
An embedded wavetable synthesizer for the electronic
bandoneon with parameter mappings based on acoustical

measurements

Juan M. Ramos
Universidad Nacional de

Quilmes
Roque Sáenz Peña 352

Bernal, Argentina
juan.ramos@unq.edu.ar

Esteban R. Calcagno
Universidad Nacional de

Quilmes
Roque Sáenz Peña 352

Bernal, Argentina
ecalcagno@unq.edu.ar

Pablo E. Riera
Instituto de Ciencias de la

Computación (UBA)
Pabellón Cero+Infinito –

Ciudad Universitaria
priera@dc.uba.ar

ABSTRACT

The bandoneon is a free-reed instrument of great cultural
value that is currently struggling to ensure its conserva-
tion as heritage, mainly due to its complex constitution, the
lack of sufficient manufacturers to satisfy the demand, and
the high sales prices that this entails. Our research group
has been working on the task of revitalizing the instrument
from a modern perspective, carrying out musical and sci-
entific research for the creation of an accessible electronic
bandoneon. As the next step in this endeavor, we present a
method for synthesizing the bandoneon sound using multi-
ple wavetable interpolation, and parameter mappings based
on acoustic measurements. We discuss a method for captur-
ing and selecting the wavetables, the implementation on an
embedded platform (Bela Mini), and the trade-offs between
realistic sound and computational efficiency. The synthe-
sizer runs in real-time and has a polyphony of approximately
12 voices, allowing for an autonomously sounding electronic
instrument.

Author Keywords

Bandoneon, Synthesizer, Embedded, Wavetable

CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts; •Information systems → Music retrieval;

1. INTRODUCTION
The bandoneon is a free-reed instrument which evolved from
the European accordions and concertinas of the 19th century
[1, 2]. It is powered by a square-shaped bellows with wooden
lids and a keyboard on each side. The left keyboard fea-
tures bass notes, while the right keyboard has treble notes,
intended to be played with each hand on its corresponding
side.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

This work is part of Bandoneón 2.0, an interdisciplinary
project based in Argentina whose primary goal is to produce
electronic bandoneons, and to conduct the academic re-
search required to accomplish this task. A journey through
the history and current development of the project can be
found in [3]. One of the specific goals of the project is
to develop a realistic bandoneon-sounding synthesizer, de-
signed to work in tandem with the electronic bandoneon
controller. Let us recall the words of Franco and Wander-
ley, who raised perhaps the most relevant question regarding
the importance of accomplishing this union:

How can these new instruments provide the same
gratifying immediacy and musical expressiveness
as their acoustic counterparts? [4]

Furthermore, providing the instrument with its own porta-
ble (or built-in) synthesizer is key to allowing it to be in-
dependent of a computer for generating its sound, making
it suitable for use not only in experimental performances
but also in more traditional contexts, where bringing even
a small computer is not usually possible. As Mulshine and
Snyder state, embedded audio synthesis allows for the cre-
ation of instruments that have distinctive and long-lasting
identities and, at the same time, avoids maintenance issues
associated with connection to personal computers [5].

In South America, there have been some attempts to pro-
duce electronic bandoneons as detailed in [3]; all of them
were developed as MIDI controllers and typically used soft-
ware samplers running on associated computers to produce
their actual sound. As realistic as a sample of a note can be,
it is very difficult for it to reproduce the evolving dynamic
details and nuances of such an expressive instrument in
real time, at least without a thorough understanding of the
acoustics of the instrument. To the best of our knowledge,
the only closely related instrument with its own specifically
designed internal synthesizer is the V-Accordion series pro-
duced by Roland. In previous work [6], we explored the con-
cept of an embedded FM bandoneon synthesizer designed
in the FAUST language and implemented on a Teensy 4.0
board. The choice of its FM parameters and other mappings
was based on preliminary acoustic measurements of the ban-
doneon, which served as the basis (and were extended) for
this work.

1.1 Embedded synthesis in NIMEs
Embedded synthesis or DSP systems have empowered many
NIMEs. As mentioned by Franco and Wanderley, the first
attempts were aimed at creating self-sufficient DSP units
[7, 8, 9, 10, 11, 12]. Since then, many platforms have been
used to this end, particularly ARM based devices. Among



these, the Beaglebone Black (released in 2013) is a pow-
erful and low-cost ARM based board capable of running a
Linux OS. Several NIMEs used this platform, such as Range
[13] and El-Lamellophone [14]. Franco and Wanderley even
conducted comparative performance tests on the Beagle-
bone Black, and found that the wavetable synthesis method
was capable of sustaining more than 180 voices, while other
methods such as granular or additive reached less than 30.
Based on the Beaglebone hardware, Bela [15] is an open-

source platform for sensor and audio processing, which runs
a custom real-time audio environment based on Xenomai
Linux. Bela has been used in many NIME projects. Moro
et al. [16] showed how it can be integrated with Pure Data
to perform audio signal processing in real-time. Martin et
al. [17] used Bela to interface with Myo sensors in order to
control a bank of oscillators with the performer’s muscle ges-
tures. Bela has also been used in augmented instruments,
such as the work by Gonzalez Sanchez et al., who describes
the design and construction of a collection of Bela-equipped
augmented acoustic guitars [18]. Pardue et al. created a
hybrid digital-acoustic violin [19], which uses a Bela Mini
installed in the violin itself to process the string signals in
real-time, and acoustically feed the results to the body of
the instrument through an actuator.
Besides the Beaglebone/Bela, there have been other de-

velopments that make use of platforms such as Teensy, Rasp-
berry Pi, ESP32, STM32 and others [5, 20, 21, 3]. In the
following sections, we will describe the electronic bandoneon
controller called “Alfa” [22], the wavetable bandoneon syn-
thesizer, and its embedded implementation on a Bela Mini.

2. THE ACOUSTIC AND THE ELECTRONIC

BANDONEON
An acoustic bandoneon has 71 keys (typically), each one
producing a different note depending on whether the bel-
lows is expanded or contracted. Though variations exist,
its usual total range is from C2 to C7. Also, most notes
-with the exception of the highest pitched ones- are actu-
ally produced by two paired reeds tuned to the expected
fundamental plus its octave respectively, giving the instru-
ment a very distinctive timbre. The pressure applied by the
bellows to the reeds governs the timbral characteristics and
the instantaneous pitch of the reeds. Typically, the pitch
lowers as the pressure increases for notes up to the highest
octaves, where this tendency gets reversed. The attack and
release times vary with the note due to their different masses
and, to a lesser extent, with the initial pressure. Additional
nuances of sound production depend on factors such as the
key pressing techniques or timings and its relationship with
the bellows’ gestures.
The electronic bandoneon we developed, called “Alfa”,

functions as a controller interface, and has no actual reeds,
so its sound has to be generated externally by an appropri-
ate synthesizer. Besides the absence of reeds, the controller
has the same general structure as an acoustic bandoneon,
including the bellows and number of keys. It senses the
air pressure inside the bellows, treating it as a differential
amount with respect to the external ambient pressure, so
it can be a negative or positive value when expanding or
contracting the bellows. The keys states are regularly mon-
itored and, in combination with the pressure value and sign,
the appropriate control messages are produced. Any MIDI
enabled synthesizer can be used with the controller but,
typically, it is expected that the value of the pressure would
control the loudness, timbre, and pitch of the sound, while
the keystrokes define the attack and release events. Alfa

is based on an Arduino microcontroller which manages the
sensors, senses the keys and sends the appropriate MIDI
messages, with pressure information encoded as CC mes-
sages and notes as note-on/off mapped to channel 1 or 2 for
the right and left keyboard respectively.

Figure 1: “Alfa”, the electronic bandoneon.

3. WAVETABLE SYNTHESIZER
Multiple wavetable synthesis [23, 24] is an additive synthe-
sis technique based on the addition of fixed waveforms or
periodic-based functions with variable weights over time.

Unlike classical additive synthesis, where the waveforms
to be added are typically sinusoids, wavetable synthesis
loads each table with one cycle of a waveform of arbitrary
complexity [25]. The main advantage of this technique is
its computational efficiency since the number of wavetables
used is usually much less than the number of sine waves
that would be used in classical additive synthesis [26]. To
capture the evolving spectral characteristics of a sound, the
basic technique uses several breakpoint times to take snap-
shots of the waveform and then generates the evolution of
the full waveform interpolating between tables from adja-
cent breakpoints. Other methods separate and mix regions
of the spectrum instead of the raw cycles [27], or compute
just the differences between breakpoints. There are many
strategies to select the breakpoints to be used; in our par-
ticular case, we know that the bellows’ pressure is the pa-
rameter that dominates the sound characteristics for a given
note: the more pressure, the more intensity, brightness, de-
tuning, and other spectral features.

In the next section, we will elaborate on the recording and
analysis of audio samples and the method for breakpoint
selection.

3.1 Samples recording and selection
In order to implement the wavetable synthesis method, we
first need to record samples from a bandoneon. To this
end, we used an old Uhlig brand bandoneon, which we re-
paired and utilize for exploratory studies without running
the risk of damaging a better-shaped or borrowed profes-
sional instrument. It was recorded using our Integrated
Measurement System [28], thus obtaining samples from all
the reeds, carefully separating fundamentals from octaves.



This was done because the relationship between these reeds
is not a perfect octave, and their combined sound may not
be perfectly harmonic. For each reed, we executed a slow
crescendo-decrescendo, from the quietest to the loudest dy-
namics. The system allows for capturing the sound and the
pressure data synchronously. The resulting waveform is ex-
emplified in figure 2 along with the bellows’ pressure for an
F#4 note. This execution methodology allowed us to cap-
ture all the dynamics in a single take. The crescendo and
decrescendo regions go through the same overall dynam-
ics, but there are subtle differences due to the rigidity of
the bellows when the movement begins (i.e. increasing the
force) compared to when it ends (releasing the force). After
a careful inspection and comparing it with professional in-
struments, the captured audio was equalized to compensate
for some of the high-end loss of our old instrument due to
its age and condition, but also for acoustic conditions that
produced a slightly exaggerated low-end.

Figure 2: Top: Single reed recording with a crescendo-
decrescendo dynamics. The pressure signal is depicted on top
of the waveform. The red vertical lines indicate the break-
point times used to select the wavetables, which waveforms
are shown in figure 3. Bottom: Spectrogram of the record-
ing. The breakpoint times are selected based on the spectral
centroid values.

The next step for constructing the wavetables is to select
a number of waveform segment candidates distributed lin-
early along the whole take, including a segment in the inten-
sity peak. We performed a DFT analysis over the segment
and measured the phases and amplitudes of each partial.
This allowed us to overcome the potential inharmonicity
of the waveforms. Then we performed a resynthesis with
every partial as an integer multiple of the fundamental fre-
quency, thus obtaining a harmonic sound with an arbitrary
table-size and partial count for each note, which is useful for
the implementation in code as discrete points. This resyn-
thesis generates a clean sound, discarding the background
noise from the bellows blowing air in the original record-
ing, which will be added separately. For each note, the
partials’ phase relationship of the cycles corresponding to
the different intensities must be the same in order to pre-
vent artifacts when morphing between them. For this, and
within any given note, we selected the phase profile of the
cycle with the highest intensity and applied it to the rest.
We also tried to use constant, random or even ignoring the
phases as suggested by some authors [27], but we found

that, for this instrument, it was essential to preserve them
as much as possible. After some testing, we decided to use
4x oversampling on each wavetable, this is further explained
in the next section. Finally, each cycle was labeled with its
associated pressure, RMS and precise frequency values, as
extracted from the initial analysis.

The wavetable cycles obtained (typically 50 for each reed)
are now candidates for being used in the synthesizer as
breakpoints for interpolation. In the examples presented
in this work, we used a limited set of 5 breakpoints for
each note, as we found it sufficient to represent a smooth
transition from lowest to highest intensity. To select the
best representatives, we first picked the wavetable at the
peak intensity, and then we selected four more wavetables
using a spectral criterion, taking a linear range of spectral
centroid values. In figure 2, the vertical lines indicate the
center of the segments selected as breakpoints. In the spec-
trogram, we can see how the spectral characteristics evolve
and change with the pressure exerted. Is interesting to note
the increase in background wind noise when the pressure is
higher. In the final stage, the wavetables are exported along
with their labels for pressure and RMS values. In figure 3,
we can see the corresponding 5 selected waveforms for the
note in figure 2.

Figure 3: 5 amplitude normalized wavetables for the record-
ing example in figure 2. For each one, we show the bellows
pressure, the RMS amplitude at the recording, and the spec-
tral centroid value.

All the process was automatized, but each breakpoint se-
lection was manually inspected to check for errors. In future
work, we will expand the use of other spectral characteris-
tics to look up a fully automated procedure.

3.2 Synthesis
The complete synthesizer has the following parts: the pri-
mary audio signal is generated by separate wavetables for
each of the two reeds (fundamental and octave). The pres-
sure signal controls the fundamental frequency and ampli-
tude, while the keys (left or right hand) select the notes
and trigger an amplitude envelope. Finally, two more audio
signals are added with wind noise and keystroke sounds.

The primary signal is generated with a standard wavetable
interpolation. As the bellow’s pressure changes, linear in-
terpolation of the wavetables between two adjacent break-
points occurs, except in the extreme breakpoints (quiet and



loud) where no interpolation occurs. Time-adjacent sam-
ples are also interpolated to allow for real-time pitch con-
trol, and we use 4x oversampling to reduce aliasing while
maintaining linear interpolation. Higher order interpolation
methods can be used, but have a higher CPU cost. The
starting phase of each signal is randomly selected to avoid
exactly repeating sounds when summing the fundamental
and the octave.
Each key has a note which assigns the corresponding base

fundamental frequency, with some noise in its value to make
the whole instrument sound more natural. The octaves are
also slightly detuned to this effect. On top of the funda-
mental base frequency, some detuning occurs at high pres-
sures. Figure 4 shows the pitch shift from the expected
note for different pressures. Each dot represents a point in
the crescendo-decrescendo waveforms for all the recorded
reeds. We indicate with lines the evolution of the detuning
for representative notes in each octave. We can see that for
low octaves, the detuning can be very pronounced, almost
half a semitone; however pressure extremes are seldom used
while playing. The mapping of pressure to pitch shifting
is characterized by performing a linear regression for each
note.

Figure 4: Detuning of reeds as pressure increases. Each dot
represents a cycle taken from recordings of all reeds. The
pitch shift is measured relative to the mean reed pitch. We
show six lines corresponding to notes spanning 6 octaves to
better illustrate the effect that lower notes get a lower pitch
with high pressure, while higher notes do the opposite.

The instrument has two keyboards with some notes over-
lapping across both, but having distinct spectral character-
istics, mainly due to a resonator structure present on the left
side. The synthesizer takes this into account, so each hand
has its own wavetable set created with its corresponding
recordings, and a panned stereo signal can be generated.
The fine temporal dynamics when a key is pressed are

modulated by an attack-sustain-release amplitude envelope.
On top of that, the overall level is continuously modulated
by the pressure with linear interpolation of the RMS ampli-
tude corresponding to each breakpoint.
The attack time of the envelope varies with the note and

the pressure, following the formula attack time ∝ ϵ(−αn+
β)(PMax − γp) where n is the note and p the pressure.
The release time formula is similar, but it does not de-
pend on the pressure. We adjusted the parameters to obtain

times values based on our own measurements [6]. The at-
tack and release transients are modeled with the formula
a(t) = sin(πt2/2), t ∈ (0, 1). Where t is normalized to
be one at the attack time. These transients simulate the
response of a high-order filter that the reed’s onset would
follow in response to pressure changes. From previous work
[3], we know the attack time gets shorter with frequency
so, in the synthesizer, we need to make the envelope of the
octave slightly faster. To save computation time, we imple-
mented a strategy to reuse the fundamental’s envelope on
the octave reed, by multiplying its value by 1.5 and clipping
the result to 1, which produces a steeper slope and a faster
transition. Another significant peculiarity of the reeds is
their remaining energy and oscillation after the key has been
released, which is typically very quiet and is ignored; since
air cannot flow anymore, it behaves more like an idiophone.
However, this effect greatly impacts the reed’s ability to
begin sounding again after a new keypress, significantly re-
ducing its attack time if any oscillation remains. This affects
the ability to perform quick trinos and repetitions, which
wouldn’t be possible if the note always starts off as if it had
zero residual oscillation. We simulated this effect by adding
a counter that acts as a hidden (and slightly longer) release
phase, which is checked at every note-on event, and scales
down the attack time if it has a non-zero value.

In figure 5 we show the spectrograms of the original record-
ing on the left (same signal as in figure 2) and the synthe-
sized with the wavetables using the same pressure profile on
the right.

Figure 5: Comparison of spectrograms of the original record-
ing and the synthesized one with wavetables. Stronger de-
tuning can be observed in the high pressure regime. All the
partials have the same relative detuning (i.e. the signal is
harmonic), but the linear frequency scale shows the devia-
tion more prominently in the higher ones.

Finally, the synthesizer produces two more kinds of sounds
in parallel with the reeds: keystrokes and wind noises. A
limited set of recorded keystroke samples were added to the
system, which are played at each note-on and note-off event.
Each keystroke sample is assigned to a specific note so each
note has its own sound. The set of samples is distributed in
a cyclic way using the note number. As a final result, the or-
der appears randomly distributed to the ear while playing.
We also added a filtered noise generator in order to simu-
late the wind noise produced when there’s high pressure is
applied to the reeds. This is particularly notorious both on



very fast and loud attacks (there’s even a common staccato
technique called escupido that depends on this effect) and
also at any loud sustain in general, as can be seen in figure
2.
All these elements are available as modifiable parameters,

allowing us to change from small details to more fundamen-
tal features and, for example, simulate other instruments
such as an accordion. In the next section, we discuss the
implementation of the synthesizer in the embedded system.

4. EMBEDDED IMPLEMENTATION
The Bela Mini is a powerful low-cost microcomputer based
on the PocketBeagle, which features a 1 GHz ARM Cortex-
A8 CPU, 512MB of DDR3 RAM, and runs a Xenomai Linux
OS that manages the interfacing with external devices (such
as MIDI controllers), provides onboard code compiling and
many other user-friendly features. Bela has 8 channels of 16-
bit analog input and output, and 16 digital I/O at audio rate
and is capable of audio latencies as low as 80 microseconds
in specific configurations [15].
Regarding memory usage, we found that 512MB was e-

nough for the case of a single-instrument wavetable syn-
thesizer, even accounting for Xenomai’s overhead. In its
current implementation, we measured the physical memory
footprint of the synthesizer at approximately 22MB (less
than 5% of the total). Besides the wavetables themselves,
we stored many other tables with constants like the pressure
and RMS mappings, and also many precalculated values to
speed up the audio render loop. Despite having more avail-
able memory than needed, we made some memory-saving
decisions, such as storing only half of the notes (reusing the
nearest tables for the remaining notes) in order to test the
tolerances of our design empirically.
CPU-wise, we successfully obtained a maximum polypho-

ny of 10-12 simultaneous voices (each voice being a complete
note with both reeds, wind noise, and keystroke sounds),
with a block size of 256 and the CPU usage peaking at 90%,
where it began to drop frames or even crashing sometimes.
In this sense, we estimated 6 voices as the bare minimum
necessary for a bandoneon, but around 8-10 as a safer mar-
gin to allow the release tails to decay correctly. Smaller
block sizes worked with reduced or unstable polyphony:
about 8-10 voices with block sizes 16-128, while no notice-
able improvements were found above 256, which seems to
suggest a bottleneck after 8-12 voices. We will continue to
explore this issue for the next iteration of our synthesizer,
but for our current purposes, the polyphony achieved was
enough to properly test the overall design.
In order to achieve this performance, we had to take sev-

eral optimization strategies in the actual implementation,
and even compromise some of the final realism aspects by
simplifying operations and mappings. As mentioned, linear
equations were used to map attack and release times -which
are only computed at note-on events-, and faster interpo-
lated lookup tables for sample-to-sample mappings like the
amplitude and pitch changes. Where possible, we made use
of the Math-Neon [29] library to obtain less accurate but
faster functions such as sinf neon (sine) to map the enve-
lope with a sinusoidal shape. Random values for the wind
noise are generated by means of a linear congruential gen-
erator algorithm every four samples, which produces a sub-
sampling both to reduce computations and to make it sound
warmer than plain white noise. There is also a small lookup
table of 32 random values to set an initial phase for each
reed at the note on events (necessary to have a more natu-
ral phase heterogeneity). We profiled these optimizations in
hardware by setting a GPIO pin high and low, allowing us

to measure code timings with an oscilloscope and compare
the performance of different strategies.

Regarding the MIDI inputs from the electronic bando-
neon, we had to adapt both the controller and the syn-
thesizer to compensate for the low resolution of the 7-bit
MIDI CC messages for the pressure signal. Although 14-bit
CC can be easily implemented on the Bela, the Arduino
microcontroller in Alfa can’t process data and send double
the amount of messages per unit time (two as opposed to
one 7-bit message) fast enough, and it tends to miss criti-
cal events. To overcome this, we compressed the pressure
signal by applying a cube-root mapping in the controller,
which provides better effective resolution in the -far more
common to use- low-pressure range. The Bela then decom-
presses the signal by cubing the input. We also implemented
a MIDI-thru in the Bela, allowing us to send a copy of the
received messages to a computer and record the stream. In
the next version of our controller we’ll be looking for a di-
rect integration with the synth platform that could allow for
more accurate keystroke and air pressure sensing (and mes-
saging), making MIDI available externally but not required
internally.

The controller is connected to the Bela by USB, and ide-
ally the whole setup is powered by batteries. However, when
working on the code and testing the synthesizer (or record-
ing MIDI and audio), Bela was connected to a computer
both by USB and to the sound interface. This produced a
lot of noise in its output, probably due to ground loop is-
sues. We mitigated this effect by using a filter for car audio
applications between Bela and the sound interface. No such
noise was observed when powering Bela with batteries.

5. PLAYING RESULTS
After our initial assessments, we brought a professional mu-
sician to test the synthesizer with our Alfa bandoneon con-
troller. We recorded the audio, video, and MIDI stream
of various songs and practice techniques in order to have
a palette of sounds and expressions, both to conduct real-
time parameter adjustments and to collect data for further
analysis. We immediately repeated and recorded these per-
formances with an acoustic bandoneon, to have a point of
comparison that would allow us to make relevant modifi-
cations to the synthesizer. Collecting the MIDI streams
of these performances was extremely useful, as allowed us
to set up an iterative mechanic to tune various parameters
of the synthesizer and to adjust the breakpoint selection
algorithms to find a better sound match than what was
achieved during the original recordings. A selection of this
material is available at our website https://bandoneon.ar/
publicaciones.

The overall experience was very good, and praised as ca-
pable of much more expressiveness than sampler methods,
although the timbre of some regions still needs some work.
In this regard, and having tested our method, we intend to
record a new set of samples from a professional instrument.

We also experimented with tuning some parameters out-
side their typical ranges. An accordion-like sound was rela-
tively easily achieved by making the octave reeds no longer
octaves but detuned unisons of the fundamentals. Harmon-
ica, melodica, and even one-voice reed organ sounds can be
achieved by discarding the second reed entirely and allowing
for heavier note bending with overpressure in the case of the
harmonica (though this proved difficult to control without a
more traditional interface such as a pitch wheel). Electronic
piano sounds were achieved by setting faster attack times
and distorting the breakpoint search algorithm to give less
bright breakpoints more prominence.



6. CONCLUSIONS
In this article, we presented our progress in creating a fully
portable and expressive electronic bandoneon, through the
development of an embedded synthesizer based on the tech-
nique of multiple interpolated wavetables. Our method for
capturing and selecting the wavetables has proven to be ro-
bust and sufficient for this stage of the research, although we
will continue to look for ways to improve automatic break-
point detection.
The synthesizer has numerous parameter mappings based

on our analysis of the acoustic behavior of the bandoneon.
We found that, for a given note, the parameter that best
describes the behavior of the instrument is the pressure ex-
erted by the bellows. We have managed to reproduce effects
such as timbre, intensity, and pitch changes based on pres-
sure. We also incorporated the sound of keystrokes and the
noise of the wind flowing through the various reeds at high
pressures.
Our implementation in a Bela Mini has achieved a polyph-

ony of up to 12 voices, although we will continue working on
optimizing its performance. We have successfully tested the
synthesizer with our ”Alfa” electronic bandoneon controller
and produced audio, video, and MIDI material for further
analysis and iterative improvements.

7. ACKNOWLEDGMENTS
We’d like to thank our families, Universidad Nacional de
Quilmes, and Joaquin Rizza, for their constant support.
We’d also like to thank the NIME community, the Bela
team, and Manuel Egúıa for their support on obtaining the
Bela Mini that made this work possible.

8. ETHICAL STANDARDS
This work is currently being carried out with financial sup-
port from Consejo Nacional de Investigación Cient́ıficas y
Técnicas (CONICET, Argentina), Universidad Nacional de
Quilmes (Argentina), and Ministerio de Cultura (Argentina).
The authors take special care in their ongoing research to
respect the cultural and historical background of the bando-
neon and its importance to their region, and not only abide
by applicable laws about the protection of the instrument
(such as Argentinean Law 26,531), but also encourage its
dissemination and compliance within and outside the na-
tional territory. In this sense, the Bandoneón 2.0 project is
in no way an effort to ”replace” the acoustic bandoneon, but
to help preserve it by making it easier for everyone to access
it and increase their interest in the instrument in general.

9. REFERENCES
[1] S. A. Eydmann. The life and times of the concertina:

The adoption and usages of a novel musical
instrument with particular reference to scotland. The
Open University., 1996.

[2] M. Krapovickas. Organograf́ıa del bandoneón y
prácticas musicales: Lógica dispositiva de los teclados
del bandoneón rheinische tonlage 38/33 y la escritura
ideográfica. Latin American Music Review, 2012.

[3] Juan Ramos, Esteban Ramón Calcagno,
Ramiro Oscar Vergara, Pablo Riera, and Joaqúın
Rizza. Bandoneon 2.0: an interdisciplinary project for
research and development of electronic bandoneons in
Argentina. In NIME 2022, jun 16 2022.
https://nime.pubpub.org/pub/31l4lgcd.

[4] Ivan Franco and Marcelo M Wanderley. Practical
evaluation of synthesis performance on the

beaglebone black. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 223–226, 2015.

[5] Michael Mulshine and Jeff Snyder. Oops: an audio
synthesis library in c for embedded (and other)
applications. In NIME, pages 460–463, 2017.

[6] Juan Ramos, Esteban Calcagno, Ramiro Vergara,
Joaqúın Rizza, and Pablo Riera. An electronic
bandoneon with a dynamic sound synthesis system
based on measured acoustic parameters. Computer
Music Journal, 46(1-2):1–18, 2023.

[7] Edgar Berdahl and Wendy Ju. Satellite ccrma: A
musical interaction and sound synthesis platform. In
NIME, pages 173–178, 2011.

[8] Chris Carlson, Eli Marschner, and Hunter McCurry.
The sound flinger: A haptic spatializer. In NIME,
pages 138–139. Citeseer, 2011.

[9] Hongchan Choi, John Granzow, and Joel Sadler. The
deckle project: A sketch of three sensors. In NIME,
2012.

[10] Steve Curtin. The soundlab: a wearable computer
music instrument. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
1994.

[11] A. J. Thibodeau Hollinger and M. M. Wanderley. An
embedded hardware platform for fungible interfaces.
In Proceedings of conference on New Interfaces for
Musical Expression, 2010.

[12] Sukandar Kartadinata. The gluiph: a nucleus for
integrated instruments. In Proceedings of the 2003
conference on New Interfaces for Musical Expression,
pages 180–183, 2003.

[13] Duncan MacConnell, Shawn Trail, George
Tzanetakis, Peter Driessen, Wyatt Page, and
N Wellington. Reconfigurable autonomous novel
guitar effects (range). In Proceedings of the
international conference on sound and music
computing. Stockholm Sweden, 2013.

[14] Shawn Trail, Duncan MacConnell, Leonardo Jenkins,
Jeff Snyder, George Tzanetakis, and Peter F Driessen.
El-lamellophone a low-cost, diy, open framework for
acoustic lemellophone based hyperinstruments. In
NIME, pages 537–540, 2014.

[15] Andrew McPherson. Bela: An embedded platform for
low-latency feedback control of sound. The Journal of
the Acoustical Society of America, 141(5):3618–3618,
2017.

[16] Giulio Moro, Astrid Bin, Robert H Jack, Christian
Heinrichs, Andrew P McPherson, et al. Making
high-performance embedded instruments with bela
and pure data. University of Sussex, 2016.

[17] Charles Patrick Martin, Alexander Refsum Jensenius,
and Jim Torresen. Composing an ensemble standstill
work for myo and bela. arXiv preprint
arXiv:2012.02404, 2020.

[18] Victor Evaristo Gonzalez Sanchez, Charles Patrick
Martin, Agata Zelechowska, Kari Anne Vadstensvik
Bjerkestrand, Victoria Johnson, and
Alexander Refsum Jensenius. Bela-based augmented
acoustic guitars for sonic microinteraction. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 324–327.
Virginia Tech, 2018.

[19] Laurel Smith Pardue, Kurijn Buys, Michael Edinger,
Daniel Overholt, and Andrew McPherson. Separating
sound from source: sonic transformation of the violin



through electrodynamic pickups and acoustic
actuation. In NIME 2019 New Interfaces for Musical
Expression conference, pages 278–283, 2019.

[20] Andrew Piepenbrink. Embedded digital shakers:
Handheld physical modeling synthesizers. In NIME,
pages 362–363, 2018.

[21] John Sullivan, Julian Vanasse, Catherine Guastavino,
and Marcelo M Wanderley. Reinventing the noisebox:
Designing embedded instruments for active musicians.
In Proceedings of the International Conference on
New Interfaces for Musical Expression, 2020.

[22] Juan Mariano Ramos. Bandoneon 2.0: desarrollo del
prototipo de bandoneón electrónico alfa. UFSCar,
editor, Anais das XXVII Jornadas de Jovens
Pesquisadores. A Ciência ea Tecnologia na Produçao
de Inovaçao e Transformaçao Social., Sao Carlos,
Brazil, 2019.

[23] Andrew Horner, James Beauchamp, and Lippold
Haken. Methods for multiple wavetable synthesis of
musical instrument tones. Journal of the Audio
Engineering Society, 41(5):336–356, 1993.

[24] Andrew Horner. Computation and memory tradeoffs
with multiple wavetable interpolation. Journal of the
Audio Engineering Society, 44(6):481–496, 1996.

[25] Robert Bristow-Johnson. Wavetable synthesis 101, a
fundamental perspective. In Audio engineering society
convention 101. Audio Engineering Society, 1996.

[26] Jonathan Mohr and Xiaobo Li. Computational
challenges in multiple wavetable interpolation
synthesis. In Computational Science—ICCS 2003:
International Conference, Melbourne, Australia and
St. Petersburg, Russia, June 2–4, 2003 Proceedings,
Part I, pages 447–456. Springer, 2003.

[27] Andrew Horner. Wavetable matching synthesis of
dynamic instruments with genetic algorithms. Journal
of the Audio Engineering Society, 43(11):916–931,
1995.

[28] Ramos Juan, Esteban Ramón Calcagno,
Vergara Ramiro Oscar, Rizza Joaqúın, and Pablo
Riera. Sistema integral de medición (SIM) de
parámetros acústicos para el desarrollo de
bandoneones electrónicos. (in press). In Actas de la
AES LAC ’22, 2023.

[29] Math Neon. Math-neon, available at
https://code.google.com/archive/p/math-neon/.


