis software
that supports OSC, like Pure Data, SuperCollider, and oth-
ers, or hardware synthesizers that support MIDI. This way,
the users can create their sounds in another, audio-complete
framework or device, and use LiveLily to control their mu-
sic.
LiveLily can also be used as a live scoring system to write

music scores for acoustic instruments live. This feature can
be combined with its live sequencing capabilities, so acous-
tic instruments can be combined with live electronics. Both
live scoring and live sequencing in LiveLily provide expres-
siveness to a great extent, as many musical gestures can
be included either in the score or the sequencer. Such ges-
tures include dynamics, articulation, and arbitrary text that
can be interpreted in any desired way, much like the way
Western-music notation scores are written.

Author Keywords

live coding, live sequencing, live scoring, Lilypond

CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts;

1. INTRODUCTION
Expressiveness in live sequencing either through software or
hardware is an issue that has been approached from vari-
ous points of view. In a different strand, appreciation of
computer code, and coding ease from the perspective of
the coder in live coding sessions, have been addressed by

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

many languages built especially for this artistic practice.
When creating loop-based music through live coding, these
two issues can co-exist in a single practice. The notion
of expressiveness differs among the various approaches to
hardware and software sequencers and their developers. On
the other hand, live coding language developers that target
loop-based music seem to have a rather common under-
standing of the necessities that need to be addressed from
the perspective of code appreciation and ease and speed of
coding [18, 1, 19].

According to Chandra, programming languages are often
regarded as esoteric and mystical [8]. Programming lan-
guages developed with live coding in mind, usually provide
a high level of abstraction, so that coders can free them-
selves from the mundane activity of writing their synthe-
sizers from scratch, and a musical jargon that connects the
music produced by the coded algorithms to the code from
its textual perspective. In such languages, the speed of loop
definitions is closely tied to linguistic expression that closely
relates to natural languages rather than computer code [18].

In the context of live sequencing loop-based music, the
variety in approaches and what is recognised as a problem
seems to be greater than that of live coding. From novel
tunings [21] to stacking melodic lines [7], or from spinning
sequencers [3] and non-linear dodecahedrons [14] to tangi-
ble sequencers based on ancient abacuses [15], both software
and hardware sequencer developers seem to each have their
own perspective and anxieties. It seems that expressive-
ness and flexibility are more subjective than the notion of
computer code appreciation.

In an effort to create a tool for loop-based music through
live coding, inspired by Csound’s paradigm of the separa-
tion of the score from the “orchestra” [17], LiveLily was
developed. This is a system written in openFrameworks
(OF) that utilises a modified subset of the Lilypond lan-
guage [20] with added syntactic sugar, to enable expressive
and fast live sequencing and live scoring through live cod-
ing. It does not create sound, but communicates via MIDI
or OSC with other software or hardware, to control sound
created with audio software or hardware synthesizers. The
Lilypond language was chosen for a few reasons. First of
all, it uses the Dutch system for naming notes – C, D, E,
F, G, A, B – and numbers for note durations expressed as
denominators – 4 for a quarter note, 8 for an eight note, etc.
Western music jargon is used for other features like “clef”
and“tempo”. From a musical perspective, the nomenclature
of this nature seems to me as a logical, yet rare approach in
musical live coding.

On certain occasions, the visual aspect of a live music
performance plays a role in the experience of the specta-
tor. Although research in this field usually focuses on the
performer as the visual aspect of the performance [4, 22],
I believe that an animated score that follows the sequencer



Figure 1: A LiveLily session.

can provide an extra element that contributes to the spec-
tator’s experience. Adding to the appreciation of computer
code mentioned above, an animated score can potentially
provide a more approachable spectacle, where the spectator
can focus on either the code or the music score, depending
on what they feel more comfortable with.
The textual nature of this system serves the live cod-

ing approach well. In contrast to the belief of the com-
puter keyboard not being great for [embodied] expression
[16], the LiveLily language provides an extended array of
expressive musical gestures, like dynamics, glissandi, artic-
ulation symbols, and arbitrary text. These gestures are em-
bedded both in the score and the sequencer and are com-
municated to the audio-generating software or hardware.
Their interpretation is up to the user of this software or
hardware, or the acoustic instrument performer. LiveLily is
designed in a way that enables the combination of live se-
quencing with live scoring, or the isolation of each, provid-
ing a flexible setup for electronic, acoustic, or electroacous-
tic performances. This is an open-source project, hosted on
https://github.com/alexdrymonitis/LiveLily.

2. RELATED WORK
Prechtl et al. approach the MIDI sequencer from the per-
spective of novel tunings [21]. In this context, LiveLily pro-
vides quarter-tone tunings, using standard Lilypond syntax.
The bespoke language of the Mondrian project bares simi-
larities to LiveLily in the context of coding a sequencer [7].
The Mondrian syntax though seems to be much more ab-
stract and cryptic, in a musical context. The author of this
project states that Lilypond offers some of the structures
of Mondrian, but it is geared toward typesetting. LiveLily
though seems to be capable of offering structures developed
with Mondrian, as it offers an easy way to reuse code chunks
and build sequences employing stacking. From a live coding
perspective, languages like Sonic Pi [1] and Tidal Cycles [19]
are related to LiveLily in the context of fast music structur-
ing and simplicity of the language.
LiveLily though is also a live scoring system. In this con-

text, works like INScore [12], Maxscore [13], the bach family
of Max objects [2], and Open Music [6] are related. Maxs-
core and the bach objects are part of the Max environment,
so they are different from LiveLily by nature since they be-
long to the visual programming paradigm. They are also
constrained to macOS and Windows, since Max does not

run on Linux. Open Music, a computer-aided composition
and live scoring system, is also a visual programming envi-
ronment, but it runs on all major Operating Systems (OS),
including Linux. LiveLily is written in OF, so it also runs on
all major OSes. Open Music and INScore are open-source
projects, like LiveLily.

3. DEVELOPMENT STAGES AND CONSID-

ERATIONS
The initial stages of the development of LiveLily included
researching existing live sequencing software. I had already
decided that I wanted to use the Lilypond language, so this
stage did not refer so much to the possible language intrica-
cies and how to tackle them, but other software would help
me decide how to approach the parser and the sequencing
mechanism. Through this research, I realised that what
needed to be decided was whether LiveLily would come as
a plugin for an existing editor, or whether a bespoke editor
would be embedded in the LiveLily software.

I opted for the second choice because programmers typi-
cally have their editor of choice, which means that I would
have to build packages for many editors, if I wanted to share
my project. Added to that, some editors like Vim or Emacs
have a deep learning curve, and if I made a plugin for one of
these editors only, many users would possibly get discour-
aged from using LiveLily.

The first framework I checked for building the editor was
PyQt, a Python Qt module for building GUIs. An issue I en-
countered was PyQt’s behaviour with different keystrokes.
Being inspired by the keyboard shortcuts used by the Hy-
drogen package for the Atom editor, which enables the user
to write Python code interactively, I wanted to use Ctl+Return
for executing a command, or Shift+Return for executing
and moving the cursor one line below. PyQt was not updat-
ing the line numbering properly when hitting Shift+Return,
so I had to look elsewhere. OF was the second choice, be-
cause of its intuitive set of commands, its flexibility, and
its helpful community. It proved to be a good choice as it
enabled me to write code for all the components of LiveLily,
maintaining code integrity. As I started developing the
LiveLily editor, the live scoring idea occurred to me. This
strengthened my idea of developing an editor specifically
for LiveLily and not developing a plugin for another edi-
tor, mainly because I wanted the editor and the score to be



integrated into the same GUI frame.
Once the bespoke editor started behaving closely to how I

wanted it to behave, I started testing the sequencing mecha-
nism. OF is designed mainly for visuals, so its main thread,
where all the OpenGL drawing commands happen, is bound
to the framerate. That posed a limitation to the sequencer,
as high tempi combined with short note durations, like
32nds, would require a very high framerate for the program
to be on time for every beat, plus jitter was very likely to
occur, due to the slow refresh rate. Being a long-time Pure
Data (Pd) user, I attempted to include Pd into OF with the
ofxPd addon, as Pd has a sub-millisecond accuracy, and
would therefore provide the necessary resolution for high
tempi. Since I did not want to spread the project among
many programming languages, I compared a Pd version of
the sequencer with an OF version that run in a different
thread, with a refresh rate of one millisecond. The results
were similar, so I opted for the OF version.
Due to LiveLily using a modified version of a subset of the

Lilypond language, an initial idea was to use the Lilypond
compiler to create the scores. In the past, I have realised a
project where Lilypond compiled the score that was loaded
as an image in an OF program [10], but in a true live scor-
ing context, this takes a substantial amount of time. Also,
detecting specific notes, which is necessary for an animated
score, is much more difficult with an imported image than it
is with native OF primitive shapes and font symbols, loaded
into the OF program. This led me to code the live scoring
part from scratch. I first tried to create everything with
primitive shapes like circles, lines, ellipses, and other native
OF classes, but that proved to be too complicated. Instead,
I used the Sonata font that includes Western notation sym-
bols. I combined it with lines for the note stems, glissandi,
and the staff, and curves for slurs.

4. SYSTEM ARCHITECTURE
The LiveLily system can be broken down into four compo-
nents: the text editor, the language parser, the sequencer,
and the interactive score. All these components are written
in OF and come bundled in one OF app. The following
subsections discuss each component separately.

4.1 The Text Editor
The LiveLily text editor simulates a text editor running in a
terminal window, like Vim or Nano. No mouse interactions
are possible and the user navigates with the arrow keys.
Line numbering is included, as well as code chunk selection
for easier execution of music bars. It is possible to split
the editor window both horizontally and vertically and end
up with more than one editor. All editors though are in
the same shell, and a command executed in any editor will
affect the sequencer and the score.
It is possible to receive text via OSC, by typing the com-

mand \fromosc in an editor. This way, external programs
can control LiveLily remotely. If more than one editor
needs to receive OSC messages, the \fromosc command
takes one argument, the OSC address to receive messages
in, otherwise, the default “/livelily” address is used. Inter-
nally, this address is expanded to two addresses, namely,
“/livelily/press” and “/livelily/release”, which are the ad-
dresses the client has to use, to separate a key press from a
key release. The same applies to custom addresses, where
the “/press” and “/release” part must not be included in the
\fromosc command argument.
The text editor includes a traceback field, at the bottom

of its window. In case an executed command produces an

error, the traceback is printed in that area and the line
that produced the error is colour highlighted in red. If the
line numbering changes by erasing or adding text above
the colour highlighted line, the traceback line numbering is
updated and the colour highlighting moves along with the
rest of the editor. Figure 2 shows the traceback of an error
that occurs when trying to call a loop that has not yet been
defined.

Figure 2: The traceback of an unknown command.

4.2 The Language and the Parser
Parsing LiveLily commands is based on the backslash, sim-
ilar to Lilypond. All commands start with a backslash, and
if an argument is required, the command is followed by it.
The following line is the subcommand to animate the score
and show the beat as a pulsating semi-transparent rectangle
on top of the score.

\score animate showbeat

All instruments of a session must be defined before the
user starts writing melodic lines. The lines below initialise
four instruments and set the clef of one of them to bass,
using the “bass” argument to the \clef command.

\inst synth bass cymbal beat

\bass \clef bass

A bar of music is defined with the \bar command, fol-
lowed by a name given to the bar, and the bar contents
inside curly brackets. The following chunk defines one bar
named “2”, assuming a bar named “1” has already been de-
fined.

\bar 2 {

\beat f’8 c’’ <f’ a’> c’’ f’ c’’ <f’ a’> c’’

\rest 1

}

The \rest command states that all instruments that have
not had a new melodic line defined in this bar, will copy
their lines from the bar with the name of the argument
to this command. To loop two or more bars, the \loop
command must be invoked. The following line loops bars 1
and 2.

\loop a-loop {1 2}

Loops must also be named. The names for bars and loops
are arbitrary. If the sequencer has not started yet, the last
defined bar or loop is the one that will be played, as soon as
the sequencer starts. Once it has started, to play a bar or
loop, after defining it, it must be called with its name as a
command. To play the loop in the line above, the user must
type \a-loop. To play the bar with the name “2”, the user
must type \2. The bar or loop chosen to be played will start
looping once the current bar or loop ends. It is also possible
to create loops from other loops, or with combinations of
loops and bars, like in the line below. It is also possible to
call a new loop in the same line that defines it, as in the
line below



\loop b-loop {a-loop 2} \b-loop

To send a line or chunk to the parser so that it is exe-
cuted, the user must hit Ctl+Return or Shift+Return. In
the latter case, the line or chunk will be executed, and the
cursor will move to the next line with text, or one line be-
low if there is no more text after the line or chunk that is
executed. When the cursor is placed on top of any of two
paired curly brackets of a chunk, or inside such a chunk, the
user can execute the whole chunk in a single shot.

4.2.1 Syntactic Sugar
LiveLily adds syntactic sugar to enable fast typing of bars
and loops. The following bar defines a line with four quarter-
note Fs played fortissimo for the “beat” instrument, and a
chord played forte with an eight-note middle C and an E
flat above played twice, and then a single quarter-note D
above middle C played once. This whole pattern will be
repeated twice. A version of this bar for the “synth” instru-
ment, including text and articulation symbols is shown in
figure 3.

\bar 3 {

\beat f’4\ff*4

\synth [<c’ ees’>8\f*2 d’4]*2

}

In Lilypond, the square brackets are used for manual
beaming of notes, but in LiveLily they are used to group
notes so they can be repeated with the multiplication fea-
ture, as it is shown above. This syntactic sugar applies to
loop definitions too. The following line creates a loop where
bar “2” will be played three times and bar “3” once.

\loop c-loop {2*3 3}

4.3 The Sequencer
As with all components of this system, the sequencer is also
written in OF. To escape from being bound to the framer-
ate, as the main OF thread and all of the OpenGL drawing
commands happen on a framerate basis, the sequencer runs
in a different thread using OF’s ofThread() class. By call-
ing the waitNext() method of the ofTimer() class, the sub-
thread of the sequencer saves CPU since this method sleeps
the thread it runs in, for a given time interval. The clock
of this thread is on a one-millisecond frequency, for tim-
ing accuracy. It is possible to include the sequencer in the
main thread of the program but to avoid jitter, a very high
framerate is required, and that raises the CPU significantly.

4.3.1 The OSC Version
The sequencer sends OSC messages with the following infor-
mation: dynamics, articulation, arbitrary text, pitch, and
duration. The OSC addresses consist of the name of the
instrument and one of the following strings: “dynamics”,
“articulation”, “text”, “note”, and“duration”. For the exam-
ple above, the OSC address for the duration of the “beat”
instrument would be “/beat/duration”. If no IP address for
an instrument is specified, the OSC messages will be sent
to the local host, 127.0.0.1. To set an IP for an instrument,
so its messages are sent to a remote computer, the following
command must be executed, with the correct IP address as
the argument to the \ip command. If a port other than the
default needs to be set, it is written in the same line after
the IP address, or in a separate line, as an argument to the
\ip command. The default port is 1234.

\beat \ip 192.168.100.20

The dynamics are expressed in sheet music terms, from
pianississisimo (ppp) to fortississisimo (fff ). These symbols
are translated to decibel values in the range from 60 (ppp)
to 100 (fff ). The following dynamics are possible: ppp, pp,
p, mp, mf, f, ff, fff. These symbols are mapped to the
following dB values: 60, 66.6, 73.3, 77.7, 82.2, 86.6, 93.3,
100.

The available articulations are marcato, trill, tenuto, stac-
catissimo, accented note, and staccato. These are sym-
bolised with standard Western sheet music notation in the
score, and in the LiveLily language, they are expressed with
the same symbols used in Lilypond. They are transferred
over OSC as strings. The same applies to text written above
or below a note, using the caret or underscore symbol, bor-
rowed from the Lilypond syntax. The user is free to inter-
pret the articulation and arbitrary text in any way (s)he
likes. The lines below creates the score shown in figure 3.
Repeating dynamics symbols are omitted within the same
bar, hence, the score in figure 3 displays the f symbol only
once. In this example, “rev” stands for “reverb”, and “no
rev” for “no reverb”.

\bar 1 {

\synth [<c’ ees’>8\f^‘‘no rev’’*2 d’4-._‘‘rev’’]*2

}

Figure 3: A bar with text and the staccato symbol.

Pitch is sent as MIDI note values, with quarter-tone acci-
dentals expressed as half values, for example, 60.5 for middle
C a quarter-tone high. The duration is expressed in mil-
liseconds. Notes can also be slurred, in which case the total
duration of all slurred notes is sent once, and the rest of the
durations are zeroed and dropped from the OSC stream.
Both the pitch and dynamics are sent as lists so that glis-
sandi and crescendi and diminuendi are possible. For glis-
sandi, the list includes the MIDI note value and the current
duration. It is possible to play chords, in which case the
list will contain as many MIDI note values as the notes in
the current step, and the current duration once, since all
notes in a chord can only have the same duration. To ex-
press crescendi and diminuendi, the dynamics are also sent
as lists, with the target dynamic and the ramp duration.
The user must take care to create a portamento with these
values in the software that creates the sound.

4.3.2 The MIDI version
Almost all information that is tranferred via OSC can be
communicated with the MIDI protocol too. To choose an
output MIDI port, the user must call the following com-
mand.

\listmidiports

The available MIDI ports will be printed below this line.
A MIDI port can be chosen with the following command,
with the correct port number, depending on the output of
the previous command.

\openmidiport 0



Once a MIDI port is open, each instrument that will send
MIDI values instead of OSC, should be assigned its own
MIDI channel. This is done with the following command,
assuming an instrument named “synth” has been created.

\synth \midichan 1

The command above will set an instrument to MIDI mode.
When in this mode, the dynamics of this instrument are
translated to MIDI velocity values and are paired with the
note values. Quarter-tone tunings are communicated as
Pitch Bend MIDI messages. The duration of a note is not
transferred in any way through MIDI, but determines the
duration of a NoteOn message, before the equivalent No-
teOff message is sent. The default duration of a NoteOn
message is 75% of the duration of a note. It can be set
manually for each instrument separately with the following
command.

\synth \mididur 85

Articulation symbols are sent as Program Change values
from 10 for marcato to 15 for staccato. In case Program
Change messages are not an option in the receiving hard-
ware, the staccatissimo, staccato, and tenuto articulations
can get a percentage value of the total duration of the No-
teOn message. For example, a staccato can be set to 50%,
which means it will last half of the 75% default NoteOn
duration (or another percentage that might have been set
manually with the \mididur command). Arbitrary text can-
not be communicated with the MIDI protocol, so it is omit-
ted. Crescendi, diminuendi, and glissandi durations are sent
as Control Change values and it is up to the user to handle
this with a slew limiter or some other way. These values are
internally mapped to the MIDI range from a range from 0
to the duration of one beat.

4.4 The Interactive Score
The score is written with a combination of primitive shapes
like lines, vertices, and curves, with strings in the Sonata
font. The latter provides shapes for the clefs, note heads,
single beams, time signatures, dynamics, and articulation
symbols. When the score is in animation mode, it is clocked
by the sequencer and colour highlights the current note(s) of
every staff. If the \showbeat command has been invoked, a
semi-transparent rectangle pulsates on every beat. Figure 1
illustrates a still from a LiveLily session where the pulsating
rectangle and the highlighted notes are visible.
An accompanying OF program that includes only one

score part can be used when LiveLily is used in a live scor-
ing session, so acoustic instrumentalists can sight-read the
score. The sequencer runs only in the main LiveLily pro-
gram so that all score-part programs are synchronised.

5. LIVELILY ENDEAVOURS
The development of LiveLily started as a personal project,
leveraged by a personal approach to live coding [9, 11]. Up
to now, this system has been used in live performances in
small venues in Athens, Greece. LiveLily has been well
received by the audience, with positive comments being re-
ceived after the end of each performance. Even at times
of malfunctions -due to the state of the software, currently
being at a beta stage- the audience members enjoy the per-
formance with this system.
The performances realised with LiveLily either follow a

more traditional approach, where live coding is done through
the computer hardware, or more unconventionally, where a

guitar is used as a computer keyboard to write LiveLily com-
mands. In the latter case, the melodies that occur while typ-
ing commands are introduced to the melodic patterns writ-
ten in LiveLily. Writing notes in the Western-notation and
displaying the score serves this approach well, as it is cen-
tered around an instrument that often depends on reading
music scores in this notation format. Future plans include
character-based text generators based on Recurrent Neural
Networks (RNN) with Long Short-Term Memory (LSTM),
to provide melodic and rhythmic pattern suggestions in the
LiveLily language, when live coding for an acoustic ensem-
ble.

6. FUTURE WORK
One feature that is worth adding in the future is support
for some DSP languages. Python with the Pyo module [5]
is one of the first languages that will probably be added
to the parser, since it is a language and module frequently
used by the author of this paper and developer of LiveLily.
SuperCollider is another option, but for that, contribution
by other developers would be at least welcome, if not nec-
essary. The idea behind this is to not have to launch any
other software and run both the score and the “orchestra”
in LiveLily.

Colour highlighting depending on the syntax is something
that is common among programming languages. This can
be found in Lilypond too, when written in the Frescobaldi
software. This feature has not yet been implemented, but
it is included in the near future plans, especially if support
for other programming languages is to be added.

Another possible feature is to add the capability of creat-
ing more than one bar with the \bar command, by using the
vertical bar character, similar to how bar endings are writ-
ten in Lilypond, but slightly different, to enable fast typing.
The way the system is currently designed, the distinction
between the \bar and \loop commands is clear and logical.
Being able though to define single bars only, poses a limita-
tion to rhythm and dynamics, as currently, it is not possible
to slur notes between different bars or create a crescendo or
diminuendo that extends to more than one bar. If this fea-
ture is added, the \bar and \loop commands might need to
change. Otherwise, LiveLily’s syntax should be extended
to allow open-ended slurs and crescendi and diminuendi, so
they can start in one bar and end in another, where these
bars will be defined separately.

Finally, conducting short surveys either with audience
members of LiveLily performances or with LiveLily work-
shop participants, is part of the future plans. Such work-
shops have already started being booked, so conducting a
survey is feasible. These surveys will help in further de-
veloping and refining this system. The workshops aim at
making other live coders aware of this system, so more peo-
ple start to use it.

7. CONCLUSIONS
LiveLily is a flexible and intuitive live sequencing and live
scoring system that provides a wide range of capabilities.
The possible combinations of software, hardware, and acous-
tic instruments are many. Among others, it is possible to
combine acoustic instruments with analog modular synthe-
sizers, sync software audio with hardware electronic instru-
ments, or connect computers in a local network and control
them through this interface.

From the sequencer perspective, LiveLily provides many
expressive musical gestures, like dynamics, glissandi, crescendi,
articulations, and arbitrary text that can be interpreted at



will. From the live coding perspective, it uses a simple lan-
guage that makes use of Wester-music nomenclature, pro-
viding a coding paradigm that can be approached by non-
coders too, given that they possess some Western-music
knowledge. Its versatile bar and loop definition structure
provides an easy way to define music segments fast. Its
syntactic sugar adds on top of that, offering a shortcut to
defining melodic or rhythmic patterns.

8. ETHICAL STANDARDS
This research has not received any funding. It also has no
potential conflicts of interest. There were no participants
included or animals used throughout this research.

9. REFERENCES
[1] S. Aaron and A. F. Blackwell. From sonic pi to

overtone: Creative musical experiences with
domain-specific and functional languages. FARM ’13,
page 35–46, New York, NY, USA, 2013. Association
for Computing Machinery.

[2] A. Agostini and D. Ghisi. Real-Time Computer-Aided
Composition with bach. Contemporary Music Review,
32, 02 2013.

[3] D. G. Arellano and A. McPherson. Radear: A
tangible spinning music sequencer. In Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 84–85, London, United
Kingdom, jun 2014. Goldsmiths, University of
London.

[4] M. A. Baytas, T. Goksun, and O. Ozcan. The
perception of live-sequenced electronic music via
hearing and sight. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 194–199, Brisbane, Australia, 2016. Queensland
Conservatorium Griffith University.

[5] O. Bélanger. Pyo, the Python DSP Toolbox. In
Proceedings of the 24th ACM International
Conference on Multimedia, MM ’16, page 1214–1217,
New York, NY, USA, 2016. Association for
Computing Machinery.

[6] J. Bresson. Reactive visual programs for
computer-aided music composition. pages 141–144, 07
2014.

[7] P. Brinkmann. Mondrian music description language
and sequencer. In International Conference on
Mathematics and Computing, 2006.

[8] V. Chandra. Geek Sublime: The Beauty of Code, the
Code of Beauty. Graywolf Press, Minneapolis,
Minnesota, USA, 2014.

[9] A. Drymonitis. Live coding on a modular synthesizer.
In International Conference on Live Coding, Valdivia,
Chile, 2022.

[10] A. Drymonitis and N. Chatzopoulou. Data Mining /
Live Scoring – A Live Performance of a
Computer-Aided Composition Based on Twitter. In
Proceedings of the 2nd Joint Conference on AI Music
Creativity, page 10, Online, July 2021. AIMC.

[11] A. Drymonitis and M. Manousakis. Echo and
narcissus: Live coding and code poetry in the opera.
In Proceedings of the International Computer Music
Conference, ICMC, pages 16–21, Limerick, Ireland,
2022.

[12] D. Fober, Y. Orlarey, and S. Letz. Inscore an
environment for the design of live music scores. In
Proceedings of the 2021 Linux Audio Conference,

LAC, California, USA, 05 2012.

[13] G. Hajdu and N. Didkovsky. Maxscore - current state
of the art. In Proceedings of the International
Computer Music Conference, ICMC, pages 156–162,
Ljubljana, Slovenia, 2012.

[14] T. Hayes. Neurohedron : A nonlinear sequencer
interface. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 23–25, Sydney, Australia, 2010.

[15] C. Hinojosa and L. Patricia. Kanchay yupana//:
Tangible rhythm sequencer inspired by ancestral
andean technologies. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, The University of Auckland, New
Zealand, jun 2022.

[16] S. Holland and R. Fiebrink. Machine Learning, Music
and Creativity: An Interview with Rebecca Fiebrink,
pages 259–267. Springer International Publishing,
Cham, 2019.

[17] V. Lazzarini, S. Yi, J. ffitch, J. Heintz,
Ø. Brandtsegg, and I. McCurdy. Csound. 01 2016.

[18] T. Magnusson. The IXI Lang: A Supercollider
Parasite for Live Coding. In Proceedings of the
International Computer Music Conference, ICMC,
pages 503–506, Huddersfield, UK, 2011.

[19] A. McLean. Making programming languages to dance
to: Live coding with tidal. FARM ’14, New York, NY,
USA, 2014. Association for Computing Machinery.

[20] H.-W. Nienhuys and J. Nieuwenhuizen. Lilypond, a
System for Automated Music Engraving. In In
Proceedings of the XIV Colloquium on Musical
Informatics (XIV CIM 2003), Firenze, Italy, 05 2003.

[21] A. Prechtl, A. Milne, S. Holland, R. Laney, and
D. Sharp. A midi sequencer that widens access to the
compositional possibilities of novel tunings. Computer
Music Journal, 36:42–54, 03 2012.

[22] B. W. Vines, C. L. Krumhansl, M. M. Wanderley,
I. M. Dalca, and D. J. Levitin. Music to my eyes:
Cross-modal interactions in the perception of
emotions in musical performance. Cognition,
118(2):157–170, 2011.


